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1 Introduction

For coloring a commutative ring, Beck introduced a version of the zero-divisor graph of a
ring in his 1988 paper [8]. Later in 1999, Anderson and Livingston introduced a similar
notion which is the by-now standard definition of zero-divisor graphs [4]. This notion
has been generalized and investigated for commutative semigroups with zero by DeMeyer
et al. [16, 17]. Since then, many authors have investigated the zero-divisor graphs from
different perspectives and for a survey on this, one may refer to the papers [2,3]. Similarly,
for non-commutative rings, Redmond has introduced a similar notion called zero-divisor
(directed) graphs [31].
One of the interesting topics in algebraic combinatorics is to compute invariants of zero-
divisor graphs such as their diameters, girths, clique numbers, chromatic numbers, and
even “Zagreb indices” [7] and for a survey on the computation of these invariants, one can
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check the paper [13]. For the comparison of these numbers for zero-divisor graphs of a
semigroup under Armendariz extension one may see the 2013 paper by Epstein et al. [20]
and under polynomial and power series extensions the 2006 paper by Lucas [25]. Section 5
of the 2010 paper [29] is devoted to the comparison of the diameter of zero-divisor graphs
under content extensions. One interesting topic for a future project can be to compute
the tenacity [14] of zero-divisor graphs.
Our main motivation for this paper was to attribute a graph RG(M) to a module M
inspired by zero-divisor graphs of ideals of a ring in the following sense:
Let R be a commutative ring with a nonzero identity and M be a unital R-module. We
associate a graph RG(M) to M , which we call residuated graph of M , whose vertices and
edges are determined as follows:

1. Let N be a submodule of M . Then N is a vertex of RG(M) if the residuated ideal
[N : M ] of R is nonzero and there is a submodule K 6= N of M with [K : M ] 6= (0)
such that

[N : M ] · [K : M ] = (0),

where by [N : M ], we mean the set of all elements r ∈ R such that rM ⊆ N ;

2. Two distinct vertices P and Q of the graph RG(M) are connected if

[P : M ] · [Q : M ] = (0).

Surprisingly, similar to the zero-divisor graphs of commutative semigroups [17, Theorem
1.3], the graph RG(M), for any R-module M , is connected and the best upper-bound for
diamRG(M) is 3 if the graph RG(M) is non-empty (see Corollary 3.12). Here we need
to recall that the distance between two vertices in a simple graph is the number of edges
in a shortest path connecting them. The greatest distance between any two vertices in a
graph G is the diameter of G, denoted by diam(G) [18, p. 8].
Based on our investigations for residuated graphs, in Definition 2.1, we attribute a graph
to an arbitrary set which is also a generalization of the notion of zero-divisor graphs of
arbitrary commutative semigroups with zero in the following sense:
Let X be a non-empty set, (S, ·, 0) a commutative multiplicative semigroup with zero,
and f a function from X to S. We attribute a simple graph to X, denoted by Γ(S,f)(X),
whose vertices and edges are determined as follows:

1. An element x ∈ X is a vertex of the graph Γ(S,f)(X) if f(x) 6= 0 and there is a y 6= x
in X such that f(y) 6= 0 and f(x) · f(y) = 0.

2. Let x and y be elements of X. The doubleton {x, y} is an edge of the graph Γ(S,f)(X)
if x 6= y, f(x) 6= 0, and f(y) 6= 0 while f(x) · f(y) = 0.

Then, in Section 2, we prove that under some conditions, the graph Γ(S,f)(X) is connected
with diam Γ(S,f)(X) ≤ 3 if Γ(S,f)(X) is non-empty (see Definition 2.1, Theorem 3.1, and
Theorem 3.10).
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Note that in the Definition 2.1, if we set X = S and suppose that idS is the identity map
on a commutative semigroup with zero S, then Γ(S,idS)(S) is nothing but the zero-divisor
graph Γ(S) defined in [17].
In Section 3, we prove that if S is a commutative semiring with a nonzero identity and
the S-semimodule M has the annihilator condition or M is a content S-semimmodule
and the content function from M to finitely generated ideals of S is onto, then the graphs
Γ(Id(S),Ann)(M) and Γ(Id(S),c)(M) are connected with diameters at most 3 if they are non-
empty (see Corollary 3.7 and Corollary 3.9).
We also show that if S is a commutative semiring with a nonzero identity, M is a unital
S-semimodule, q is a function from Sub(M) to Id(S) with q(N) = [N : M ], and the graph
Γ(Id(S),q)(Sub(M)) is non-empty, then it is a connected graph whose diameter is at most
3 (see Corollary 3.12).
In Section 4, we discuss the cycles and cores of the graphs defined in Definition 2.1.
For example in Theorem 4.3, we prove that if X is a non-empty set, S a commutative
semigroup with zero, f a function from X to S, the graph Γ(S,f)(X) has at least three
vertices, and the function f has this property that for all x, y ∈ X if f(x)f(y) 6= 0 then
there exists a z ∈ X such that f(z) = f(x)f(y), then if Γ(S,f)(X) contains a cycle, then
the core K of Γ(S,f)(X) is a union of triangles and rectangles.
We recall that a trail in a graph G is a walk in which all edges are distinct. A path in
the graph G is a trail in which all vertices (except possibly the first and last) are distinct.
If P = x0 · · ·xk−1 is a path in G and k ≥ 3, then the path C = x0 · · · xk−1x0 is a cycle
in G [18]. We also note that the core of a graph Γ is the largest subgraph of Γ in which
every edge is the edge of a cycle in Γ [16].

2 A generalization of zero-divisor graphs for semi-

groups

One of the interesting areas of research in algebraic combinatorics is to associate a graph
G(A) to an algebraic structure A and investigate the interplay between the algebraic
properties of the algebra A and the graph-theoretic properties of the graph G(A). One
method is to consider the intersection graphs of the substructures of an algebraic structure.
For example, in the 2012 paper [1], Akbari et al. investigate the intersection graphs of the
submodules of modules over arbitrary commutative rings. Since 1960s, many authors have
worked on intersection graphs [9,12,15,30,32,34,35]. Note that all graphs are intersection
graphs [19]. In this direction, Malakooti Rad and Nasehpour generalize the notion of
intersection graphs and attribute a graph to the bounded semilattices and investigate
their properties and compute the invariants of such graphs [26].
In this section, we attribute a graph to an arbitrary set which is on one hand a general-
ization of the notion of zero-divisor graphs of commutative semigroups and on the other
hand is a generalization of the graphs attributed to submodules of a module given in
Corollary 3.12.
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Definition 2.1. Let X be a non-empty set, (S, ·, 0) a commutative multiplicative semi-
group with zero, and f a function from X to S. We attribute a graph to X, denoted by
Γ(S,f)(X), whose vertices and edges are determined as follows:

1. An element x ∈ X is a vertex of the graph Γ(S,f)(X) if f(x) 6= 0 and there is a y 6= x
in X such that f(y) 6= 0 and f(x) · f(y) = 0.

2. Let x and y be elements of X. The doubleton {x, y} is an edge of the graph Γ(S,f)(X)
if x 6= y, f(x) 6= 0, and f(y) 6= 0 while f(x) · f(y) = 0.

Remark 2.2. Let X be a non-empty set, S a commutative semigroup with zero, and f
a function from X to S. The graph Γ(S,f)(X) is a generalization of the usual zero-divisor
graph Γ(S) defined in [17]. In fact, if suppose that S is a commutative semigroup with
zero and X = S, then Γ(S,idS)(S) is the zero-divisor graph Γ(S), where idS is the identity
map on S.
A graph C is called to be a zero-divisor if these exist non-isomorphic graphs A and B for
which A×C ∼= B×C [23, p. 310]. For examples of these graphs see [24]. And one should
not confuse this concept in graph theory with the concept of zero-divisor graphs in [17].

Question 2.3. Let G be an arbitrary graph. Is it possible to find a set X, a commutative
semigroup with zero S, and a function f from X to S such that G is isomorphic to the
graph Γ(S,f)(X)?

3 Diameter of Zero-Divisor Graphs and Their Gen-

eralizations

Theorem 3.1. Let X be a non-empty set, S a commutative semigroup with zero, and f a
function from X to S with this property that for all x, y ∈ X, if f(x)f(y) 6= 0 then there
exists a z ∈ X such that f(z) = f(x)f(y). Then the graph Γ(S,f)(X) is connected with
diam(Γ(S,f)(X)) ≤ 3.

Proof. Let x, y be two distinct vertices of Γ(S,f)(X). Therefore, there exists z, w ∈ X such
that f(z) 6= 0, f(w) 6= 0 and f(x)f(z) = 0 and f(y)f(w) = 0. Note that by definition,
f(x) 6= 0 and f(y) 6= 0.
Now we show that d(x, y) ≤ 3. If f(x)f(y) = 0, then d(x, y) = 1. If f(x)f(y) 6= 0, but
f(z)f(w) = 0, then x− z − w − y is a path in Γ(S,f)(X) and therefore, d(x, y) ≤ 3.
Finally, let f(x)f(y) 6= 0 and f(z)f(w) 6= 0. Since there exists a t ∈ X such that
f(t) = f(z)f(w), we have f(x)f(t) = f(t)f(y) = 0 and d(x, y) ≤ 2. Therefore, the graph
Γ(S,f)(X) is connected with diameter at most 3 and the proof is complete.

Corollary 3.2. Let S be a commutative semigroup with zero. The zero-divisor graph
Γ(S) is connected with diam Γ(S) ≤ 3 [16, Theorem 1].
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Let X be a non-empty set, S a commutative semigroup with zero, and f a function from
X to S. We do not know if the graph Γ(S,f)(X) is connected in general. Based on this,
the following question arises:

Question 3.3. Let X be a non-empty set, S a commutative semigroup with zero, and
f a function from X to S. If the graph Γ(S,f)(X) defined in Definition 2.1 is connected,
what is the best upper-bound for the diameter of this graph?

Related to the above question, we bring the following remark:

Remark 3.4. Let us recall that if S is a semigroup (not necessarily commutative) with
zero, a directed graph Γ(S), called zero-divisor graph of S, is attributed to S whose vertices
are the proper zero-divisors of S and s→ t is an edge of Γ(S) between the vertices s and t
if s 6= t and st = 0 [10]. The following result from [10,31], is an interesting generalization
of Corollary 3.2 though written in the terminology of the paper [27]:

Theorem 3.5. Let S be a semigroup with zero. The directed graph Γ(S) is connected if
and only if S is eversible. Moreover, if Γ(S) is connected, then the diameter of the graph
Γ(S) is at most 3.

Note that a semigroup with zero S is eversible if every left zero-divisor on S is also a right
zero-divisor on S and conversely, i.e., Zl(S) = Zr(S) [27, Definition 1.9].

Let us recall that a commutative ring R with an identity has the annihilator condition if
for all a, b ∈ R, there is a c ∈ R such that Ann(a, b) = Ann(c) [22]. Inspired by this, we
give the following definition for semimodules [21, Chap. 14]:

Definition 3.6. Let S be a commutative semiring with an identity and M be a unital
R-semimodule. We say that M has the annihilator condition if for all x, y ∈M , there is a
z ∈M such that Ann(x, y) = Ann(z), where by Ann(N), we mean the set of all elements
s in S such that sN = 0.

Note that we gather all ideals of a semiring S in the set IdS(S) and all S-subsemimodules
of M in the set SubS(M).

Corollary 3.7. Let the S-semimodule M have the annihilator condition. Then the graph
Γ(Id(S),Ann)(M) is a connected graph whose dimater is at most 3.

Proof. It is clear that (Id(S),∩) is a commutative semigroup and its zero, i.e., its ab-
sorbing element, is the zero ideal (0). Consider the function Ann from M to Id(S). It
is straightforward to see that Ann(x, y) = Ann(x) ∩ Ann(y) for all x, y ∈ M . Since by
assumption the S-semimodule M has the annihilator condition, the proof is complete.

Let S be a commutative semigroup with zero. A subset I of S is said to be an s-ideal of
S, if 0 ∈ I and for all s ∈ S and a ∈ I, we have s · a ∈ I [6]. Clearly, the intersection of
two s-ideals of a semigroup S is an s-ideal of S. If we denote the set of all s-ideals of S
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by IdS(S), then IdS(S) along with the intersection configures a commutative semigroup
with zero and its absorbing element is the s-ideal {0}.
Let us recall that if S is a semigroup, a set M together with a function S ×M → M ,
denoted (s,m)→ sm, satisfying (st)x = s(tx) for all s, t ∈ S and x ∈M is called a (left)
S-act. Also, if M is a S-act and the semigroup S has an absorbing element 0S and M
possesses a distinguished element 0M such that s0M = 0M for all s ∈ S and 0Sx = 0M

for all x ∈ M , then M is called a pointed S-act. Finally, if S is a monoid and 1S is the
neural element for the multiplication of S, then an S-act M is called unital if 1Sm = m
for all m ∈ M [33]. Note that if S is a semiring and M is a unital S-semimodule, then
obviously M is a unital pointed S-act.
Now, let S be a commutative monoid with zero and M a unital pointed S-act. If ∅ 6= N ⊆
M , we define Ann(N) to be the set of all elements s ∈ S such that sN = {0M}. One can
easily check that Ann(N) is an s-ideal of the semigroup S and if P and Q are non-empty
subsets of M , then Ann(P )∩Ann(Q) = Ann(P ∪Q). Therefore, we have already showed
that the following result is just another example for Theorem 3.1:

Corollary 3.8. Let S be a commutative monoid with zero and M a unital pointed S-act.
If C is a non-empty class of non-empty subsets of the set M and (C,∪) is a semigroup
and the graph Γ(IdS(S),Ann)(C) is non-empty, then it is a connected graph with diameter at
most 3.

Let us recall that if S is a commutative semiring with a nonzero identity and M is a unital
S-semimodule, then the content function from M into the ideals Id(S) of S is defined as
follows:

c(x) =
⋂
{I ∈ Id(S) : x ∈ IM}.

An S-semimodule M is called a content semimodule if x ∈ c(x)M for all x ∈ M . It
is straightforward to see that if M is a content S-semimodule, then c(x) is a finitely
generated ideal of S for each x ∈ M [28, Proposition 23]. Now, we give the following
corollary:

Corollary 3.9. Let S be a commutative semiring with a nonzero identity and M a content
S-semimmodule. If the content function from M to the set of finitely generated ideals of
S is onto and the graph Γ(Id(S),c)(M) is non-empty, then it is a connected graph with a
diameter at most 3.

Proof. Let x, y ∈ M be vertices of the graph Γ(Id(S),c)(M). Since M is a content S-
semimodule, then c(x) and c(y) are both finitely generated ideals of the semiring S [28,
Proposition 23]. Clearly, c(x)c(y) is also finitely generated. By assumption, the content
function c from M to the set of finitely generated ideals of S is onto. So, there is a z ∈M
such that c(z) = c(x)c(y). By using Theorem 3.1, the proof is complete.

Let us recall that a commutative semigroup (S, ·) is called positive ordered if S is a
semigroup with the zero 0 and there is a partial order ≤ on S such that the following
conditions are satisfied:
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1. The partial order ≤ is compatible with the multiplication of the semigroup, i.e.
x ≤ y implies xz ≤ yz for all x, y, z ∈ S,

2. The partial order is positive, i.e. 0 < x and 0 < y imply that 0 < xy for all x, y ∈ S.

Theorem 3.10. Let X be a non-empty set, S a positive ordered commutative semigroup
with zero, and f a function from X to S with this property that for all w, z ∈ X, if
f(w)f(z) 6= 0, then there exists a v ∈ X such that f(w)f(z) ≤ f(v), f(v) ≤ f(w), and
f(v) ≤ f(z). Then the graph Γ(S,f)(X) is connected with diam(Γ(S,f)(X)) ≤ 3.

Proof. Let x, y be two distinct vertices of Γ(S,f)(X). Therefore, there exists z, w ∈ X such
that f(z) 6= 0, f(w) 6= 0 and f(x)f(z) = 0 and f(y)f(w) = 0. Note that f(x) 6= 0 and
f(y) 6= 0. Now we show that d(x, y) ≤ 3.
The argument for the case f(x)f(y) = 0 and the case f(x)f(y) 6= 0 while f(w)f(z) = 0
is the same as the argument in the proof of Theorem 3.1 and therefore, d(x, y) ≤ 3.
Now imagine f(x)f(y) 6= 0 and f(z)f(w) 6= 0. Since by assumption, there exists a v ∈ X
such that f(z)f(w) ≤ f(v), f(v) ≤ f(z), and f(v) ≤ f(w), we have f(x)f(v) = 0 and
f(v)f(y) = 0 and therefore, d(x, y) ≤ 2 and the proof is complete.

Let us recall that if M is an S-semimodule and N is an S-subsemimodule of M , [N : M ]
is defined to be the set of all elements s of the semiring S such that sM ⊆ N . The proof
of the following proposition is straightforward, but we bring it here only for the sake of
reference.

Proposition 3.11. Let S be a commutative semiring with a nonzero identity and M an
S-semimodule. Then the following statements hold:

1. If N is an S-subsemimodule of M , then [N : M ] is an ideal of S,

2. If P and Q are S-subsemimodules of the S-semimodule M , then

[P : M ] · [Q : M ] ⊆ [P ∩Q : M ],

3. If P and Q are S-subsemimodules of the S-semimodule M and P ⊆ Q, then

[P : M ] ⊆ [Q : M ].

Corollary 3.12. Let S be a commutative semiring with a nonzero identity and M be a
unital S-semimodule. Assume that q is a function from Sub(M) to Id(R) with q(N) =
[N : M ]. If the graph Γ(Id(R),q)(Sub(M)) is non-empty, then it is a connected graph whose
dimeter is at most 3.

Proof. Use Theorem 3.10 and Proposition 3.11.

Let us recall that if S is an idempotent commutative semigroup, then S can be ordered
by the following order: x ≤ y if xy = x for all x, y ∈ S. Additionally, if (S, ·, 0, 1) is a
monoid with the absorbing element 0, then S is called a bounded semilattice [11].
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Proposition 3.13. Let (S, ·, 0, 1) be a bounded semilattice and d be the largest element
of the poset S − {0, 1} such that d2 = 0. If f is a function from a set X to S such that
the graph Γ(S,f)(X) has at least two vertices, then diam(Γ(S,f)(X)) = 1.

Proof. Let x, y be vertices of the graph Γ(S,f)(X). It is clear that f(x) and f(y) are both
nonzero and there are two elements w, z ∈ X such that f(x)f(w) = 0 and f(y)f(z) = 0.
Clearly, these two imply that f(x) 6= 1 and f(y) 6= 1. Therefore, f(x) ≤ d and f(y) ≤ d,
because d is the largest element the poset S − {0, 1}. On the other hand, f(x)f(y) ≤
d2 = 0. Hence, {x, y} is an edge of the graph Γ(S,f)(X) and the proof is complete.

Corollary 3.14. Let S be a commutative semiring with an identity and M be a unital
S-semimodule. Also, let q be the function from Sub(M) to Id(R) with q(N) = [N :
M ]. If m is the only maximal ideal of the semiring S such that m2 = 0 and the graph
Γ(Id(S),q)(Sub(M)) has at least two vertices, then its diameter is 1.

4 Cycles and Cores of Zero-Divisor Graphs and Their

Generalizations

Now we proceed to discuss the cycles of the graph Γ(S,f)(X). Let Γ be a graph. We denote
the set of all vertices adjacent to the vertex a of the graph Γ by N(a). In particular, if
X is a non-empty set, S a commutative semigroup with zero, and f a function from X
to S, then N(a) is the set of all vertices x ∈ X − {a} in the graph Γ(S,f)(X) such that
f(x) 6= 0 and f(a)f(x) = 0.

Lemma 4.1. If a−x−b is a path in a graph Γ, then either N(a)∩N(b) = {x} or a−x−b
is contained in a cycle of the length of at most 4.

Proof. Let a− x− b be a path in the graph Γ. It is obvious that {x} ⊆ N(a) ∩N(b). If
N(a) ∩N(b) 6= {x}, then there exists a vertex c such that c /∈ {x, a, b} and c is adjacent
to the both vertices a and b. So, a − x − b − c − a is a path in Γ. Hence, a − x − b is
contained in a cycle of the length ≤ 4.

Theorem 4.2. Let X be a non-empty set, S a commutative semigroup with zero, and f
a function from X to S. Also, let the graph Γ(S,f)(X) have at least three vertices such
that for all a, b, x ∈ X if a − x − b is a path in Γ(S,f)(X) then N(a) ∩ N(b) 6= {x}. If
Γ(S,f)(X) is a connected graph with diam(Γ(S,f)(X)) ≤ 3, then any edge in Γ(S,f)(X) is
contained in a cycle of the length at most 4 and therefore, Γ(S,f)(X) is a union of triangles
and rectangles.

Proof. Let a−x be an edge in Γ(S,f)(X). Since by assumption Γ(S,f)(X) is connected with
diam(Γ(S,f)(X)) ≤ 3 and possesses at least three vertices, there exists a vertex b such that
either a− x− b or x− a− b is a path in Γ(S,f)(X) and in any case, by Lemma 4.1, a− x
is contained in a cycle of the length of at most 4 and, therefore, is an edge of either a
triangle or a rectangle.
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Let us recall that the core of a graph Γ is the largest subgraph of Γ in which every edge
is the edge of a cycle in Γ [16].

Theorem 4.3. Let X be a non-empty set, S a commutative semigroup with zero, and
f a function from X to S. Also, let the graph Γ(S,f)(X) have at least three vertices and
the function f have this property that for all x, y ∈ X if f(x)f(y) 6= 0 then there exists
a z ∈ X such that f(z) = f(x)f(y). If Γ(S,f)(X) contains a cycle, then the core K of
Γ(S,f)(X) is a union of triangles and rectangles.

Proof. Let a1 ∈ K and suppose that a1 is a part of neither a triangle nor a rectangle in
Γ(S,f)(X). So, a1 is a part of a cycle

C : a1 − a2 − a3 − a4 − · · · − an − a1,

where n ≥ 5. Without loss of generality, we can suppose that this is the shortest cycle
containing a1 and it follows that {a2, a4} is not an edge of the graph Γ(S,f)(X) and by the
definition of the graph Γ(S,f)(X), f(a2) ·f(a4) 6= 0. So, by assumption, there exist a z ∈ X
such that f(z) = f(a2) ·f(a4). Note that f(a1) ·f(a2) = f(a2) ·f(a3) = 0, so f(a1) ·f(z) =
f(z) · f(a3) = 0. Therefore, a1 − z − a3 is a path in Γ(S,f)(X). Since C is the shortest
cycle of the graph Γ(S,f)(X) containing a1, z = a2 and we have f(a2) = f(a2) · f(a4).
Now consider 0 = f(a2) · ((fa4) · f(a5)) = ((f(a2) · f(a4)) · f(a5) = f(a2) · f(a5) 6= 0, a
contradiction. This completes the proof.

Remark 4.4. Note that Theorem 4.3 is related to Theorem 1.5 in [17].
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