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1. Introduction 

1.1 Background  

The classical three-dimensional (3D) linear elasticity 

problems of the mathematical theory of elasticity for deformable 

solids are governed in general by a system of fifteen coupled 

partial differential equations of equilibrium comprising as 

follows: three differential equations of equilibrium, six 
generalized stress – strain equations (describing the material 

constitutive laws), and six strains – displacement relations 

(kinematic relations) [1 – 15]. 

The solution of 3D elasticity problems thus requires the 

solution of the system of fifteen governing equations subject to 

the appropriate boundary conditions involving stresses and 
displacement field components. Simplified formulations of 

elasticity problems had been presented previously using 

displacement-based, stress-based and mixed methods. [8 – 11, 

16, 17]. Displacement-based methods of formulation entail 

expressing the field equations of elasticity such that the 

displacement components are the unknown variables by the 

elimination of the six Cauchy stress components, and the six 

strain components from the governing equations. Consequently, 

the system of equations reduces to three coupled partial 

differential equations for 3D problems and two coupled partial 

differential equations for two-dimensional elasticity problems 

[14, 18]. 

Stress-based methods of formulation entail the expression of 

the field equations of elasticity in terms of the six Cauchy stress 

components by the elimination of the six strain components and 

the three displacement components. Consequently, the governing 

equations reduce to a set of six coupled partial differential 

equations for 3D problems called the Beltrami – Michell stress 
equations. For two-dimensional elasticity problems, the stress-

based methods are a set of three coupled partial differential 

equations, which would be easier to solve than the original set of 

field equations. 

Mixed methods of formulation entail the expression of the 

field equations such that the unknowns are some components of 
stress and some displacement components. Mixed methods are 

not commonly applied in the literature. Analytical solutions to 
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the partial differential equations of stress formulation of elasticity 

problems called stress functions had been developed and used by 

various researchers namely Airy, Maxwell, Navier, Beltrami, [7], 

[16, 17, 19]. 

Analytical solutions to the equations of the displacement-

based formulations of elasticity problems, commonly called 
displacement functions had been developed and used by various 

researchers [8 – 14, 16 – 18], [20, 21]. 

In this study, stress and displacement functions are developed 

for 3D elasticity problems, and then used to solve the 3D 

elasticity problem of thick circular plates under uniformly 

distributed transverse load. 

1.2 Review of circular plates under flexure 

Circular plates are extensively used in various structural forms 

in aerospace, civil, mechanical, structural, naval, marine and 

geotechnical engineering [21]. They can be subjected to various 

kinds of static or dynamic loads. They are classified according to 

the ratio of their diameter, D to thickness, t, as thin plates 

/ 100( ),D t   moderately thick plates 20 / 100( ),D t   and 

thick plates / 3( ).D t   

They are also classified according to their material properties 

as: isotropic, homogeneous, non–isotropic, non–homogeneous, 

anisotropic, orthotropic (transversely isotropic) and laminated 

plates. 

Theories that have been used to study the flexural behaviour 

of circular plates are; the classical Kirchhoff thin plate theory, 

Mindlin first order shear deformation plate theory [22 – 36]( 

which is a stress-based plate theory), Von Karman large 

deformation plate theory [37], Reddy’s third order shear 

deformation plate theory, Shimpi plate theory and theory of 
elasticity methods for thick plates. 

The classical Kirchhoff – Love plate theory is based on the 

following basic assumptions [19], [24, 25], [30 – 34], [38 – 41]. 

(i) straight lines that are initially orthogonal to the middle 

surface of the plate before flexure remain straight and orthogonal 

to the middle surface after flexural deformation, and they remain 
unchanged in length. 

(ii) the displacement is so small as compared to the 

thickness of the plate, hence the slope at the deflected middle 

surface is very small, the square of the slope is negligible when 

compared to unity. 

(iii) the normal stresses and in-plane shear stresses are 
assumed to be zero at the middle surface of the plate. 

(iv) the middle surface is unstrained after flexural 

deformation, and remains a neutral surface. 

(v) transverse normal stress is very small compared to other 

stress components and may be ignored in the stress – strain 

relations without introduction of significant errors. 

Kirchhoff – Love’s classical plate theory for circular plates 

has been found to give satisfactory results for thin circular plates 

under small deformations; but gives unsatisfactory results for 

moderately thick and thick circular plates. 

The major inadequacy of the classical Kirchhoff – Love plate 

theory for circular plates is the disregard for shear deformation in 
the formulation of the governing equations, which consequently 

makes the theory incapable of precise description of the flexural 

behaviours of moderately thick and thick plates, where shear 

deformation significantly affects the flexural behaviour [27, 28], 

[31, 32, 34, 40 – 42]. 

1.3 Review of the theory of elasticity applied to thick plate 

problems 

In the classical theory of elasticity, the problem of equilibrium 

of an isotropic thick plate is reduced to the determination of six 
components of normal and shear stresses xx, yy, zz, xy, yz, xz, 

and three displacement field components u, v and w which 

strictly satisfy all the differential equations of the theory of 

elasticity as well as the boundary conditions on the surface of the 

plate [43]. The conditions on the lateral surfaces (edges) of the 

plate are required to be satisfied only approximately. 

Timoshenko and Goodier [44] used the rigorous methods of 

the mathematical theory of elasticity to solve the problem of 

homogeneous isotropic thick circular plates with simply 

supported edges and subjected to uniformly distributed load over 

the entire plate domain. 

Ding et al [45] solved the problem of linear elastic, 
homogeneous, isotropic thick circular plates subjected to axially 

symmetric loads under two types of edge support conditions. 

They presented analytical solutions for the two types of problems 

studied. 

Luo et al [46] studied the problem of thick circular plates with 

clamped edges by considering displacements as the primary 
variables in a displacement formulation of the three-dimensional 

elasticity problem. Their analysis involved the solution of 

ordinary differential equations, which rendered it complicated. 

Another limitation of their work was that they considered only 

one type of edge support condition. 

Ding et al [47 – 49] studied the elasticity problem of 
homogeneous, isotropic linear elastic thick beams with both ends 

fixed for the case of uniformly distributed load over the entire 

beam span; and presented new solutions for the plane elasticity 

problem. 

Lekhniskii [37] studied the problems in the theory of elasticity 

concerning the flexural analysis of anisotropic, thick circular 
plates with clamped and simply supported edges for the case of 

distributed transverse loads. 

Ding et al [47, 48] studied the elasticity problem of the 

flexural behaviour of linearly elastic, homogeneous, isotropic 

thick circular plates by using the Love harmonic functions for the 

case of uniformly distributed load over the entire domain of the 
plate. They presented numerical solutions which they compared 

with solutions with the finite element method (for the same 

problems) and the classical Kirchhoff – Love small deflection 

plate theory, and made some findings. 

Timoshenko and Woinowsky – Krieger [50] used the classical 

Kirchhoff – Love small deformation thin plate theory to solve the 
problem of linearly elastic, homogeneous, isotropic thin circular 

plates subject to a uniformly distributed load over the entire plate 

domain. They solved the problem for the two cases of simply 

supported edges and fixed edges. 

Tseng and Tarn [51] presented an analysis of axisymmetric 

flexure of thick circular plates using the mathematical theory of 
elasticity. From the basic principles of the Hamiltonian state 

space approach, they found a rigorous analytical solution by the 

use of the method of separation of variables and symplectic 

eigenfunction expression in a systematic formulation. They 

evaluated the effect of thickness on the flexure of circular plates 
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and the applicability of the classical Kirchhoff – Love circular 

plate solutions. 

Sundara Raja Iyengar et al [52] presented a higher order 

theory for thick axisymmetric circular plates which is an 

extension of the Reissner shear deformation theory using 

variational techniques. They assumed stress and displacement 
fields that satisfy the physical requirements of the problem as 

closely as possible. Thus, using an assumed displacement field in 

the form of a higher order truncated polynomial in the thickness 

coordinate (the coefficients being arbitrary functions of the other 

coordinate variables) and a consistent stress field satisfying the 

stress boundary conditions at the top and bottom surfaces of the 
plate, the governing domain (field) equations of equilibrium and 

the associated boundary conditions along the edges were 

obtained using the variational theorem of Reissner. They 

obtained resulting equations that are such that the symmetric and 

antisymmetric parts can be considered separable. Their procedure 

of considering higher order truncated polynomials for 
displacements and stress fields appears to be novel for thick 

plates [52]. 

Sundara Raja Iyengar et al [53] used the method of initial 

functions for the analysis of thick circular plates. In the method, 

the governing equations of thick circular plates are derived from 

the three-dimensional (3D) equations of the mathematical theory 
of elasticity in cylindrical polar coordinates system using a 

Maclaurin series expansion in the thickness coordinate for the 

unknowns. The resulting formulation is in a form that is 

specifically amenable to consistent reduction to yield 

approximate theories of any desired order. They compared 

numerical results obtained using the method of initial functions 
with those of the theory of elasticity for problems of simply 

supported circular plate under self equilibrating normal loads, 

and found agreement with the theory of elasticity solutions. They 

also solved the problem of thick circular plates with clamped 

edges subjected to uniformly distributed loads, and found 

agreement with the theory of elasticity solutions. 

Li et al [54] considered the bending of transversely isotropic 

circular plates with elastic compliance coefficients being 

arbitrary functions of the thickness coordinate, subject to 

distributed transverse load. The differential equation satisfied by 

stress functions for the particular problem considered was 

derived. They presented a rigorous analytical technique for 
deriving these stress functions from which the closed form 

expressions for the internal forces were found by integration of 

the differential equations. They then applied the method to solve 

transversely isotropic functionally graded circular plate carrying 

uniformly distributed load, illustrating the determination of 

integration constants from the boundary conditions. They 
obtained solutions for simply supported and clamped circular 

plates and found that when degenerated, the solutions become 

identical with the solutions for homogeneous, isotropic circular 

case. By appropriate superposition and manipulation of the 

equations, the governing domain (field) equations in higher order 

shear stress coefficients were obtained for both symmetric and 
antisymmetric elasticity problems. The solution to the equations 

is observed to be complete as all other unknowns can be found or 

expressed in terms of the shear stress coefficients. They applied 

the method to uniformly loaded solid and annular circular plates. 

Ike et al [26] derived from first principles the governing field 

equations for the flexure of linearly elastic, isotropic 
homogeneous thick circular plates under static loading using 

variational calculus methods. The total potential energy 

functional for the thick circular plate which is the sum of the 

given energy functional and the load potential functional was 

obtained using the generalized stress – strain relations, which 

account for the shear deformation and the axisymmetrical nature 

of the load and plate. Euler – Lagrange differential equations of 

equilibrium were used to obtain the differential equations of 

equilibrium. The total potential energy functional was extremized 
to obtain the governing equations and the boundary conditions. 

The governing partial differential equations were integrated to 

obtain the deflection of the thick circular plate, which was found 

to be decomposed into deflection due to pure flexure and 

deflection due to shear deformation.  They found that for shear 

stress coefficient k = 4/3 which corresponds to parabolic 
distribution of shear stress over the plate thickness, the deflection 

becomes identical with the deflection obtained using the rigorous 

methods of the theory of elasticity. They solved the particular 

problem of thick circular plate with clamped edges for the case of 

uniformly distributed load and found the maximum deflection to 

occur at the plate centre. They also found that shear deformation 
makes a significant contribution to the maximum deflection when 

the thickness/radius radio is greater than 0.05 (1/20) which agrees 

with the technical literature. 

Ike [21] used the mathematical technique of separation of 

variables to solve the problem of first order shear deformable 

circular plate under transverse axisymmetric load. The problem 
was defined as a boundary value problem of a system of 

differential equations in terms of the stress resultants and the 

stress – resultants – displacement relations. The set of equations 

were considered simultaneously to express them in variable – 

separable form. The mathematical technique of separation of 

variables was then employed to obtain the unknown generalized 
displacements. Specific problems of circular thick plates with 

simply supported and clamped edges under uniformly distributed 

load and concentrated load applied at the centre were considered 

and solved using the same technique of separation of variables. It 

was found in all cases that the deflection was expressed in terms 

of flexural and shear deflection components. It was also found 
that the maximum deflection occurs at the centre as is logical 

from the symmetrical nature of the problem. The study further 

found that the shear component of the transverse deflection 

increased significantly with increase in the ratio of the plate 

thickness to radius (h/r0). Other relevant studies on plates and 

elasticity include Chandrashekhara [55], Elliot [56], Hu [57] and 
Shimpi [58]. 

Recent research publications on elasticity theory include: 

Danesh et al [59], Mohammadi et al [60], Mohammadi and 

Rastgoo [61, 62], Safarabadi et al [63], Asemi et al [64], 

Mohammadi et al [65] and Goodarzi et al [66]. 

1.4  Research aim and objectives 

The aim of this research is to present a first principle 

derivation of stress and displacement functions for three- 

dimensional elastostatic problems, and then apply the functions 

derived to the flexural analysis problem of thick circular plates. 

The research objectives are as follows: 

(i) to derive the displacement functions that simultaneously 
satisfy the stress – strain relations, the geometric equations of 

strain and the differential equations of equilibrium for small 

displacement elasticity problems in three dimensions for 

homogeneous, isotropic materials. 

(ii) to derive the corresponding stress functions. 

(iii) to apply the stress and displacement functions derived 
to solve the flexural problem of thick circular plates with 
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clamped edges subjected to uniformly distributed transverse load, 

and determine the stresses and displacement fields in the plate 

due to the applied load. 

 

2. Theoretical framework 

The governing field equations of three-dimensional (3D) 

elasticity for isotropic, linear elastic, homogeneous materials are 
developed from the three basic requirements, namely: 

generalized Hooke’s stress – strain law, the kinematic relations of 
strains and displacements, and the differential equations of 

equilibrium. 

2.1 Generalized Hooke’s stress strain law  

The generalized Hooke’s stress – strain law for 3D elasticity 

problems for linear elastic, isotropic homogeneous materials can 
be expressed by the six relations: 

1
( )xx xx yy zz

E
         (1) 

1
( )yy yy xx zz

E
         (2) 

1
( )zz zz xx yy

E
         (3) 

/2 1( )

xy xy

xy
G E

 
  

 
     (4) 

/2 1( )

yz yz

yz
G E

 
  

 
     (5) 

/2 1( )

xz xz
xz

G E

 
  

 
     (6) 

where xx, yy, zz are normal strains in the x, y and z Cartesian 

coordinate directions respectively, xy, yz, xz are shear strains, 

xx, yy, zz are normal stresses in the x, y, z Cartesian coordinate 

directions respectively. xy, yz, xz are shear stresses.  is the 

Poisson’s ratio of the elastic material, E is the Young’s modulus 
of elasticity of the material, and G is the shear modulus, or 

modulus of rigidity. G is expressed in terms of E and  as: 

2 1( )

E
G 

 
      (7) 

2.2 Kinematic relations (equations) 

For small displacement elasticity problems, also called linear 

elasticity or infinitesimal displacement problems of elasticity, the 
strain – displacement (kinematic) equations are given by the 

following six linear partial differential equations (PDFs) relating 
strains and displacement fields: 

( , , )
xx

u x y z

x


 


      (8) 

( , , )
yy

v x y z

y


 


      (9) 

( , , )
zz

w x y z

z


 


     (10) 

( , , ) ( , , )
xy

u x y z v x y z

y x

 
  

 
    (11) 

( , , ) ( , , )
yz

v x y z w x y z

z y

 
  

 
    (12) 

( , , ) ( , , )
xz

u x y z w x y z

z x

 
  

 
    (13) 

where u(x, y, z), v(x, y, z) and w(x, y, z) are the x, y and z 

Cartesian components of the displacement field, while x, y, z are 
the Cartesian coordinates. 

2.3 Differential equations of equilibrium  

The differential equations of equilibrium are given for the 

general case of 3D elasticity problems – in statics and dynamics 
– by the set of three partial differential equations: 

2

2

xy xzxx
x

u
f u

x y z t

  
      

   
   (14) 

2

2

yx yy yz

y

v
f v

x y z t

   
      

   
   (15) 

2

2

zyzx zz
z

w
f w

x y z t

  
      

   
   (16) 

where t denotes time, fx, fy and fz are the body force 
components in the x, y and z Cartesian coordinate directions 

respectively; the dots over u, v, w denote time derivatives of u, v, 

w respectively, and  is the density. 

For elastostatic problems where the body force components 

are disregarded, 0,x y zf f f    and 0,u v w    the 

differential equations of equilibrium become: 

0
xy xzxx

x y z

 
  

  
     (17) 

0
xy yy yz

x y z

  
  

  
     (18) 

0
yzxz zz

x y z

 
  

  
     (19) 

 

3. First principles derivation of displacement functions for 

3D elastostatic problems 

3.1 Generalized 3D Hooke’s strain – strain equations for 

homogeneous isotropic bodies 

The generalized stress – strain equations for isotropic, 

homogeneous, linear elastic materials are given by the six 
equations: 

1

1 1 2 1 1 2 1 1 2

( )

( )( ) ( )( ) ( )( )

yy zzxx
xx

E EE     
   

           
  (20) 

1

1 1 2 1 1 2 1 1 2

( )

( )( ) ( )( ) ( )( )

yy zzxx
yy

E EE     
   

           
  (21) 

1

1 1 2 1 1 2 1 1 2

( )

( )( ) ( )( ) ( )( )

yy zzxx
zz

E EE     
   

           
  (22) 

xy xyG         (23) 

yz yzG         (24) 

xz xzG         (25) 

The elastic constants in the stress – strain relations are 
denoted by E1 and E2 where: 
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1

1 2 1

1 1 2 1 2

( ) ( )

( )( )

E G
E

   
 

     
    (26) 

2

2

1 1 2 1 2( )( )

E G
E

 
 

     
    (27) 

Then the stress – strain relations involving the normal 

stresses become: 

1 2 2xx xx yy zzE E E           (28) 

2 1 2yy xx yy zzE E E           (29) 

2 2 1zz xx yy zzE E E           (30) 

3.2 Stress – displacement equations 

The stress – displacement equations are obtained by 
substitution of Equations (8 – 13) into Equations (28 – 30), and 

(23 – 25) as the following six PDEs: 

1 2 2xx

u v w
E E E

x y z

  
   

  
    (31) 

2 1 2yy

u v w
E E E

x y z

  
   

  
    (32) 

2 2 1zz

u v w
E E E

x y z

  
   

  
    (33) 

xy

u v
G

y x

  
   

  
     (34) 

yz

v w
G

z y

  
   

  
     (35) 

xz

u w
G

z x

  
   

  
     (36) 

3.3 Displacement formulation of the differential equations of 

equilibrium 

The differential equations of equilibrium Equations (17 – 19) 
are expressed in displacement terms using Equations (31 – 36) to 

obtain, after simplifications: 

( ) ( )
u u u v w

E G E G E G
x y zx y z

       
                 

2 2 2

1 2 22 2 2
0    (37) 

( ) ( )
v v v u w

E G E G E G
y x zy x z

       
         

      

2 2

1 2 22 2 2
0    (38) 

( ) ( )
w w w u v

E G E G E G
z x yz x y

       
                 

2 2 2

1 2 22 2 2
0   (39) 

3.4 Derivation of displacement function (x, y, z) 

We define the displacement components u and v in terms of 

the displacement function (x, y, z) as follows: 

2

u
x z

 
 

 
      (40) 

2

v
y z

 
 

 
      (41) 

We then seek to find the third vertical displacement 

component in terms of (x, y, z) such that the governing field 
equations are satisfied identically. By substitution of Equations 

(40) and (41) into the displacement formulation of the differential 

equations of equilibrium, Equations (37 – 39), we obtain as 

follows: 

From Equation (37), 

2 2 2 2 2 2

1 2 2 2
E G G

x z x z x zx y z

             
          
            

  

2 2 2

2 2 0( ) ( )
w

E G E G
x y x z x z

    
     

      
  (42) 

Simplifying, 

2 4 4 4

2 1 3 2 3
( )

w
E G E G G

x z x z x y z x z

      
    

        
 

 
4

2 2
( )E G

x y z

 


  
   (43) 

Integrating, we obtain: 

2 2 2
1

2 2 2
2 2

E G
w

E G E Gx y z

         
             

  (44) 

Alternatively, 

2 2 2

2 2 2
2 1 1 2( ) ( )w

x y z

      
       

   
   (45) 

2 2 2 2

2 2 2 2
2 1( )w

x y z z

        
      

    
   (46) 

2
2

2
2 1( )w

z

 
    


     (47) 

Identical result as Equation (47) is obtained from Equation 
(38). Using Equations (40), (41) and (47) in Equation (39) we 

obtain the biharmonic equation: 

4 0( , , )x y z         (48) 

3.5 Derivation of the stress functions 

The stress functions are derived by substitution of the 
displacement function expressions for the three displacement 

components u, v and w into the corresponding stress 
displacement relations. Then, 

2 2

1 2xx E E
x x z y y z

        
        

       
 

2 2
1

2 2 2
2

E
E

z E G x y

      
   

     

2

2
2

G

E G z

 


  
 (49) 

Simplifying, 

2 2 3
1 2 2

2 2 3
2 2

xx

E E E G

E G z E Gx y z

       
     

     
  

 

3 3

1 22 2
E E

x z y z

   


   
   (50) 

2 2 2

2 2 2

4 1
2

1 2

( )
xx

G
G

z zx y z

           
      

      
  

 

2 2

2 2

2 1 2

1 2 1 2

( )G G

z zx y

        


      
   (51) 

Further simplifications yield: 
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2 2
2 2

2 2
2 2xx G G

z z zx x

         
            

      
  (52) 

Also, 

2 2
1

2 1 2
2

yy

E
E E E

x x z y y z z E G

          
                   

  

 
2 2 2

2 2 2
2

G

E Gx y z

       
   

    
   (53) 

Simplifying, 

2 2 3
1 2 2

2 2 3
2 2

yy

E E E G

E G z E Gx y z

       
     

     
   

   
3 3

2 12 2
E E

x z y z

   


   
 (54) 

2 2 2

2 2 2

4 1
2

1 2

( )
yy

G
G

z zx y z

           
      

      
  

 
2 2

2 2

2 2 1

1 2 1 2

( )G G

z zx y

        


      
  (55) 

Further simplifications yield: 

2 2
2 2

2 2
2 2yy G G

z z zy y

         
            

      
  (56) 

2 2
1

2 2 1
2

zz

E
E E E

x x z y y z z E G

          
                   

  

 

2 2 2

2 2 2
2

G

E Gx y z

       
   

    
   (57) 

Simplifying, 

2 2 2 3
1 1

2 2 2 3
2 2

zz

E E G
E

E G z E Gx y z

         
       

       
  (58) 

2 2 2

2 2 2
4 2 2 1( ) ( )zz G G

z zx y z

        
        

    
  (59) 

Further simplifications yield: 

2
2

2
2 2( )zz G

z z

   
      

  
    (60) 

Also, 

3

2xy G
x y z

 
  

  
     (61) 

2 2 2 2
1

2 2 2
2 2

xz

E G
G

z x z x E G E Gx y z

               
          

            

 (62) 

2 2 2 2 3
1

2 2 2 2
2 2

xz

E G G
G

E G x E G xx y z x z

          
     

        

 (63) 

2 2 3 3

2 2 2 2
2 1 1 2( ) ( )xz G G G

x x y x z x z

         
         

       

 (64) 

Further simplifications yield 

2
2

2
2 1( )xz G

x z

   
      

  
    (65) 

Also, 

2 2 2 2
1

2 2 2
2 2

yz

E G
G

z y z y E G E Gx y z

               
           

            

  (66) 

Simplifying, 

2 2 2 2 3
1

2 2 2 2
2 2

yz

E G G
G

E G y E G yx y z y z

          
     

        

 (67) 

Alternatively, 

2 2 2 3

2 2 2 2
2 1 1 2( ) ( )yz G G G

y yx y z y z

          
         

      

 (68) 

Further simplifications yield: 

2
2

2
2 1( )yz G

y z

   
       

  
    (69) 

3.6 Stress and displacement function for axisymmetric elasticity 
problems in cylindrical polar coordinates 

The stress and displacement functions derived in this paper are 

expressed in cylindrical polar coordinates system as follows: 

2 ( , )
r

r z
u

r z

 
 

 
      (70) 

2
2

2
2 1( ) ( , ) ( , )zw u r z r z

z

 
     


   (71) 

2
2

2
2 1

( , )
( ) ( , )rz

r z
G r z

r z

   
       

  
  (72) 

2
2

2
2

( , )
( , )rr

r z
G r z

z r

   
     

  
   (73) 

2 1
2

( , )
( , )

r z
G r z

z r r


  
     

  
   (74) 

2
2

2
2 2

( , )
( ) ( , )zz

r z
G r z

z z

   
      

  
   (75) 

where rr, is the radial stress component;  is the 

circumferential (hoop) stress component. zz is the vertical stress 

component; rz is the shear stress. ur is the radial displacement 
component, w = uz is the vertical displacement component. 

 

4. Application to the elasticity analysis of thick circular 

plates 

The semi-inverse technique is applied to derive elasticity 

solutions to thick circular plate problems using the stress function 
derived and Legendre polynomials as the stress function. Stress 

function 2(r, z) from the second degree Legendre polynomials 

given by 21( , )f r z  and 22( , )f r z  is: 

2
2 21 21 22 22 21 2( , ) ( , ) ( , ) (r z c f r z c f r z c z       

 
2 2 2

22) ( )r c z r     (76) 

where c21 and c22 are constants. 

The use of Equations (70 – 75) yield the stress and 

displacement fields for 2( , )r z as: 

0( , )rz r z        (77) 

0( , )zz r z        (78) 

0( , )rr r z        (79) 

0( , )r z        (80) 

0( , )u r z        (81) 

21 22 24 10 12( , ) ( )w r z c c b         (82) 
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0
( , )w r z

r





      (83) 

Stress function 3( , )r z  from the third degree Legendre 

polynomial 31( , )f r z  and 32( , )f r z   is 

3
3 31 31 32 32 31 2( , ) ( , ) ( , ) (r z c f r z c f r z c z        

 2 2 3
323 ) ( )r z c r z r     (84) 

where c31 and c32 are constants. The stress and displacement 
fields are obtained using Equations (70 – 75) as; Equations (77) 

and (83) and: 

31 322 12 14 10( , ) ( ( ) )zz r z G c c         (85) 

31 322 6 10 2( , ) ( ( ) )rr r z G c c        (86) 

31 322 6 10 2( , ) ( ( ) )r z G c c        (87) 

31 326 2( , )ru r z rc rc       (88) 

31 3212 14 20( , ) ( )w r z zc zc         (89) 

Stress function 4(r, z) from the fourth degree Legendre 
polynomials f41(r, z) and f42(r, z) is: 

4 2 2
4 41 41 42 42 41 8 24( , ) ( , ) ( , ) (r z c f r z c f r z c z r z       

  4 4 2 2 4
423 2) ( )r c z r z r    (90) 

The stress and displacement fields from 4(r, z) are obtained 

using Equations (70 – 75) as: 

41 422 96 2 16 14( , ) ( ( ) )rz r z G rc r c        (91) 

41 422 192 4 16 14( , ) ( ( ) )zz r z G zc z c         (92) 

41 422 96 4 14 1( , ) ( ( ) )rr r z G zc z c        (93) 

41 422 96 4 4 1( , ) ( ( ) )r z G zc z c        (94) 

41 4296 4( , )u r z rzc rzc       (95) 

2 2 2
4196 48 32 56( , ) ( ) (( )w r z z r c z        

  
2

4230 28( ))r c      (96) 

41 4296 60 56( , ) ( )
w

r z rc rc
r


   


   (97) 

The stress function 6(r, z) from the sixth degree Legendre 

polynomials f61(r, z) and f62(r, z) is 

6
6 61 61 62 62 61

16

3
( , ) ( , ) ( , )r z c f r z c f r z c z


    


  

   
4 2 2 4 6 6 4 2

62

5
40 30 8 16

3
(z r z r r c z z r


    


 

 
2 4 621 3 )z r r      (98) 

The stress fields are obtained as: 

2 3 2
612 960 240 432 264( , ) (( ) (( )rz r z G rz r c r        

  
2

621056 672( ) ) )rz c    (99) 

 2 3 3
61

2 960 640 448 704( , ) ( ) (( )zz r z G zr z c z      

  2
621056 1728( ) )zr c    (100) 

 3 2 3
61 62

2 320 720 64 2 11( , ) ( ) ( ( )rr r z G z zr c c z        

  2504 1056( ) )zr    (101) 

 3 2 3
61 62

2 320 240 64 2( , ) ( ( ) ( (r z G c z zr c z       

  211 168 1056) ( ) )zr     (102) 

3 3 3 3
61 62168 128 320 240( , ) ( ) ( )u r z c zr z r z r zr c     (103) 

4 2 2 4
61 62160 480 60 112( , ) ( ) ((w r z c z z r r c        

     4 2 2 4352 1056 864 174 132) ( ) ( ) )z z r r        (104) 

2 3
61 62960 240 2112( , ) ( ) ((

w
r z c z r r c

r


    


  

  2 31728 4 174 132) ( ))z r r    (105) 

4.1 Application of stress function to the elasticity analysis of 
thick circular plate with clamped edges subject to uniformly 

distributed transverse load on the top surface (Solution A) 

The stress function derived in this research is applied to the 

elasticity analysis of the problem of thick circular plate of radius 
R with clamped edges and under uniformly distributed transverse 

load of intensity p on the top surface as shown in Figure 1. 

 

 
 

Figure 1: Thick circular plate of radius R subject to uniformly 
distributed transverse load, p on the top surface 

 
The origin of the cylindrical polar coordinates system is 

chosen at the centre O of the plate as shown in Figure 1. The 
circular plate considered has a thickness denoted by t and the 

elasticity problem is identified to be axisymmetric since the 
problem and the loading are symmetrical about the z axis. 

The boundary conditions are obtained from the deformation 
and stress conditions and also from the requirement of 

equilibrium of internal vertical stresses and the applied vertical 
load as follows: 

0 0( , )u r R z         (106) 

0 0( , )w r R z         (107) 

0 0( , )
w

r R z
r


   


     (108) 

 /2 0,rz r z t        (109) 

 /2 0,rz r z t         (110) 

 /2 0,rr r z t         (111) 

 /2 0,r z t         (112) 

 /2 0,zz r z t        (113) 

 /2,zz r z t p          (114) 

The boundary conditions involving rr and  are identical, 
and we have seven unique equations. 

 

4.2 Stress function (r, z)  

The stress function (r, z) used to solve the problem is 

obtained from a superposition of stress functions obtained from 
Legendre polynomials of degree from two to six as follows: 

2 3 4 6( , ) ( , ) ( , ) ( , ) ( , )r z r z r z r z r z           (115) 

21 21 22 22 31 31( , ) ( , ) ( , ) ( , )r z c f r z c f r z c f r z       
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    32 32 41 41 42 42( , ) ( , ) ( , )c f r z c f r z c f r z    

        61 61 62 62( , ) ( , )c f r z c f r z   (116) 

where Equation (82) has reduced the unknown constants by 

one, and we have a total of seven unknown constants and seven 
boundary conditions. 

The stress and displacement fields for (r, z) are obtained as 
follows: 

 2
41 42

2 96 2 16 14 960( , ) ( ) (rz r z G rc r c rz               

    3 3 2
61 62240 432 264 1056 672) (( ) ( ) )r c c r rz        

      …(117) 

 31 32 412 12 14 10 192( , ) ( )zz r z G c c zc          

         2 3
42 61 624 16 14 960 640 448( ) ( ) ((z c zr z c c       

 3 2704 1056 1728) ( ) )z zr       (118) 

( , ) ( ) ( )rr r z G c c zc z c        31 32 41 422 6 10 2 96 4 14 1   

    ( ) (( )z zr c z    3 2 3
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4.3 Enforcement of boundary conditions  

From 31 320 6 2 0( , )u r R z Rc Rc        (126) 

32 313c c       (127) 
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Then from Equations (130) and (131) we obtain: 
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Hence, 
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The enforcement of all the boundary conditions, and solving 
for the unknown constants yield the following solutions: 
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4.4 Stress fields 

The stress fields are then found as: 
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4.5 Deflection of the middle surface of the plate w(r, z = 0) 

The deflection of the middle surface of the plate is obtained by 

substitution of z = 0 into the expression for w(r, z) and after 
simplifications, as: 
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The deflection at the centre w(0, 0) is obtained as: 
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and is presented in Table 1 as 0 0 /( , ) .w vs R t   

The radial stress at r = 0, z = t/2 is: 
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Table 1: Variation of deflection at the centre with the ratio of 

radius to thickness (R/t) for  = 0.25 and  = 0.30 (Solution A) 

R/t 0 0 0 25( , )( . )w    

/( )pt G  

0 0 0 30( , )( . )w    

/pt G  

20 11250 10,500 

15 3559.57 3322.266 

10 703.125 656.25 

8 288 268.8 

6 91.125 85.05 

5 43.945 41.016 

4 18 16.8 

3 5.695 5.3156 

2 1.125 1.05 

0.5 4.3945  10 3 4.1016  10 3 

0.25 2.7466  10 4 2.5635  10 4 

0.20 1.125  10 4 1.05  10 4 

0.10 7.03125  10 6 6.5625  10 6 

0.05 4.3945  10 7 4.1016  10 7 

0.02 1.125  10 8 1.05  10 8 

0.01 7.03125  10 10 6.5625  10 10 

0.005 4.3945  10 11 4.1016  10 11 

 
Table 2: Variation of non-dimensional radial stress with the ratio 

of radius R to thickness t(R/t) for  = 0.25, and for  = 0.30 for 
Solution A 

Solution A 

R/t 0 25( . )   

0 /2 /( , )rr t p  

0 30( . )   

0 /2 /( , )rr t p  

20 186.6146 194.0018 

15 104.5833 108.6893 

10 45.9896 47.7518 

8 29.1146 30.2018 

6 15.9896 16.5518 

5 10.8333 11.1893 

4 6.6146 6.8018 

3 3.3333 3.3893 

2 0.9896 0.9518 

1 -0.4167 -0.5107 

0.5 -0.7682 -0.8763 

0.25 -0.8561 -0.9677 

0.20 -0.8667 -0.9787 

0.10 -0.8807 -0.9933 

0.05 -0.8842 -0.9970 

0.02 -0.8852 -0.9980 

0.01 -0.8854 -0.9982 

0.005 -0.8854 -0.9982 

 

4.6 Alternative solution from second type of boundary conditions 
(Solution B) 

For the same problem considered as shown in Figure 1, if the 

boundary conditions are given by replacing 0( , )
w

r R z
r


 


 

with 0( , ),
u

r R z
z


 


 then the stress and displacement fields 

are obtained (if all other boundary conditions are unchanged) as 

follows: 
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The deflection at the centre is given by: 

4 2
3 1 30 0

32 8

( )
( , )

ptR R
w

Gt t

           
     

   (160) 

and presented in Table 2 as w(0, 0) vs (R/t). 

 
Table 3: Variation of deflection at the centre with the ratio of 

radius to thickness (R/t) for 0 25.   and 0 30.  (Solution B) 

R/t 
0 25( . )   w(0, 0) 

/( )pt G  

0 30( . )   

0 0 /( , )w pt G  

20 11400 10650 

15 3643.945 3406 6406.  

10 740.625 693 75.  

8 312 292 8.  

6 104.625 98 55.  

5 53.320 50 390625.  

4 24 22 8.  

3 9.0703 8 690625.  

2 2.625 2 55.  

1 0 4453.  0 440625.  

0.5 0.098145 0.097852 

0.25 0.0237122 0.023694 

0.20 0.0151125 0.015105 

0.10 3.7570  10-3 3.7566  10-3 

0.05 9.3794  10-4 9.3791  10-4 

0.02 1.5001  10-4 1.500105  10-4 

0.01 3.75007  10-5 3.75007  10-5 

0.005 9.3750  10-6 9.37504  10-6 

 

Table 4: Variation of non-dimensional radial stress at the plate 

centre with the ratio of radius R to thickness t (R/t) for  = 0.25, 

and for  = 0.30 for Solution B 

R/t 0 25( . )  rr(0, 

t/2)/p 

0 30( . )   rr(0, 

t/2)/p 

20 188.6146 196.1446 

15 106.5833 110.8321 

10 47.9896 49.8946 

8 31.1146 32.3446 

6 17.9896 18.6946 

5 12.8333 13.3321 

4 8.6146 8.9446 

3 5.3333 5.5321 

2 2.9896 3.0946 

1 1.5833 1.6321 

0.5 1.2318 1.2665 

0.25 1.1439 1.1751 

0.20 1.1333 1.1641 

0.10 1.1193 1.1495 

0.05 1.1158 1.1459 

0.02 1.1148 1.1448 

0.01 1.1146 1.1447 

0.005 1.1146 1.1447 

 

Table 5: Variation of non-dimensional radial stress with R/t for 
the theory of Kirchhoff circular plate theory 

R/t 0 25( . )   

0 /2 /( , )rr t p  

0 30( . )   

0 /2 /( , )rr t p  

20 187.50 195 

15 105.46875 109.6875 

10 46.875 48.75 

8 30 31.20 

6 16.875 17.55 

5 11.71875 12.1875 

4 7.5 7.80 

3 4.21875 4.3875 

2 1.875 1.9500 

1 0.46875 0.4875 

0.5 0.1172 0.1219 

0.25 0.02930 0.0305 

0.20 0.01875 0.0195 

0.10 4.6875  10-3 4.875  10-3 

0.05 1.1719  10-3 1.21875  10-3 

0.02 1.875  10-4 1.95  10-4 

0.01 4.6875  10-5 4.875  10-5 

0.005 1.1719  10-5 1.21875  10-5 

 

The radial stress rr at r = 0, z = t/2 is 
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rr
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              
    

 161) 

The radial stress at the centre r = 0, z = t/2 obtained from the 

Kirchhoff – Love classical plate theory is given by: 

   
2

2

3 1
0 0
2 8 2

( )
, ,rr rr

t R t
p r z

t

 
        (162) 

 

5. Discussion 

This study has successfully presented first principles 

derivation of stress functions and displacement functions for 
three dimensional, small displacement elastostatic problems for 

homogeneous, isotropic materials. It also has successfully 
illustrated an application of the derived stress function and 

displacement function to the flexural analysis of thick isotropic 
homogeneous circular plates. 

The theoretical framework for the formulation and solution of 
3D homogeneous, isotropic elasticity problems involves a 

simultaneous consideration of the six generalized equations of 
stress – strain, Equations (1 – 6), the six kinematic relations for 

small – displacement assumptions – Equations (8 – 13) – and the 
three differential equations of equilibrium given by Equations (14 

– 16) for dynamic problems and Equations (17 – 19) for static 
problems. 

The generalized 3D Hooke’s stress–strain equations for 
homogeneous isotropic elasticity problems given by Equations 

(20 – 25) were used with the kinematic relations of small 
displacement elasticity and the differential equations of 

equilibrium to obtain a displacement formulation in 3D Cartesian 
coordinates system of 3D elastostatic problems as a set of three 

coupled partial differential equations given by Equations (37 – 
39) which are in terms of the Cartesian displacement field 

components u(x, y, z), v(x, y, z) and w(x, y, z) as the unknowns.  

Displacement function ( , , )x y z  is derived to apriori satisfy 

the set of three coupled differential equations, Equations (37 – 
39) by assuming that the two Cartesian components of the 

displacement field in the x and y coordinate directions could be 
obtained as Equations (40) and (41). The vertical component of 

the displacement field w(x, y, z) was then obtained in terms of the 

displacement function (x, y, z) by integration of the 

displacement equation of equilibrium – Equations (32 – 38) – as 
Equation (44) in generic form in terms of E1, E2 and G. The 

vertical displacement field component was obtained in simplified 
form as Equation (47). The condition for the three displacement 

field components obtained to identically satisfy the three coupled 
displacement equations of equilibrium was obtained as Equation 

(48), a biharmonic equation in terms of the displacement 
function. The displacement function derived was thus found to be 

a solution of the fourth order partial differential equation of the 
biharmonic problem to be eligible to be a solution to the system 

of coupled differential equations of equilibrium of the 
displacement formulation. 

The stress functions are derived by substitution of the 
displacement function expressions derived for the three 

displacement field components into the corresponding stress - 
displacement relations. Thus, after algebraic processes and after 

simplifications, the stresses are found to be derivable from 

( , , )x y z  as Equations (52), for xx, (56) for yy, (60) for zz, 

(61) for xy, (65) for xz, and (69) for yz. Hence ( , , )x y z  is 

shown to be a stress function as well since the stress components 
are derived from it. The stress and displacement components 

derived are expressed in cylindrical polar coordinates system as 

Equations (70 – 75). 

An illustration of the application of the stress and 

displacement function derived in this paper is presented by 
considering the derivation of elasticity solutions to the flexural 

problem of homogeneous, isotropic thick circular plates. The 

particular problem considered, which is shown in Figure 1 is the 
theory of elasticity analysis of the flexural problem of thick 

circular plate of radius R and the thickness t with clamped (fixed) 
edges subject to uniformly distributed load on the top surface. 

The plate material is assumed to be homogeneous and isotropic. 

The semi-inverse method in the theory of elasticity is applied 

to derive elasticity solutions to the flexural problem of isotropic, 
homogeneous thick circular plate using the stress function 

derived in this study. The stress function derived is required to be 
a biharmonic function from Equation (48), and Legendre 

polynomials were shown by Timoshenko and Goodier (1970) to 
be biharmonic functions. Hence, Legendre polynomials were 

chosen as the biharmonic stress and displacement functions to 
analyze and solve the thick circular plate problem. For second 

degree Legendre polynomials given by Equation (76) as the 
biharmonic stress and displacement function, the use of 

Equations (70 – 75) yielded the stress and displacement fields as 
Equations (77 – 82). The use of third degree Legendre 

polynomials – Equation (84) – as the stress and displacement 
functions yielded the stress and displacement field components as 

Equations (85 – 89), (77).  

The use of fourth degree Legendre polynomials – Equation 

(90) – in the equations derived yielded the stress and 
displacement field components as Equations (91 – 96). The use 

of the sixth degree Legendre polynomials – Equation (98) – in 
the equations derived yielded the stress and displacement field 

components as Equations (99) – (104). 

The problem considered is a linear elasticity problem, making 

superposition principle valid. The stress function ( , )x z  used to 

solve the isotropic, homogeneous thick circular plate problem is 

obtained by a superposition of stress functions obtained by using 
the Legendre polynomials of degree from two to six as given by 

Equations (115) and (116), where c21, c22, …, c61, c62 are 
unknown constants. The boundary conditions obtained from the 

stress and deformation conditions and also from the requirements 
of equilibrium of internal vertical stresses and the applied load 

are given by Equations (106 – 114). 

The stresses and displacement fields obtained by using the 

Legendre polynomial in Equation (116) as the biharmonic 

function ( , )r z  are obtained in terms of the unknown constants 

as Equations (117), (118), (119), (120), (122) and (123). The 

enforcement of the boundary conditions – Equations (106 – 114) 

– yielded the values of the unknown constants as Equations 
(132), (133), (134), (135), (137), (138) and (139). Substitution of 

the constants and simplification gave the stress fields as 
Equations (140), (141), (142), (143), (144) and (145). The 

deflection of the middle (neutral) surface of the plate w(r, z = 0) 
was found to depend on the ratio of radius to thickness as given 

by Equation (146). The deflection of the centre w(0, 0) of the 
plate was similarly found to depend on the ratio (R/t) as 

presented in Equation (147). The radial stress at r = 0, z = t/2 was 
obtained as Equation (148). The variation of deflection at the 

centre with the ratio R/t for values of the Poisson ratio 0 25.   

and 0 30. ,   and for various values of R/t are presented in 

Table 1. Similarly, the variation of non-dimensional radial stress 
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at r = 0, z = t/2 for values of the Poisson ratio 0 25.   and 

0 30. ,   and for various values of R/t are presented in Table 2. 

The boundary conditions were slightly modified by replacing 

0 0( , )
w

r R z
r


  


 with 0 0( , ) ,

u
r R z

z


  


 and the 

solutions obtained for the same isotropic, homogeneous thick 
circular plate problem with clamped edges and subjected to 

uniformly distributed transverse load was found as Equations 

(149 – 154). The transverse displacement 0( , )w r z   for the 

second type of boundary condition was obtained as Equation 
(159). The deflection at the centre w(0, 0) was found as Equation 

(160), which was presented in tabular form in Table 3 as w(0, 0) 
vs (R/t). 

For the second type of boundary condition, at the clamped 
edge, the radial stress at r = 0, z = t/2 was found as Equation 

(161), and presented in tabular form in Table 4 for value of the 

Poisson’s ratio 0 25.   and 0 30. ,  and for various values 

of R/t. The radial stress at r = 0, z = t/2 obtained from the 

Kirchhoff – Love classical plate theory for circular plates is given 
by Equation (162) which is presented for values of Poisson ratio 

0 25.   and 0 30. ,   and various values of R/t as Table 5. 

 

6. Conclusion 

The conclusions of the present study are as follows: 

(i) The displacement function derived simultaneously satisfies 

the generalized 3D stress–strain relations, the kinematic 
relations of strain to displacement and the differential 

equations of equilibrium for infinitesimal displacement 
elasticity problems for homogeneous, isotropic materials. 

(ii) The stress function derived also simultaneously satisfies the 
generalized 3D material constitutive relations, the strain – 

displacement equations, and the differential equations of 
equilibrium for small displacement elasticity problems 

involving homogeneous isotropic materials. 

(iii) The derived stress and displacement function has been 

successfully used to find the stresses and displacement fields 
in a thick circular plate with clamped edges and subjected to 

uniformly distributed transverse load over the entire plate 

domain. 
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