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ABSTRACT ARTICLE INFO

Suppose G is a simple and connected graph. The first
and second Zagreb indices of G are two degree-based
graph invariants defined as M1(G) =

∑
v∈V (G) deg(v)2

and M2(G) =
∑

e=uv∈E(G) deg(u)deg(v), respectively.
The graph G is called p−quasi k−cyclic, if there ex-
ists a subset S of vertices such that |S| = p, G \ S is
k−cyclic and there is no a subset S ′ of V (G) such that
|S ′| < |S| and G \ S ′ is k−cyclic. The aim of this pa-
per is to characterize all graphs with maximum values of
Zagreb indices among all p−quasi k−cyclic graphs with
k ≤ 3.
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1 Basic Definitions

Throughout this paper, all graphs are assumed to be finite, simple and connected. For
such a graph G, the set of vertices and edges are denoted by V (G) and E(G), respectively.
We use the notations Pn, Cn, Sn, Kn and ∅n to denote the n−vertex path, cycle, star,
complete and empty graphs, respectively. The cyclomatic number of G is defined as
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C(G) = |E(G)| − |V (G)| + 1 and if C(G) = k then we say that G is k−cyclic. If
C(G) = 0, 1, 2, 3 then G is called a tree, unicyclic, bicyclic and tricyclic, respectively. The
set of all k−cyclic graphs on a fixed vertex set of size n is denoted by Ck(n).
The set of all vertices which are adjacent to v in G is denoted by NG(v). The degree of
a vertex v, denoted by dG(v) (d(v) for short), in a graph is the number of edges incident
to it that clearly is the size of NG(v). A vertex of degree one is named a pendant vertex
and an edge containing a pendant vertex is called a pendant edge. The maximum and
minimum degrees of vertices in G are denoted by ∆ = ∆(G) and δ = δ(G), respectively.
A graph G is called a p−quasi k−cyclic, if there exists a subset S of vertices such that
|S| = p, G \ S is k−cyclic and there is no a subset S ′ of V (G) such that |S ′| < |S| and
G \ S ′ is k−cyclic. The set of all such graphs is denoted by QpC

k(n).
Suppose G and H are two graphs. The union G ∪ H is a graph with the vertex set
V (G)∪ V (H) and edge set E(G)∪E(H). The join of G and H is a graph with the same
vertex set as G ∪H and E(G+H) = E(G) ∪ E(H) ∪ {xy | x ∈ V (G), y ∈ V (H)}. Our
other notations are standard and can be taken from [5, 10].
The Zagreb indices are the most studied degree-based graph invariants were introduced
by Gutman and Trinajstić [8], are among the most studied degree-based graph invari-
ants. These graph invariants are defined as M1(G) =

∑
v∈V (G)(dG(v))2 and M2(G) =∑

uv∈E(G)(dG(u)dG(v)).

2 Preliminary Results

In this section, we first give a review of the most important results on Zagreb group
indices of graphs and then present some results which are crucial for proving the main
results of this paper.
Nikolić et al. [11], reported applications of Zagreb indices for studying molecular com-
plexity [12], chirality [6] and ZE−isomerism [7] in mathematical chemistry. They also
illustrated the applications of this invariant in QSPR by modeling the structure boiling
point relationship of C3C8 alkanes. Their theoretical results based on Zagreb group indices
were compared with experimental data.
Das et al. [2], obtained lower and upper bounds for M1(G) in terms of |V (G)|, |E(G)|,
∆(G) and δ(G) by which it is possible to find lower and upper bounds on M2(G). They
also gave a relation between the first and second Zagreb indices of G.
Let U3

n be the unicyclic graph obtained from the cycle C3 by attaching n−3 pendent edges
to a fixed vertex of C3. Suppose e is an edge of the complete graph K4 and H = K4 \ e.
Construct the graph B3,3

n by considering a copy of K4 \ e, a copy of ∅n−4 and contact all
vertices of ∅n−4 to a fixed vertex of degree 3 in K4 \ e, see Figure 1.
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Figure 1: The bicyclic graph B3,3
n in Theorem 3.5.

Figure 2: The tricyclic graphs qn(n− 4, 1, 1, 1, 1) and Kn(n− 3, 1, 1, 1) in Theorem 3.6.
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3 Main Results

The aim of this paper is to characterize graphs with maximum values of Zagreb indices
among all p−quasi k−cyclic graphs with k ≤ 3.

Theorem 3.1. Let G be a p−quasi k−cyclic graph. If S ⊂ V (G), |S| = p and G− S ∈
Ck(n− p), then

1. M1(G) ≤ M1(G− S) + p(4k + n2 + 2n+ p(n− 4)− p2 − 3),

2. M2(G) ≤ M2(G−S) + pM1(G−S) + (k+n−p−1)(p2 +2p(n−1)) + p(p−1)(n−1)
2

+
p2(n− p)(n− 1),

with equality in each if and only if G ∼= (G− S) +Kp.

Proof. To prove (1), we assume that u ∈ V (G − S) and define lu to be the number of
vertices in S adjacent to u. By definition of M1,

M1(G) =
∑

u∈V (G−S)

d2G(u) +
∑
u∈S

d2G(u) =
∑

u∈V (G−S)

(dG−S(u) + lu)2 +
∑
u∈S

d2G(u).

By simplifying this equality,

M1(G) =
∑

u∈V (G−S)

(d2G−S(u) + l2u + 2dG−S(u)lu) +
∑
u∈S

d2G(u)

= M1(G− S) +
∑

u∈V (G−S)

l2u +
∑

u∈V (G−S)

2dG−S(u)lu +
∑
u∈S

d2G(u)

≤ M1(G− S) +
∑

u∈V (G−S)

p2 +
∑

u∈V (G−S)

2dG−S(u)p+
∑
u∈S

(n− 1)2

= M1(G− S) + (n− p)p2 + 4p(k + n− p− 1) + p(n− 1)2

= M1(G− S) + p(4k + n2 + 2n+ p(n− 4)− p2 − 3).

The equality holds if and only if for each u ∈ V (G − S), lu = p and for every vertex
u ∈ S, we have dG(u) = n−1. This condition is satisfied if and only if G ∼= (G−S) +Kp,
proving the first part of the theorem.
To prove (2), we assume that u∗v∗ is an edge of G such that u∗ ∈ V (G− S) and v∗ ∈ S.
By definition of M2,
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M2(G) =
∑

uv∈E(G−S)

dG(u)dG(v) +
∑

uv∈E(G−(V (G)\S))

dG(u)dG(v)

+
∑

u∗v∗∈E(G)

dG(u∗)dG(v∗)

=
∑

uv∈E(G−S)

(dG−S(u) + lu)(dG−S(v) + lv) +
∑

uv∈E(G−(V (G)\S))

dG(u)dG(v)

+
∑

u∗v∗∈E(G)

(dG−S(u∗) + lu∗)dG(v∗).

By simplifying the last equality,

M2(G) =
∑

uv∈E(G−S)

(dG−S(u)dG−S(v) + dG−S(u)lv + dG−S(v)lu + lulv)

+
∑

uv∈E(G−(V (G)\S))

dG(u)dG(v) +
∑

u∗v∗∈E(G)

(dG−S(u∗)dG(v∗) + dG(v∗)lu∗).

Therefore,

M2(G) = M2(G− S) +
∑

uv∈E(G−S)

(dG−S(u)lv + dG−S(v)lu + lulv)

+
∑

uv∈E(G−(V (G)\S))

dG(u)dG(v) +
∑

u∗v∗∈E(G)

(dG−S(u∗)dG(v∗) + dG(v∗)lu∗)

≤ M2(G− S) + p
∑

uv∈E(G−S)

(dG−S(u) + dG−S(v) + p)

+
∑

uv∈E(G−(V (G)\S))

(n− 1)2 +
∑

u∗v∗∈E(G)

(dG−S(u∗)(n− 1) + (n− 1)p)

= M2(G− S) + pM1(G− S) + (k + n− p− 1)p2 +
p(p− 1)(n− 1)2

2
+ 2p(n− 1)(k + n− p− 1) + p2(n− p)(n− 1)

= M2(G− S) + pM1(G− S) + (k + n− p− 1)(p2 + 2p(n− 1))

+
p(p− 1)(n− 1)

2
+ p2(n− p)(n− 1).

The equality is satisfied if and only if for each u ∈ V (G− S), lu = p and for every vertex
u ∈ S, dG(u) = n−1. This condition is also equivalent to the fact that G ∼= (G−S) +Kp

which completes the proof.

Theorem 3.2. Suppose A = {H1, H2, ..., Hr} ⊂ Ck(n − p), H ∈ Ck(n − p) \ A, B =
{Hi +Kp|i = 1, 2, ..., r} and G ∈ QpC

k(n) \ B. If M1(H) < M1(H1) = ... = M1(Hr) and
M2(H) < M2(H1) = ... = M2(Hr), then
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1. M1(G) < M1(H1 +Kp) = · · · = M1(Hr +Kp),

2. M2(G) < M2(H1 +Kp) = · · · = M2(Hr +Kp).

Proof. By Theorem 3.1(1), for each i, 1 ≤ i ≤ r, M1(Hi + Kp) = M1(Hi) + p(4k + n2 +
2n+ p(n− 4)− p2 − 3). Since G 6∈ B, for every subset S of V (G) with this property that
G− S ∈ Ck(n− p), we have G− S 6∈ A or G− S ∈ A and G 6= (G− S) +Kp. Thus, by
Theorem 3.1(1), M1(G) < M1(H1 +Kp) = ... = M1(Hr +Kp). To prove the second part,
we apply Theorem 3.1(2) and a similar argument as above.

The following theorems are crucial in our next result:

Theorem 3.3. (See [1, 9]). Let T be a tree of order n. If T is different from Sn, then
M1(T ) < M1(Sn) and M2(T ) < M2(Sn).

Theorem 3.4. ( See [13, 14]). U3
n is the unique graph with the largest Zagreb indices M1

and M2 among all unicyclic graphs with n vertices.

Theorem 3.5. ( See [4]). B3,3
n is the unique graph with the largest Zagreb indices M1

and M2 among all bicyclic graphs with n vertices, see Figure 1.

Suppose qn(n − 4, 1, 1, 1, 1) and Kn(n − 3, 1, 1, 1) are tricyclic graphs depicted in Figure
2.

Theorem 3.6. ( See [3]). Among all tricyclic graphs with n(≥ 5) vertices,

1. Kn(n − 3, 1, 1, 1) and qn(n − 4, 1, 1, 1, 1) have the maximum values of first Zagreb
index.

2. The graph Kn(n− 3, 1, 1, 1) has maximum value of the second Zagreb index.

From Theorems 3.2, 3.3, 3.4, 3.5 and 3.6, we have the following corollary.

Corollary 3.7. Suppose n is a given positive integer and G ∈ QpC
k(n). Then,

1. If k = 0 and n ≥ p+ 2 then M1(G) ≤M1(Sn−p +Kp) and M2(G) ≤M2(Sn−p +Kp).
Hence Sn−p + Kp has the maximum first and second Zagreb indices in the class
QpC

0(n) with n ≥ p+ 2.

2. If k = 1 and n ≥ p+3 then M1(G) ≤M1(U
3
n−p +Kp) and M2(G) ≤M2(U

3
n−p +Kp).

Hence U3
n−p + Kp has the maximum first and second Zagreb indices in the class

QpC
1(n) with n ≥ p+ 3.

3. If k = 2 and n ≥ p+4 then M1(G) ≤M1(B
3,3
n−p +Kp) and M2(G) ≤M2(B

3,3
n−p +Kp).

Hence B3,3
n−p + Kp has the maximum first and second Zagreb indices in the class

QpC
2(n) with n ≥ p+ 4.

4. If k = 3 and n ≥ p+5 then M1(G) ≤M1(Kn−p(n−p−3, 1, 1, 1)+Kp) = M1(qn−p(n−
p−4, 1, 1, 1, 1)+Kp). Hence Kn−p(n−p−3, 1, 1, 1)+Kp and qn−p(n−p−4, 1, 1, 1, 1)+
Kp have the maximum first Zagreb index in the class QpC

3(n) with n ≥ p+ 5.
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5. If k = 3 and n ≥ p + 5 then M2(G) ≤ M2(Kn−p(n − p − 3, 1, 1, 1) + Kp). Hence
Kn−p(n − p − 3, 1, 1, 1) + Kp has the maximum second Zagreb index in the class
QpC

3(n) with n ≥ p+ 5.

Acknowledgement. We are indebted to the referee for many insightful suggestions and
helpful remarks. This research is partially supported by the University of Kashan under
grant number 364988/44.

References

[1] Das, K. C., and Gutman, I., Some properties of the second Zagreb index. MATCH
Communications in Mathematical and in Computer Chemistry, 52 (2004), 103–112.

[2] Das, K. C., Xu, K., and Nam, J., Zagreb indices of graphs. Frontiers of Mathematics
in China, 10, (3) (2015), 567–582.

[3] Dehghan-Zadeh, T., Hua, H., Ashrafi, A. R., and Habibi, N., Extremal tri-cyclic
graphs with respect to the first and second Zagreb indices. Note di Matematica, 33,
(2) (2013), 107–121.

[4] Deng, H., A unified approach to the extremal Zagreb indices for trees, unicyclic
graphs and bicyclic graphs. MATCH Communications in Mathematical and in Com-
puter Chemistry, 57, (2007), 597–616.

[5] Diestel, R. , Graph Theory, Springer-Verlag, Berlin, 2017.

[6] Golbraikh, A., Bonchev, D., and Tropsha, A., Novel chirality descriptors derived from
molecular topology. The Journal for Chemical Information and Computer Scientists,
41, (2001), 147–158.

[7] Golbraikh, A., Bonchev, D., and Tropsha, A., Novel ZE-isomerism descriptors derived
from molecular topology and their application to QSAR analysis. The Journal for
Chemical Information and Computer Scientists, 42, (2002), 769–787.

[8] Gutman, I., and Trinajstić, N., Graph theory and molecular orbitals. Total
π−electron energy of alternant hydrocarbons. Chemical Physics Letters, 17, (1972),
535–538.

[9] Gutman, I., and Das, K. C., The first Zagreb index 30 years after. MATCH Com-
munications in Mathematical and in Computer Chemistry, 50, (2004), 83–92.
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years after. Croatica Chemica Acta, 76, (2) (2003), 113–124.



82 A. R. Ashrafi / JAC 51 issue 2, December 2019, PP. 75 - 82
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