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ABSTRACT ARTICLE INFO

Let S be a set of imprecise points that is represented
by axis-aligned pairwise disjoint squares in the plane.
A precise instance of S is a set of points, one from
each region of S. In this paper, we study the optimal
minimum spanning tree (OptMST ) problem on S. The
OptMST problem looks for the precise instance of S
such that the weight of the MST in this instance, max-
imize (Max-MST) or minimize (Min-MST) between all
precise instances of S under L1-metric. We present a
(3
7
)-approximation algorithm for Max-MST. This is an

improvement on the best-known approximation factor of
1/3. If S satisfies k-separability property (the distance
between any pair of squares are at least k.amax where
amax is the maximum length of the squares), the factor
parameterizes to 2k+3

2k+7
. We propose a new lower bound

for Min-MST problem on S under L1-metric where S
contains unit squares and provide an approximation al-
gorithm with (1 + 2

√
2) asymptotic factor.
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1 Introduction

In the recent years, processing and managing imprecise points are challenging problems
in computational geometry. The position of the points is usually imprecise because of
a sensor error, the noise of transmitting data and security. For example, the Global
Positioning System (GPS) is a navigation system that provides the location of a query
place based on a distance from the satellites. Computing exact distance is impossible
and measured approximately. So the GPS reports the position of the query point with
some error. However, most of the algorithms in computational geometry work based on
the assumption that the position of points (and also computations) is exact. Thus, they
may fail with imprecise input [13, 10]. In the geometric context, different models are
introduced for imprecision like the region-based model and linear parametric geometric
uncertainty model (LPGUM) [7, 3]. In the region-based model, an imprecise point is
modeled as a geometric region like square, disk and etc. These geometric regions have a
constant complexity, but in LPGUM, a point is represented by a convex shape with k ≥ 3
vertices.
Finding a network that connects set of points with minimum cost, is the main application
of minimum spanning tree (MST). Computing MST under L1 metric is so necessary for
designing VLSI circuits [12]. Therefore, it is important to compute MST under impre-
cision. Obviously computing a lower and upper bound for the weight of MST as the
best and worst case, estimate the cost of the network for the imprecise points. So it is
necessary to compute which precise instances of imprecise points maximize or minimize
MST.

1.1 Problem Definition

Let S = {s1, . . . , sn} be a set of n imprecise points and S ′ = {p1, . . . , pn} be a precise
instance from S (i.e. pi ∈ si for i = 1, . . . , n). For each two points p(px, py), q(qx, qy) ∈ R2,
the L1-distance between p and q is defined as follows:

d1(p, q) = |px − qx|+ |py − qy|.

Suppose w(T ) is the weight of the minimum spanning tree T . The weight between each
two points is the L1-distance between them. In this paper, we consider the following two
problems.
Problem 1 (Max-MST problem) Given an imprecise point set S, compute a precise in-
stance S ′ of S such that the weight of the MST on S ′ is maximized (under L1-metric)
between all precise instances of S.
Problem 2 (Min-MST problem) Given an imprecise point set S, compute a precise instance
S ′ of S such that the weight of the MST on S ′ is minimized (under L1-metric) between
all precise instances of S.
In this paper, we study the Max-MST and the Min-MST problem, for a set of axis-aligned
pairwise disjoint squares under L1-metric. The disjoint squares mean that the interior of
any two squares does not have any intersection, but the boundary of them may intersect.
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1.2 Related Work

Computing minimum spanning tree (MST) is a classical and well-known problem and
several efficient algorithms proposed for it [2]. The MST problem was studied in the
various imprecise models. Under imprecision, the goal is finding a precise instance from
imprecise regions to maximize (Max-MST) or minimize (Min-MST) the weight of the
MST between all precise instances. In 2010, Löffler and van Kerveld shows NP-hardness
of computing Min-MST for a set of geometric regions that are not pairwise disjoint [9].
Dorrigive et.al. [5] prove that finding Min-MST or Max-MST for pairwise disjoint regions,
is NP-hard too in 2012. Several approximation algorithms are proposed for Min or Max-
MST. Dorrigive et.al. define Max-MST problem firstly and give an algorithm with 1

2
-

approximation factor under L2-metric for the pairwise disjoint disks. Their algorithm is
so simple and picks the center of each disk and compute the MST on these points. Let
rmax be a maximum radius of the disks. If the minimum distance of any two disks is at
least k.rmax for k > 0 (k-separability property), then the approximation factor of their
algorithm is (1− 2

k+4
) [5]. Yang et.al. give a 3-approximation algorithm for Min-MST for

set of unit disks [14]. If the disks satisfy k-separability property, picking center of each
disk, yields (1 + 2

k
)-approximation algorithm [5].

Bartal et.al. [1] studied MST under LPGUM model. They addressed the problem of
testing the stability of Euclidean MST for a set of n LPGUM points with complexity k.
In this problem, an arbitrary point is selected from each imprecise region and the MST is
computed on these points. The goal is deciding whether we can select other points and
get a smaller weight for MST or not. If the answer is no, then this MST is the Min-MST
for a set of n LPGUM points. Otherwise, other points yield the Min-MST but there
is not any polynomial time algorithm to compute them. They provided an O(k log k)
time algorithm for comparing the weight of two edges and O(n3k log k) time algorithm
for testing the stability of the MST. Under the stochastic model of input where the
points being active with some probability, an interesting problem is computing expected
weight of MST [8, 15]. Kamousi et.al. [8] considered expected MST problem and showed
that it is a polynomial time problem for dimension d ≥ 2. For d = 2, they proposed an
O(n4) time constant factor approximation algorithm. Another well-studied problem under
imprecision is traveling salesman problem (TSP). In the Euclidean setting, Mitchell [11]
provided the first constant-factor approximation algorithm for a set of arbitrary disjoint
regions. de Berg et.al. [4] considered TSP in the region-based model and proposed PTAS
for imprecise points that modelled with disjoint convex regions.

1.3 Our Results

In this paper, we study both Max-MST and Min-MST under L1-metric, and get the
following results:

1. A (3
7
)-approximation algorithm for Max-MST where imprecise points are modeled

as axis-aligned pairwise disjoint squares. This is an improvement on the best-known
approximation factor of 1/3.
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2. A (2k+3
2k+7

)-approximation algorithm for Max-MST where squares satisfy k-separability
property.

3. We propose a new lower bound for Min-MST problem for a set of axis-aligned
pairwise disjoint unit squares under L1-metric and provide (1+2

√
2)-approximation

algorithm for Min-MST problem.

Outline of the paper. This paper organizes as follows. In Section 2, we describe
two approximation algorithms for Max-MST. Then we study Min-MST in Section 3 and
present an algorithm that approximates the solution with (1 + 2

√
2) factor. Finally, we

conclude the paper in Section 4.

2 Max-MST

Let S = {s1, . . . , sn} be a set of n axis-aligned pairwise disjoint squares that each si ∈ S
represent an imprecise point. In this section, two approximation algorithms are proposed
for the Max-MST problem with 1

3
and 3

7
factors. Dorrigive et.al. [5] proposed a simple

algorithm for pairwise disjoint disks and consider the center of the disks as a precise
instance. By applying this algorithm on S, a 1

3
-approximation algorithm can be obtained.

We improve this factor to 3
7

in Section 2.2.

2.1 A (1
3)-Approximation Algorithm

The algorithm simply picks a center of each si ∈ S as the precise instance S ′ and MST
on S ′ is computed by Kruskal algorithm [5]. The Theorem 2.1 shows that this algorithm
approximate the optimal Max-MST within a factor of 1

3
.

Theorem 2.1. Let S = {s1, . . . , sn} be a set of n axis-aligned pairwise disjoint squares.
Let Tc be a MST on the center of the squares and Topt be the optimal Max-MST. Then
w(Tc) ≥ 1

3
w(Topt).

Proof. Let O be a precise instance that, yields Topt. Let T be a spanning tree with the
same topology as Tc but it builds on O. Since T and Topt build on the same points and
Topt is a MST, we have:

w(Topt) ≤ w(T ). (1)

Let pi, pj ∈ O (selected from si, sj ∈ S respectively) be two arbitrary points such that
the edge eopt = (pi, pj) belongs to T . ecen is the edge connecting the center of si (i.e.
ci(xi, yi)) and sj (i.e. cj(xj, yj)) (see Figure 1). Suppose ai and aj be the lengths of si
and sj respectively where ai ≤ aj. The ratio between the weight of ecen and eopt is:

w(ecen)

w(eopt)
=
ai/2 + aj/2 + c

2ai + aj
where c = |yi − yj|. (2)
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Figure 1: Illustration of the proof of
Theorem 2.1.

Left vertices

Up vertices

Figure 2: Labeling of the squares ver-
tices with Up or Left.

Let amax be the maximum length of squares. To get the smallest value for Equation 2,
we set c = 0. Since ai ≤ aj we have:

ai/2 + aj/2 + c

2ai + aj
≥ ai/2 + aj/2

2ai + aj
≥ amax

3amax

=
1

3
. (3)

This case may occur for any pair of squares. Since T and Tc have the same topology, the
ratio between w(Tc) and w(T ) is:

w(Tc)

w(T )
≥ 1

3
. (4)

By Equation 1 we conclude that:

w(Tc) ≥
1

3
w(T ) ≥ 1

3
w(Topt).

Running Time Analysis. Computing S ′ takes O(n) time by simply checking all squares
and for computing the MST on S ′, a complete graph must be considered. So the running
time of (1

3
)-approximation algorithm is O(n2 log n).

2.2 A (3
7)-Approximation Algorithm

To improve the approximation factor, we must choose the precise instance wisely. So we
sort the squares to get some order for choosing a point from each square. Squares were
sorted based on a Left or Up vertex respect to (x or y)-coordinate (See Figure 2). It is
clear that a square has two Left and two Up vertices. Definition 1 Let S = {s1, . . . , sn}
be a set of n axis-aligned pairwise disjoint squares. Suppose x(i) is the x-coordinate of
the Left vertices of si ∈ S and y(i) is y-coordinate of the Up vertices of si. We say si ≺ sj
iff (x(i) < x(j)) or (x(i) = x(j) and y(i) > y(j)).
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Algorithm 1: (3
7
)-approximation algorithm

Input : S, a set of n axis-aligned pairwise disjoint squares.
Output: TG = (V,E).

1 Sort S based on ≺ in an ascending order. Let s1, . . . , sn be the sorted list;
2 V,E = ∅;
3 Let p1 and p2 be the two points from s1, s2 that yield maximum distance between

them;
4 V = V ∪ {p1, p2};
5 E = E ∪ {(p1, p2)};
6 i = 3;
7 while i ≤ n do
8 Pick a point from si that has a maximum distance to pi−1 and call it pi;
9 V = V ∪ {pi};

10 E = E ∪ {(pi−1, pi)};
11 i = i+ 1;

12 return TG;

Consider the ascending order of S based on ≺. The idea of the algorithm 1 is selecting
a point from each square to maximize L1-distance between any two consecutive squares,
then connect selected points based on the sorted order of corresponding squares and denote
it by TG (See Figure 4). The selected points are the precise instance of S. It is clear that
the points of the precise instance, are vertices of the squares and TG is a spanning tree.
We claim that TG approximates the optimal solution of the Max-MST within a factor
3/7.

ai

ajsi

sj

b

c

pi

x

aj − x

Figure 3: Illustration of the proof of Theorem 2.2.

Theorem 2.2. Let S = {s1, . . . , sn} be a set of n axis-aligned pairwise disjoint squares. If
TG is the output of algorithm 1 and Topt be the optimal Max-MST, then w(TG) ≥ 3

7
w(Topt).

Proof. Let O be a precise instance, that yields Topt. Let T be a spanning tree with the
same topology as TG but it builds on O and let ai and aj (ai ≤ aj) be the lengths of si
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and sj, where si and sj are two consecutive squares base on ≺. Suppose pi = (xi, yi) is
the selected point from si. By the Algorithm 1, two choices are available for sj. These
choices are denoted by b = (xb, yb) and c = (xc, yc) where b and c are the vertices of sj.
Let x = |xi − xb|, so we have aj − x = |xi − cx| (see Figure 3). To obtain the worst-case
that yields the minimum approximation factor, we consider two cases:

1. x ≥ aj − x
By the Algorithm 1, b is chosen from sj. The x ≥ aj − x satisfies if aj/2 ≤ x ≤ aj.
So the ratio between the edge (pi, b) and the optimal edge is:

x+ aj
−x+ 2ai + 2aj

. (5)

The Equation (5) is a nondecreasing function base on x. Therefore, it gets the
minimum value in x = aj/2. Let amax be the maximum length of the squares. Since
ai ≤ aj, the Equation (5) can be bounded as follows:

x+ aj
−x+ 2ai + 2aj

≥ aj/2 + aj
−aj/2 + 2ai + 2aj

≥ (3/2)amax

(7/2)amax

=
3

7
. (6)

This case may occur for any pair of the squares. Since T and TG have the same
topology, the ratio between w(TG) and w(T ) is:

w(TG)

w(T )
≥ 3

7
. (7)

By the Equation (1) we conclude that:

w(TG) ≥ 3

7
w(T ) ≥ 3

7
w(Topt).

2. x < aj − x
The point c was chosen from sj by Algorithm 1. The x < aj − x satisfies if 0 ≤ x <
aj/2. So the ratio between the edge (pi, c) and the optimal edge is:

−x+ 2aj
−x+ 2ai + 2aj

. (8)

The Equation (8) is a nonincreasing function base on the x. So the lower bound for
the minimum value can be obtained by x = aj/2. Similar to case 1 we can bound
Equation (8) by 3/7. Therefore, by Equation (1), w(TG) ≥ 3

7
w(Topt).

Running Time Analysis. For computing precise instance, the squares must be sorted
based on ≺. This step takes O(n log n) and TG is built in O(n) time. So the running time
of (3

7
)-approximation algorithm is O(n log n). So our algorithm approximates the weight

of the Max-MST faster than (1
3
)-approximation algorithm.
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TG

s1

s2

s3

s4

s5

s6

Figure 4: By running Algorithm 1, V consist of bold points and TG connect all squares
respect to sorted order S = {s1, s2, s3, s4, s5, s6}.

2.3 Parametrized Approximation Factor

Let amax be the maximum length of the squares. S satisfies k-separability property if
the minimum distance between any pair of the squares is at least k.amax. If S satisfies k-
separability property and by using Algorithm 1, then the following result can be obtained:

Theorem 2.3. Let S = {s1, . . . , sn} be a set of n axis-aligned pairwise disjoint squares
that satisfies k-separability property (k > 0). If TG denotes the output of the Algorithm 1
and Topt is the optimal Max-MST, then w(TG) ≥ 2k+3

2k+7
w(Topt).

Proof. Consider two consecutive squares si and sj (base on ≺) where the length of si (i.e.
ai) is no more than the length of sj (i.e. aj). If a be the selected point of si then two
choices are available for sj. We denote these choices by b = (xb, yb) and c = (xc, yc) (see
Figure 5). Let x = |xi−xb|, so we have aj−x = |xi−cx|. Similar to the proof of Theorem
2.2, the worst-case for two squares can be obtained by setting x = aj/2. So the ratio
between the edge (a, b or c) to the optimal edge can be bounded as follows:

k.amax + x+ aj
k.amax − x+ 2ai + 2aj

≥ k.amax + 3
2
aj

k.amax + 2ai + 3
2
aj
≥ 2k + 3

2k + 7
. (9)

This case may occur for any pair of squares, so by the Equation (1), we have w(TG) ≥
2k+3
2k+7

w(Topt).

3 Min-MST

Let S = {s1, . . . , sn} be a set of n axis-aligned pairwise disjoint unit squares that represent
n imprecise points. In the following, we give an approximation algorithm for Min-MST
problem with 1 + 2

√
2 asymptotic approximation factor.
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Figure 5: Illustration of the proof of Theorem 2.3.

Definition 2 Let S = {s1, . . . , sn} be a set of n axis-aligned pairwise disjoint unit squares
and dij be the minimum L1-distance between si, sj ∈ S. Define the complete graph
G = (V,E) where vi ∈ V corresponds to si ∈ S and the weight of the edge eij = (vi, vj) is
dij. The minimum connecting tree (MCT) is the minimum spanning tree of G. Let LMCT

denote the weight of MCT.
In computing MCT, more than one point is selected from the squares, So the lower bound
of the weight of Min-MST is LMCT . Otherwise, we can get a smaller spanning tree on S
that contradicts the definition of MCT. Let Lopt be the weight of Min-MST. We extend the
conjecture of Fraser [6] for the lower bound of the Min-MST for squares under L1-metric.
Figure 6 shows the arrangement of the squares that yields the lower bound of the weight
of Min-MST. For the even number of squares, every fourth square from left to right based
on ≺ order are joined with an edge weight 2. The first and the last two squares do not
increase the weight of Min-MST. So the total weight of the Min-MST is [n

2
]− 2. For the

odd number of squares, the last one base on ≺ order does not increase the weight of the
Min-MST, so [n−1

2
]− 1 ≤ [n

2
]− 1 holds for the lower bound of the Min-MST.

Conjecture 1. Let S = {s1, . . . , sn} be a set of n ≥ 5 axis-aligned pairwise disjoint unit
squares. The following holds for Lopt.

1. Lopt ≥ [n
2
]− 2 for even n ≥ 6

2. Lopt ≥ [n
2
]− 1 for odd n ≥ 5

3.1 A (1+2
√

2)-Approximation Algorithm

In this section, we propose an approximation algorithm for the Min-MST problem. The
approximation algorithm is similar to Fraser et.al. algorithm [6] that proposed to compute
Min-MST for a set of n pairwise disjoint unit disks under the Euclidean metric. The
algorithm computes MCT. Consider the squares that have more than one selected point
and move these points to the center of the squares. By these movements, we ensure that
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Figure 6: Arrangement of the squares correspond to Conjecture 1.

exactly one point is selected from each square. The resulting points are a precise instance
of S. Finally the MST on the precise instance is returned as a solution.

Algorithm 2: (1 + 2
√

2)-approximation algorithm

Input : S = {s1, . . . , sn}, a set of n axis-aligned pairwise disjoint unit squares.
Output: (1 + 2

√
2)-appoximate solution for Min-MST.

1 Compute MCT of S;
2 i = 1 and P = ∅;
3 while i ≤ n do
4 if si has more than one selected point then
5 Set pi to the center of si;
6 else
7 Set pi to the selected point of si;

8 P = P ∪ {pi};
9 i = i+ 1;

10 Compute MST of P and call it TG;
11 return TG;

3.1.1 Analyze of the Approximation Factor

It is clear that MCT has n − 1 edges and at least two leaves, since it is a tree. By the
Algorithm 2, we must move 2(n− 3) points to the center of the squares in the worst-case.

Each moving adds
√
2
2

to the weight of each 2(n − 3) edges. Let Lc be the weight of the
tree (Tc) that are created by moving points and LG be the weight of TG, so we have:

Lc ≤ LMCT +
√

2(n− 3) +
√

2 ≤ LMCT +
√

2(n− 2). (10)

By assuming Conjecture 1, it is clear that n
2
< Lopt. Since LMCT ≤ Lopt, so we rewrite

(10) as follows:

Lc ≤ Lopt +
√

2(2Lopt + 2) < (1 + 2
√

2)Lopt + 2
√

2. (11)
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By Algorithm 2, TG computed on the points of Tc, we conclude the following result:

LG ≤ Lc < (1 + 2
√

2)Lopt + 2.82. (12)

Assuming the lower bound of Conjecture 1 for Min-MST, TG approximates the optimal
Min-MST with an asymptotic approximation factor of (1 + 2

√
2).

Running Time Analysis. Computing MCT of S takes O(n2 log n) time and moving
points to the center of the squares, takes O(n) time. In the last step, MST is com-
puted over n points, so it takes O(n2 log n) time. Therefore, the algorithm complexity is
O(n2 log n).

4 Conclusion

In this paper, we studied the problem of computing optimal minimum spanning tree for
a set of imprecise points under L1-metric. The Max-MST and Min-MST can be defined
under imprecision. We provided two approximation algorithm for Max-MST and if impre-
cise points satisfy k-separability property, the approximation factor can be parametrized
with respect to k. An approximation algorithm was presented for Min-MST where impre-
cise points modelled as unit disjoint squares. There are various problems to be pursued.
One interesting problem is giving an algorithm that yields a better approximation factor
for Min or Max-MST. Another challenging problem is giving tight examples for proposed
algorithms.
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