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1. Introduction 

Microbeams are very important in the applications of Micro-

electro-mechanical systems (MEMS) and Nano-electro-

mechanical systems (NEMS). The axial parameters of a 

microbeam are applied to cause changes in its distributive 
behaviors. These differences in distribution allow the use of a 

small beam as a sensor to measure physical quantities such as the 

deflection, the displacement, temperature and the flexure 

moment. In recent decades, the thermal response of microbeams 

has been studied and there are many interesting papers published 

in this area of research (see Akgöz and Civalek [1], Thai, et al. 
[2], Akgöz and Civalek [3], Belardinelli, et al. [4], Baghani [5]). 

Recently, non-ideal boundary conditions have been 

investigated for both microbeams.Pakdemirli and Boyacı [6] 
studied the concept of boundary conditions to the microbeam 

problem. A linear and non-linear model of microbeam was 
introduced to investigate the initial resonance of the microbeam 

due to consistent external distributed force, and the effect of 
linear and non-linear foundation on the required vibration 

response is noted. These variations of conditions allow the use of  

a micro-beam as a sensor to measure physical quantities such 

as the deflection, temperature, displacement and the flexure 
moment which are important to various kinds of research ( 

Safarabadi, et al. [7], Baghani, et al. [8], Şimşek [9], Ghayesh, et 

al. [10], Caputo [11], El-Karamany and Ezzat [12]). 

The highway pavements, railroad tracks, and strip 

foundations that take into account different types of foundations 
such as Pasternak, Winkler, flexible or sticky, are among the 

issues related to the interaction of soil structure. The problems of 
the physical fields of beams on continuous elastic foundations 

have been investigated by a number of researchers. For instance, 
the effect of sticky foundation on the deflection behaviors of 

mechanical and precision mechanics was sticky investigated by 
Pradhan and Murmu [13], Goodarzi, et al. [14], Mohammadi, et 

al. [15], Mohammadi, et al. [16], Younis, et al. [17], Zenkour and 
Sobhy [18]. Also, Chen, et al. [19] discussed the dynamic 

stiffness of the beams based on the viscosity due to harmonic 
motion. In addition, Abdalla and Ibrahim [20] used the discrete 

Reissner–Mindlin element to explain the problem of thin and 
thick plates resting on the Winkler-type foundation. 

There is a growing interest in the generalized theory of 
thermoelasticity, which has been found to produce more realistic 

results than double or unplanned models of thermoelasticity, 
especially when short time effects or temperature gradients are 

considered. The thermoelastic diffusion theory that uses the 
thermal elastic model was developed by Kumar, et al. [21].Also, 
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Tzou [22], Tzou [23] proposed a new concept of dual-phase-lag 

(DPL) model in which the heat flux and temperature gradient 
could be simulated with lag times. In addition, Biot [24] 

investigated the theory of the classical dynamical 
thermoelasticity (CTE). 

This study is an effort to study a thermoelastic response of 

microbeams under various magnetic fields based on the DPL 
thermoelasticity model. Also, an important comparison between 

different models of thermoelasticity and their effect on different 
fields is illustrated. Non-dimensional variables with the analytical 

Laplace transform technique are used to compute the vibration of 
the studied fields of the microbeams. Some comparisons have 

been also shown graphically to estimate the effects of Winkler 
and shear foundation parameters, the magnetic field, phase lags 

and ramping time parameters on all the physical fields. 

2. Formulation of the Problem 

We consider a thermoelastic thin microbeam initially at 
temperature  rested on a two-parameter viscoelastic 

foundation. A linear viscoelastic foundation model is shown in 

Fig. (a) where the foundation is modeled by introducing a shear 

layer mounted on a set of linear elastic springs. Let us consider 

that the -axis is drawn along the axial tendency of the beam and 

 axes agree to the width and thickness, correspondingly. The 
teeny deflections of the microbeam with dimensions of length , 

width  and thickness  and cross-section area  are 

considered. 

 

Fig. a. Schematic diagram for the microbeam. 

According to Euler–Bernouilli beam theory, the components 
of displacement vector are given by:  

  (1) 

For a one-dimensional problem, the constitutive equation after 

using Eqs. (1) can be expressed as  

  (2) 

Where   is the nonlocal axial stress, and 

. With aid of Eq. (2), the flexure moment 

M is given by 

  
 

(3) 

where  

  (4) 

Due to the application of the initial magnetic field H and the 
density of the current J, there results an induced magnetic and 

electric fields h and E. The Maxwell's equations for a 

homogeneous and electrically perfect conducting thermoelastic 

solid ( neglecting the charge density) can be recovered as Wang, 
et al. [25]   

    (5) 

We can write the vector of the induced magnetic field h and 

current density J as follows: 

    (6) 

Using previous equation (6) into the expressions for the Lorentz 

force F induced by the applying longitudinal magnetic field H, 
yields 

  (7) 

As is known, the Winkler model of the elastic foundation is the 
most preliminary in which the vertical displacement is assumed 

to be proportional to the contact pressure at an arbitrary point 
(see Hetenyi [26]). Due to the interaction between the microbeam 

and the supporting foundation, the normal stress per unit area R_f 

(foundation reaction) and vertical displacement w at an arbitrary 
point on the lower boundary of the microbeam holds the 

following relationship 

  (8) 

Where  is the Winkler’s foundation modulus, and  is the 

shear foundation modulus. It is observed that when , Eq. 

(8) is equivalent to that of the microbeam on a Winkler 

foundation type; also, when  (the subgrade 

reactions are zero), indicating that the microbeam not have a 

foundation. The equation of motion for the transverse response of 

microbeams can be written as 

  (9) 

where   is a function of space to incorporate the 

longitudinal magnetic force. Here  , since    is a 

body force and   denotes the force per length. So,   

can be written as  

  (10) 

Introducing Eqs. (3), (8) and (10) into Eq. (9), the following 
motion equation of the mirobeam is obtained 

  
(11) 

The generalized heat conduction in the context of Tzou [22] 

theory is given by 

  (12) 

Putting Eq. (1) into (12), we get the generalized heat conduction 
equation as 

  (13) 
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3.  Solution of the Problem 

For a very thin microbeam, assuming that the increment 

temperature varies in a sinusoidal form along the thickness 

direction and also the microbeam is thermally insulated. Then, 

the variation of the temperature can be expressed as 

  (14) 

Substituting Eq. (14) into Eq. (11), the motion equation (11) can 
be represented as 

  (15) 

From Eqs. (3) and (14), the flexure moment M can be written as 

   (16) 

Integrating Eq. (13) with respect to z through the thickness of the 

microbeam from     to  , yields 

  (17) 

To facilitate the numerical analysis, the following dimensionless 
parameters are introduced: 

   (18) 

So, the basic equations in nondimensional forms are simplified as  

  (19) 

    (20) 

where 

   

4. Initial and boundary conditions 

To solve the problem, the initial and boundary conditions 

essential be reserved into consideration. The homogeneous initial 
conditions are reserved as 

  (21) 

For example, we'll assume that both ends of the mirobeam 

satisfy  

  (22) 

Also, we assume that the mirobeam is loaded thermally by 

ramp-type heating , hence  

  (23) 

wherever  is ramp-type parameter and   is a constant. 

Moreover, the temperature at the end boundary should achieve 

the following relationship   

   (24) 

5. Solution of the problem in the Laplace transform domain 

Using the Laplace transform defined by  

  (25) 

to both sides of Eqs. (19) and (20) and by the homogeneous 

initial conditions (21), one gets the field equations in the Laplace 

transform space as 

  (26) 

  (27) 

where  

   

Elimination   or   from Eqs. (26), one obtains: 

  (28) 

where   A, B and C are given in (29) 

  (29) 

Equation (28) can be moderated to 

  (30) 

where ,   are roots of  

 
(31) 

The solution of equation (31) in the Laplace transformation 

domain can be characterized as 

 

(32) 

Where the consensus between these two equations and Eq. (27), 

we get 

  (33) 
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The displacement can be obtained after using Eq. (32) as follows 

 

(34) 

Substituting the expressions of  and  from (32) into (28), we 

got to solve the flexure moment  as follows: 

 

(35) 

Also, the strain gives 

 

(36) 

After applying Laplace transform, the boundary conditions (21)-

(23) take the forms 

  (37) 

Replacing Eq. (32) in the above-mentioned boundary conditions, 

one obtains six linear equations 

 

(38) 

 

(39) 

 

(40) 

The solution to the system of linear equations above provides 

unknown parameters , . To determine the fields 

studied in the physical field, a Riemann sum approximation 

method is used to obtain numerical results. 

6. Numerical results 

Using the theoretical analysis described in the previous 

sections, and to assess the effects Winkler and shear foundation 

parameters   and  , initial magnetic field   and ramping 

time parameter  on the deflection  , temperature  , 

displacement   and the flexure moment   distributions, a 

marginal study is conducted as follows. A comparison of our 

results with those of other articles can be seen in Figs. 1-16. The 

physical and geometrical properties of the microbeam are listed 

in Table 1. Numerical calculations and graphs have been divided 

into four cases. 

Table1: Mechanical and thermoelastic properties of the 

microbeam (  : 

Material properties Value 

Thermal conductivity  

(  
 

Young' modulus (   

Density   

Thermal expansion    

Thermal diffusivity   

Poisson's ratio   

Specific heat   

6.1. The effect of the initial magnetic field parameter 

In this case, we have studied the effect of the initial magnetic 

field parameter  on all studied field variables  in 

the wide range . We take the initial magnetic field 

 in the presence of the magnetic field and put the 

parameter  when the magnetic field is absent. The other 

parameters are assumed to be constants 

(  and ). The 

results obtained are displayed graphically in Figs. 1-4. From Figs. 

(1−4) we can see that the parameter  has a great effect on all 

the studied fields. Also, we can observe that the deflection   

start increasing with parameter  in the range , 

thereafter decreasing in the range . The natural 

temperature   vs the magnetic field parameter is plotted in Fig. 

2. We observed that the increase in the value of  causes an 

increase in the values of temperature  . The variation of 

displacement  vs the distance is plotted in Fig. 3. From the 

figure, we observed that the increase in the value of the  causes 

decrease in the values of the displacement  . As seen in Fig. 4, it 

is to be noted that the flexure moment  start increases with 

parameter  in the wide range , thereafter the 

profile decreasing on the interval .  
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Figure 1: The variation of the 

deflection  with different values 

of initial magnetic field . 

Figure 2: The variation of 

temperature  with different 

values of initial magnetic 

field . 

 

  

Figure 3: The variation of 

displacement  with different 

values of initial magnetic field . 

Figure 4: The variation of the 

flexure moment  with 

different values of initial 

magnetic field . 

6.2. The effect of Winkler and shear foundation parameters  

In this section, particular attention is focused on the analytical 

and numerical analysis of Winkler and shear foundation 

parameters  and  on the beam response. To verify the 

influences of the Pasternak foundation parameters on the 

behavior of the microbeam, Figs. (5−8) are plotted. It is assumed 

that  for classical model (without foundation), 

 for Winkler foundation model and 

 or Pasternak foundation model. In all cases, 

the other parameters remain constant. From Fig.5 the deflection 

  reaches their highest values in the case . Also 

we can observe that the deflection  has minimum values in the 

case of  compared with other cases. We 

observed as displayed in Fig. 6 the temperature   in the case 

 is close to that in the case of .In 

Fig. 6 it noted that the displacement   in the case 

 is adjacent to that in the case of 

. Fig.8 shows that the flexure moment   in 

the absence of Pasternak  is less than the 

presence of Pasternak .  

  
Figure 5: The deflection  with 

different Winkler and shear 

foundation parameters  and  

Figure 6: The temperature  

with different Winkler and 
shear foundation parameters 

 and  

 

 
 

Figure 7: The displacement  

with different Winkler and 
shear foundation parameters 

 and  

Figure 8: The flexure moment 

 with different Winkler and 

shear foundation parameters 

 and . 

 

6.3. The effect of the ramping time parameter   

This case investigates the influence of the ramping time 

parameter  on the studied field quantities. Benchmark results 

are shown in Figs. 9−12 for future comparisons with other 

researchers. It is detected that the ramping time parameter  has 

a pronounced effect on all the distribution of the physical fields. 

The variations are plotted vs the distance   for ramping time 

parameter  when  

and .We can see that the values of the deflection   start 

decreasing with the ramping time parameter in the range 

, thereafter increasing to maximum amplitudes in 

the range  (see Fig. 9). From Fig. 10, we can 

conclude that the increase in the value of the ramping time 

parameter  causes decreasing in the values of temperature  . It 

is noted from Fig. 11 that the increase in the value of the ramping 

time parameter  causes decreasing in the values of the 

displacement   which is very obvious in the peak points of the 

curves. As shown in Fig. 12 the values of the flexure moment  

start decreasing with the ramping time parameter in the range 

, there after increasing  maximum amplitudes in 

the range .  

  

Figure 9: The deflection  with 

different ramping time 

Figure 10: The temperature  

with different ramping time 



Zakria and Abouelregal 

 

337 

 

parameter . parameter . 

 

  

Figure 11: The displacement  

with different ramping time 

parameter . 

Figure 12: The flexure moment 

 with different ramping time 

parameter  

6.4. Comparison between different models of 

thermoelasticity  

The last case illustrates an important comparison between the 

different theories of thermoelasticity as they can be obtained as 

special cases from the presented model (DPL). The classical 

theory of thermoelasticity (CTE) can be obtained by setting 

 and the generalized thermoelasticity with a single 

phase-lag (LS) can be achieved when . The 

distributions of the deflection , temperature , displacement  

and the flexure moment  for different models of 

thermoelasticity are presented graphically in Figs. 13-16. The 

distribution in the LS model is near to that in the DPL model, but 

the distributions in the CTE model are different from those in the 

DPL model. From Fig. 13 we can observe that the deflection  

reaches its maximum values in the case of DPL model compared 

with other theories. Fig.14 shows that the temperature 

distribution  has a convergence between the different models of 

thermoelasticity. From Fig. 15 it is to be noted that the 

displacement  in the case of the LS model is close to that in the 

DPL model, while the displacement  in the CTE model is 

different from those in the DPL model. We observed also as 

displayed in Fig. 16 the distribution of the flexure moment  in 

the case of the LS model is small compared to the other models. 

 

 

Figure 13: The deflection  in 

different models of 
thermoelasticity. 

Figure 14: The variation of 

temperature  in different 

models of thermoelasticity. 

 

  
Figure 15: The variation of 

displacement  in different 

models of thermoelasticity.  

Figure 16: The variation of the 

flexure moment  in different 

models of thermoelasticity. 

7. Conclusion 

In this paper, we have analyzed the thermoelastic response of 
microbeams posted on a two-parameter viscoelastic foundation. 

One of these parameters represents the Winkler foundation 

parameter. The second parameter represents the shear foundation 

parameter. In this work, a new model of nonlocal generalized 

thermoelasticity based upon the Eringen theory for microbeams 

is constructed. The results are displayed graphically to explain 
the effect of the magnetic field, Winkler and shear foundation 

modulus, the ramping time parameter, and the models of 

thermoelasticity. The results indicate that the field quantities such 

as the deflection, temperature, displacement and the flexure 

moment of microbeam distributions depend not only on the space 

coordinate  but also depend on the magnetic field , Winkler 
and shear foundation modulus  and  and the ramping time 

parameter . The results of the present LS model are an 

agreement with those of the DPL model, whereas the results of 

the present CTE model are spaced with those of the DPL model. 

In this manuscript we can see a good agreement between the 

deviations obtained and those published. The results are useful 
for Microelectromechanical systems (MEMS) design and many 

other applications. 
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