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Abstract 

Electroosmotic flows of two-layer immiscible Newtonian fluids under the influence of time-

dependent pressure gradient in the flow direction and different zeta potentials on the walls 

have been investigated. The slippage on channel walls is, also, considered in the mathematical 

model. Solutions to fluid velocities in the transformed domain are determined by using the 

Laplace transform with respect to the time variable and the classical method of the ordinary 

differential equations. The inverse Laplace transforms are obtained numerically by using 

Talbot’s algorithm and the improved Talbot’s algorithm. 

      Numerical results corresponding to a time-exponential pressure gradient and translational 

motion with the oscillating velocity of the channel walls have been presented in graphical 

illustrations in order to study the fluid behavior. It has been found that the ratio of the 

dielectric constant of fluid layers and the interface zeta potential difference have a significant 

influence on the fluid velocities. 
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1.   Introduction 

The study of microfluidic devices is important due to its vital applications in analytical 

chemistry, biology, and medical science [1]. The microchannel wall under the influence of 

electrolyte produces the surface charges, which results in the formulation of an electrical 

double layer (EDL) and the resulting ion density variation satisfies the Boltzmann distribution 

[2, 3]. The application of the tangential electric field on the charged microchannel leads to a 

Coulombic force on the ions within an electrical double layer. Due to the viscosity, the net 

migration of the mobile ions will carry the adjacent and bulk liquid which results in an 

electroosmotic flow (EOF). 

EOF received considerable attention due to its wide applications in a variety of 

microfluidic devices used in the medical and biochemical analysis. The ability of EOF to 

build pressure make it favourable to use in a pumping mechanism involve in microchannel 

geometries for bioanalytical [4, 5] and electronic cooling systems [6]. Dutta and Beskok [7] 

considered the time-periodic EOF in a 2-D channel consisting of parallel plates and found its 
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analytical solution consisting of the EDL thickness, frequency of external electric current and 

the kinematic viscosity. They discussed various similarities and dissimilarities with the Stokes 

second problem. Wang et al. [8] found the semi-analytical as well as the numerical solutions 

for the flow behaviour of periodic EOF through a rectangular microchannel. It is found that 

the slip velocity of periodic EOF decreases with the increase in Reynolds number. Jian et al. 

[9] studied the EOF of Maxwell fluid between microchannel consisting of parallel plates and 

found a semi-analytical solution. The time depended periodic electroosmotic flow for 

generalized Maxwell fluid was considered by Liu [10] and Jian [11]. Other interesting results 

related to EOF corresponding to the high conductivity fluids can be found in [12, 13, 14]. 

In order to transport a low conductivity fluid, a 2-layer fluid flow system is introduced 

by Brask [15]. To form such a double layer, a significantly high electrically conducted fluid 

drags the other fluid by the applied shear stress at the interface for the separation of the 

mixture. Shankar and Sharma [16] and Verma et al. [17] studied the instabilities of microfilms 

and highlighted the significance of Maxwell interfacial stress. Liu [18] presented a numerical 

study for EOF in a cylindrical coaxial microchannel under the influence of Maxwell 

interfacial shear stress. Gao et al [19] also considered the Maxwell stress at the interface and 

studied the two-layer electroosmotic flow in a rectangular channel. Later, Su et al. [20] 

considered the effect of zeta potential at the interface in addition to the Maxwell stress at the 

interface and studied the electroosmotic flow in a microchannel consisting of parallel plates. 

Slip boundary condition on the velocity at the solid-fluid interface is another important factor 

to stimulate the EOF. Goswami and Chakraborty [21] studied the electro-osmosis 

hydrodynamic flow of complex domain in the presence of interfacial slip. They considered 

the combined effect of Navier slip at the solid-fluid interface and the electroosmotic slip and 

found semi-analytical results. Shit et al. [22] examined numerically the EOF in a wavy micro-

channel in the presence of slip boundary conditions and found a good agreement with the 

previously known results under no-slip condition. 

In this study, we have developed a semi-analytical model to study the two-layer fluid flow 

under the combined effect of electroosmosis as well as the applied pressure gradient in the 

presence of Robin type boundary conditions at the solid-fluid interface. We also consider the 

influence of zeta potential difference which plays an important role in actuating the EOF. We 

used the Debye-H ckel approximation to linearize the governing Poisson-Boltzmann 

equations for zeta potential function. 

2.   Mathematical Modelling 

The electro-osmotic flow domain is {( , , ) | ( , ), [0, ], ( , )},x y z x y d z             D   

with the boundary walls of slit micro channel bounded by two negatively charged parallel 

plates of length ( )L d situated horizontally in planes 0y   and 0y d    (see Fig. 1 for 

the geometry). The flow domain is divided in two regions at 1.y d   In the region 

1 1[0, ], 0y d d   flows a Newtonian fluid with the density 1,  viscosity  1,   velocity 

1( , )v y t    and the shear stress 1( , )y t    . In the region 1 1[ , ],y d d d d   flows a Newtonian 

fluid with the density 2 , viscosity 2 , velocity 2 ( , )v y t    and the shear stress  2 ( , ).y t     
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Figure 1: Geometry of the problem. 

 

Initially, at time 0t  , the fluid in both regions is at rest. After time 0 ,t    the electro-

osmotic flow is driven along x -axis by applied pressure gradient 
p

x





 and an axial direct 

current (DC) electric field of strength E  as shown in Fig. 1. The Poisson-Boltzmann 

equations describe the electric potential distribution ( ), 1,2,i y i   and the local volumetric 

net charge density ( )
ie y   produced within both regions due to the presence of electrical 

double layer in a micro-channel are given by 

2

2

( ) ( )
, 1,2,ie i

i

y d y
i

dy





   
  


         (1) 

0( ) 2 sinh , 1, 2,( )
ie i

o B

z e
y z n e i

T K


             (2) 

where  are the electric and valance charge,  is the ion density of the bulk liquid,  is the 

absolute temperature and  is the Boltzmann constant. For a small value of the electric 

potential, and with the help of Eqs. (1) and (2), we get Deybe-H ckel equation by linear 

approximation of sine hyperbolic function 

2
2

2

( )
( ), 1,2,i

i i

d y
K y i

dy


  


         (3) 

where 
2 2

2 02
i

o B i

z n e
K

T K




  and 

1

iK
 represents the  thickness of electrical double layer. The 

boundary conditions for electrical potential distribution i
  are 

1 0 2(0) , ( ) ,sd                 (4) 
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where 
0
  and 

s
  are the wall zeta potential. The interface fluid-fluid conditions for 

electrical potential distribution are given by Gauss's law and zeta potential difference   

and are 

1 1

1 2
1 2 2 1 1 1

( ) ( )
| | , ( ) ( ) ,y d y d s

d y d y
Q d d

dy dy
   

    
        

 
    (5) 

where sQ  is the interfacial charge density jump. Consider the following non-dimensional 

variables, 

0
0

2 1

1 1

6 , , , , , ,

, , , , 1,2.

i s B o
i s

s
i i

B o

K Ty
y A

d A A A A z e

z Q edd
D Q k dK i

d K T






 

      
         

    

    (6) 

where ik  represents the ratio between characteristic scale of the channel width to Debye 

length. Eqs (3), (4) and (5) in the dimensionless form reduce to 

2
2

2

( )
( ), 1,2,i

i i

d y
k y i

dy


            (7) 

1 0 2(0) , (1) ,s             (8) 

1 2

2 1

( ) ( )
| | ,

( ) ( ) ,

y D y D

d y d y
Q

dy dy

D D

 

 
  

   

        (9) 

The general solutions of Eq. (7) along with the boundary conditions (8) and interface fluid-

fluid conditions (9) take the form 

1 2( ) cosh( ) sinh( ), 1,2,i i i i iy C k y C k y i          (10) 

where 

11 0

2 2 0 1 2 0 1 1 2
12

2 2 1 1 1 2

2 2 1 1 0 1 2 1
21

( cosh( )) cosh( (1 )) ( sinh( ))sinh( (1 ))

cosh( (1 ))sinh( ) cosh( )sinh( (1 ))

cosh( )sinh( ) ( cosh( ))sinh( ) sinh( )sin

s

s

C

k k Dk k D Q k Dk k D
C

k k D k D k k D k D

k k D k D k k D k Q k D
C

 





 

        


   

      
 2 1 1 2

2 2 1 1 1 2

1 1 2 2 0 1 1 1 1 2 1 2
22

2 2 1 1

h( ) cosh( )sinh( )

cosh( (1 ))sinh( ) cosh( )sinh( (1 ))

cosh( )cosh( ) cosh( )( cosh( ) sinh( )) sinh( )sinh( )

cosh( (1 ))sinh( ) c

s

s s

k k k D k D

k k D k D k k D k D

k k D k D k k k k D Q k D k k D k D
C

k k D k D k









   

       


   1 2osh( )sinh( (1 ))k D k D

 

(11) 
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3.   Velocity distributions 

The fluids are assumed to be immiscible and incompressible and the flow is unsteady, fully 

developed and one dimensional. The electroosmotic flows of the fluids are generated by the 

time-dependent pressure gradient in the flow direction and the applied DC electric current of 

magnitude E . The continuity equation is identically satisfied by velocities ( , ), 1,2iv y t i     of 

both layers. The governing equations of motion along with initial, boundary and the interface 

fluid-fluid conditions are 

the system of linear momentum equations 

( ) , 1,2,
i

i i
i e

v p
y E i

t y x


 

    
    

    
       (12) 

the system of  constitutive equations 

, 1, 2,i
i i

v
i

y
 


  


          (13) 

the initial conditions 

( ,0) 0, ( ,0) 0, 1,2,i iv y y i              (14) 

the Robin boundary conditions 

1
1 1 0 0 1

( , )
(0, ) | ( ),y

v y t
v t l V f t

y


  
   


        (15) 

2
2 2 0 2

( , )
( , ) | ( ),y d

v y t
v d t l V f t

y


  
   


 

the interfacial fluid-fluid conditions 

1 1

1 1 2 1

1 1 2 2
1 1 2 2

( , ) ( , ),

( ) ( , ) ( ) ( , )( ) ( )y d y d

v d t v d t

y v y t y v y t
E E

y y y y
    

  

   

          
  

      

   (16) 

With the help of Eqs. (1), (3) and (13), Eq. (12) takes the form 

2
2

2
( ), 1,2.i i

i i i i i

v v p
EK y i

t y x
  

    
     

    
      (17) 

In this paper we consider the pressure gradient 0 ( ).
p

P p t
x


  


 Using Eq. (6) and the 

following dimensionless parameters, 
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0 0

2

0 0 0

0 1 2
1 2 1 1 2 22
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1 0 2 0 2
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, , , ,

2
, , , ( ) ( ), ( ) ( )

, , , , 1, 2.

i
i i

i

i

i

B B

V t P dx v
x v t a b
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n Eedz l l dt dt
c f t f f t f

V d d V V

EK T EK T p
p i

V z e V z e dP



 





 


  
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  

 
    

     


    

     (18) 

Eqs. (17), (14), (15) and (16) in dimensionless form reduce to 

2

1 1
1 1 1 12

( ) ( ),
v v

b a P t c y
t y

 
   

 
        (19) 

2

2 2
2 2 2 22

( ) ( ),
v v

b a P t c y
t y

 
   

 
        (20) 

the initial conditions 

( ,0) 0, 1,2iv y i            (21) 

the Robin boundary conditions 

1
1 1 0 1

( , )
(0, ) | ( ),y

v y t
v t f t

y
 


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
        (22) 

2
1 2 1 2

( , )
(1, ) | ( ),y

v y t
v t f t

y
 


 


 

the interfacial fluid-fluid conditions 

1 2

1 1 2 2
1 2

( , ) ( , ),

( ) ( , ) ( ) ( , )
,( ) ( )y D y D

v D t v D t

y v y t y v y t

y y y y
   



   
  

   

     (23) 

where ( ).
p

P t
x


 


 Applying the Laplace transform to Eqs. (19), (20), (22) and (23) along 

with the initial conditions (21), we can write 

2

1 1
1 1 1 12

( ) ( ),
v c

b qv y a P q
y q


   


        (24) 

2

2 2
2 2 2 22

( ) ( ),
v c

b qv y a P q
y q


   


        (25) 

1
1 1 0 1

( , )
(0, ) | ( ),y

v y q
v q f q

y
 


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
        (26) 
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2
1 2 1 2

( , )
(1, ) | ( ),y

v y q
v q f q

y
 


 


 

1 2

1 1 1 2 2 2

( , ) ( , ),

( ) ( , ) ( ) ( , )
,( ) ( )y D y D

v D q v D q

y v y q y v y q

q y y q y y

 
 



   
  

   

    (27) 

where 
0

( , ) ( , ) ,qt

i iv y q e v y t dt


   i=1,2. The general solutions of Eqs. (24) and (25}) are 

1 1 1 1
1 1 2 12

1 1

( , ) ( ) ( )
( )

q q
y y

b b c a
v y q Ae A e y P q

q b k q q



    


     (28) 

2 2 2 2
2 1 2 22

2 2

( , ) ( ) ( )
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q q
y y

b b c a
v y q B e B e y P q

q b k q q



    


     (29) 

The constants 1 2 1 2, , ,A A B B  are determined by applying the transformed robin boundary 

condition (26) and the transformed fluid-fluid interface conditions (27) and are given by the 

following linear system, 

1 ,B M F            (30) 

where 

2 2

1 1 2 2

1 1 2 2

1 1

1 1
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 
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 

 

 
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 
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  
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 
 
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, ,

( )

( )

A F q

A F q
B F

B F q

B F q

   
   
    
   
   
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After having determined the parameters , , 1,2i iA B i  , from the system (30) and (31)  the 

analytic solution for the velocity distributions ( , )iv y t , 1,2,i   can be determined by applying 

the inverse Laplce transform to Eq. (28) and (29) 

1
( , ) ( , ) , 1, 2,

2

st

i iv y t e v y q dq i
 

 

 

 
         (32) 

where 1.    In this paper, the inverse Laplace transforms are obtained by using numerical 

algorithm such as Talbot's algorithms [23,24]. 

Let ( , )G y s  be the Laplace transform of the function ( , )g y t . The function ( , )g y t  can be 

approximated with the help of Talbot algorithm [23] for the Laplace transform inversion, 

 
1

1

exp( )
( , ) ( , ) Re exp( ( )) ( , ( )) 1 ( ) ,

2

M

k k k

k

r rt
g y t G y r tz G y z i

M
   





 
     

 
   (33) 

where 

2
, ( ) (cot ), ( , ),

5

( ) ( 1) , .k

M
r z r i

t

k
cot cot

M

     


      

    

   

       (34) 

Another method to approximate the function ( , )g y t  is the improved Talbot algorithm for the 

inverse Laplace transform and is given by [24] 

 1 1 1

1

1
( , ) exp( ( )) ( , ( )) ( ) ,

M

k k k

k

g y t tz G y z i
t

    


        (35) 

where, 
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 1

1

( ) cot( ) , [ , ],

(2 1)
( ) ( ( ) 1) ( ), .k

M
z i

t

k
cot cot

M

        


        

    


    

    (36) 

Here , , , ,M     are parameters to be specified by the user. 

 
Figure 2: Velicity profile ,  versus  for 2-layers electo osmotic fluid at , 

, , , , ,  and  for different values of . 

 
Figure 3: Velicity profile   versus  for 2-layers electo osmotic fluid at , 

, , , , ,  and  for different values of . 
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Figure 4: Velicity profile   versus  for 2-layers electo osmotic fluid at , 

, , , , ,  and  for different values of 

.  

Figure 5: Velicity profile   versus  for 2-layers electo osmotic fluid at , 

, , , , ,  and  for different values of . 
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Figure 6: Velicity profile   versus  for 2-layers electo osmotic fluid at , 

, , , , ,  and  for different values of . 

 
Figure 7: Velicity profile   versus  for 2-layers electo osmotic fluid at , 

, , , ,  and  for different values of . 
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Figure 8: Velicity profile   versus  for 2-layers electo osmotic fluid at , 

, , , , ,  and  for different values of . 

 

Figure 9: Velicity profile   versus  for 2-layers electo osmotic fluid at , 

, , , , ,  and  for different values of . 



24                              Rauf and Mahsud 

4.   Numerical results and discussion 

In this paper we have acquired the semi-analytical solution for the velocity profile 

corresponding to electroosmosis and pressure driven flow of two layer Newtonian fluid under 

the influence of zeta potential difference and Maxwell interfacial stress. For numerical 

illustration, we used the function ,  and , where  

represent the angular frequency of oscillation. We have analyzed graphical the effects of time 

variation , dielectric constant ratio , interface zeta potential difference , interface charge 

density , slip parameters , angular frequency , and other physical parameters   

For graphical interpretation of the obtained results we used the values  

   ,   , , 

,  and  for the non-dimensional parameters. 

Fig. 2 demonstrates the time effect on the electro-osmotic velocity profile. From Fig. 2 

it can be observed the velocity decreases with the increase in time  and with the passage of 

time velocity becomes steady. Fig. 3 represents the effect of the dielectric constant ratio of the 

second layer for the first layer on the fluid velocity. It is observed that fluid velocity in both 

layers increases with the increase in a dielectric constant ratio of . Fig. 4 exhibits the 

influence of interface zeta potential difference  to the double layer electroosmotic velocity. 

It can be seen from the graph that the fluid velocity decreases with the increase in the 

interface zeta potential difference. The effect of non-dimensional interface charge density 

jump  on the 2-layer fluid flow is examined in Fig. 5. It has been observed that with the 

enhancement in the interface charge density , the fluid velocity enhanced. Fig. 6 represents 

the angular frequency  effect on the velocity profile. It can be seen from the graph that the 

velocity profile increases with the increase in . Fig. 7 reveals the fluid-liquid slip velocity 

parameters ,  effect on the electroosmotic velocity profile. It is observed that the velocity 

profile increases slowly with the increase in fluid-liquid slip velocity parameters. Figs. 8 and 

9 demonstrate the effects of the physical parameters  and  on the electroosmotic velocity. 

It has been noted from that graphs that electroosmotic mobility enhances with the increase in 

 and descends with the increase in  
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