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1. ntroduction 

 

  Photovoltaic (PV) power generation has obtained 

importance as a renewable energy source as of its several  

deserves such as clarity of allocation, absence of noise, 

extensive life, absence of pollution, less time for 

installation, high movability and portability of parts, and 

the output power capability to match peak load 

requirements [1]. However, PV generation systems have 

faults including lowering in the conversion efficiency and 

dependence on  climate conditions [2]. PV arrays have 

been take care of for a variety of applications, such as 

battery charging systems, solar-powered water-pumping  

 

 

 

 

 

 

 

 

 

systems, solar hybrid conveyances, and satellite power 

systems [1,3]. Several countries, such as China, Finland, 

New Zealand, Canada, South Korea, and Spain are  

allocating funds to support renewable energy-based 

projects [4–9]. There have been numerous publications 

related to the scope of renewable energy in various 

countries. For example, Yushchenko et al. [10] analyzed 

land suitability factors for large-scale grid-connected 

concentrated solar power plants and PV systems as well as 

off-grid PV systems in countryside areas of West Africa. 

Studies on the status of current renewable energy sources 
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A B S T R A C T 

Renewable energy generation has experienced lot growth in the last not many years, 

with close to several billion dollars financing in 2017. Selection of an appropriate 

converter is one of the challenges since it has an impact on the behavior of the PV 

(photovoltaic) system. In recent years, many converters have been reported in the 

literature.  

This paper presents a review of non-isolated C-DC converters of voltage enhancers. 

Relevant review details are presented about the topologies of converters, including 

boost, hybrid boost, three-level boost, multi-level boost, and three-level hybrid 

converters that are most commonly used in photovoltaic systems. In the end, there are 

also several voltage level enhancers that can replace the converters provided in 

photovoltaic systems. Finally, a comparison is made between the converters in terms 

of the number of elements used in the circuit and the complexity of controlling the 

switches in the converters with their advantages and disadvantages being presented in a 

table. Since the use of multi-level boost converters reduces the switch voltage stress, weight, 

and cost compared to the conventional mode and as they are also better at higher powers, they 

have been used significantly in different systems. 

© 2019 Published by University of Tehran Press. All rights reserved. 
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in Mexico have been done by Alemán-Nava et al. [11]. In 

the Middle East, the problems and disputes in the field of 

renewable energy were analyzed for Yemen by Rawea and 

Urooj [12]. The main challenges are related to financial, 

market, technical, social, and institutional barriers. The 

author suggested recommendations such as research and 

development, creation of a schedule for the production of 

renewable energy, improvement of market policies and 

development of distributed generation. Honrubia et al. 

[13] evaluated the economic details of PV power plants in 

Europe. Photovoltaic power differs with insolation, 

temperature, and load features [14,15] and it is straightly 

proportional to irradiance and inversely equivalent to 

temperature. The circuit-based model of a solar cell as 

shown in Fig. 1 consists of a current source connected in 

parallel with a diode. The current’s source illustrates 

photon-generated currents (Iph). The resistance Rs 

represents the losses due to the contacts and connections. 

The leakage currents in the diode are represented by 

parallel resistance Rp [16]. Parameters like the short-

circuit current (Isc) and open-circuit voltage (Voc) are 

used to examine the characteristics of a Photovoltaic cell. 

The Isc is the maximum value of the current produced by a 

cell, and is sensitive to irradiance. The Voc is the 

maximum value of voltage obtained from a solar cell at 

zero current. The I–V characteristics of a solar cell are 

shown in Fig. 2. There is no intersection between the 

voltage characteristics of the PV generator and DC bus 

since the DC bus voltage is far higher than Voc [2,29]. 

In PV systems, high  voltage is favorable, like in 

uninterruptible power supplies (UPS) and micro PV 

inverters [17-19]. For such approaches, little input voltage 

from PV the source should be stepped-up. For example, in 

micro PV inverters, interfacing PV panel with a 230 VRMS 

grid requires the low PV voltage (typical around 30 VDC) 

to be stepped up to around 375-400 VDC [13, 20-22]. For 

such applications, the voltage boosting required is too big 

to be accessible appling conventional fundamental boost 

DC-DC converter topology; therefore there remains a 

urgency for modified topologies offering a high voltage 

gain. DC-DC converters are commonly been categorized 

into isolated and non-isolated topologies [23-28]. 

contrary to many various topologies, the conventional 

boost converter yet enjoys remarkable degree of 

amicability due to the following advantages: little number 

of components which explicate into system cost decrease; 

non-pulsating input current (if the converter acts in CCM), 

and ordinary drive circuit. For this reason, the main 

emphasis of the paper is on non- isolated DC-DC 

converters from boost and hybrid boost converters as well 

as some converters for photovoltaic systems. 

The main objective of the paper is introducing: 

1.Conventional boost converters and hybrid boost 

converters 

2.Three-level boost converter and three-level hybrid boost 

converter. 

3.A Multi-level boost converter  

4.Voltage multiplier converters for future work on its 

application in photovoltaic systems 

The remainder of the paper is organized as follows. The 

second section deals with introducing isolated and non-

isolated DC-DC converters. Section 3 introduces 

conventional boost converter and hybrid boost converter, 

three-level boost converter and three-level hybrid boost 

converter, multi-level boost converter and some proposed 

voltage multipliers and, finally, discusses the comparison 

between existing converters. 

 

Figure 1: Equivalent model of the PV cell[29]. 

   

 
Fig. 2. I-V Characteristics of solar cell with load line. 

 

2. Isolated and non-isolated DC–DC converts 
Figure 3 presents only the chief isolated and non-isolated 

converters [23-28].  

The DC-DC converters are generally categorized into 

isolated and non-isolated converters.  The input and output 

voltage are separated from each other in isolated 

convertors and there is greater protection between them, 

while the input and output voltages are not separated in 

non-isolated convertors and they are related to each other, 

which is called non-isolated. 
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Fig. 3. Isolated and non-isolated DC–DC converts 

 

 

 

Iph D Rp

Rs

+

_

V

I



 
 Journal of Solar Energy Research Vol 4 No 4 Autumn (2019) 287-299 

 

289 

 

3. Types of boost converter topologies 

3.1. Boost converters 
A boost converter is a DC-DC converter that is capable to 

produce an output voltage greater than the input voltage. 

Since the output voltage of a boost converter is greater 

than the input voltage, it is also known as step-up 

converter [30-34]. According to the law of conservation of 

energy, the input power must be equal to the output power. 

Since the output voltage of a boost converter is greater 

than its input voltage, the output current will be lower than 

the input current. The circuit topology of a conventional 

boost converter is shown in Fig. 4. 

When the switch is made ON, one direction of the 

inductor suits linked to the source of energy. The current 

via the inductor ascents from the least level to its most 

level during this course. The output voltage appears in the 

cathode while zero voltage appears in the anode of the 

diode hence it is reverse biased and OFF. So, the load is 

isolated from the source pending the ON period, and in 

turn the load current is retained continuous by the output 

hand capacitor. When the switch is turned OFF, the plural 

of the voltage of the inductor and source voltage becomes 

visible on the switch and in the anode of the diode that is 

greater than the output voltage. So, the diode obtains 

forward biased and onsets the conduction current. Pending 

this period, the inductor current falls from the topmost 

level to least level where all energy stored in it along with 

the source voltage is rendered to the load and output 

capacitor. The output current is always continuous in the 

boost converter, while the input current can be continuous 

or discontinuous. This converter has been widely used in 

photovoltaic systems [35-38]. 

PV
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+
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+

_
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Fig. 4. DC-DC Boost converter[24]. 

 

3.2. Hybrid boosting converters 
A hybrid boosting converter or (HBC) using bipolar 

voltage multiplier or (BVM) is shown in Fig. 5. The 

characteristics of interleaving are inherited to this 

converter which reduces the voltage on the output filter 

capacitor while enhancing the utilization rate of the 

components as the voltage gain is higher during a shorter 

duty cycle. Topologies in [39,40] have employed an 

interleaving method for ripple decrease and power 

increment; although, these topologies require rather 

components. This converter represents minor ripples while 

maintaining high voltage gain with only one single 

inductor and single switch. A higher gain was archived in 

topologies in [41-46], but they implemented two inductors 

and two switches. The HBC topology has advantages 

including low-cost design and the potential to be 

employed in high power applications. As a disadvantage 

to applications where common ground is required, this 

topology has different grounds for the source and load. 

Moreover, due to this problem, audible noise may be 

experienced, which may necessitate a fast control loop and 

an input filter. 

Vg Ca2

Ca1Cb1

Cb2

Da1 Da2Db1 Db2 S L
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Fig. 5. Hybrid Boosting Converter [47]. 
 

3.3 Three-level boost type converter (TLBC) 
As shown in Fig. 6, the switching signal G1 is obtained 

from the comparison of the control signal vcont1 with the 

triangular signal vtri1. Due to the low output voltage ripple, 

VO is assumed constant. Therefore, the sum of two 

capacitor voltages will be fixed vC1 + vC2 = VO. 

In addition, the other switching signal G2 is obtained by 

comparing the control signal vcont2 with the triangular 

signal vtri2, where there is a 180º phase difference between 

two triangular signals. 

Due to the input inductor L and two diodes D1 and D2 in 

the TLBC, both switches can be turned on at the same 

time. Therefore, there are four possible switching states as 

plotted in Fig. 7. 

In Table 1, the states are described as follows:  

State (a) : T1=ON and T2=ON then VPV=VL. 

State (b) : T1=ON and T2=OFF then VL=Vpv -VC2 then C2 

capacitor is charged. 

State (c) : T1=OFF and T2=ON then VL=Vpv -VC1 then C1 

capacitor is charged. 

State (d) : T1=OFF and T2=OFF then VL=Vpv -VC1-VC2. 

All of the capacitor currents in various switching states are 

tabulated in Table 1. 

In case 1 < vcont1 + vcont2 <2, vcont1=0 and vcont2=0 do not 

occur at the same time. Therefore, State 4 in Figure 4 does 

not develop. 

In case 0 < vcont1 + vcont2 <1, vcont1=1 and vcont2=1 do not 

occur at the same time. Therefore, State 1 in Figure 4 does 

not develop. 
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Table 1: Capacitor currents in each state 
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Fig 6. Three level boost converter[49]. 
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(d) 

Fig. 7. Possible switching states in three-level boost-

type converter: (a) state 1; (b) state 2; (c) state 3; (d) state 

4[49]. 
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As shown in Fig. 6, the current and PV voltage are sensed 

and introduced into the MPPT control block. This block 

generates the output signal vcont1. The existing signal is 

compared with the triangular signal vtri1 with zero-phase 

angle and can create signal G1 for switch SW1. Then, 

voltage capacitors C1 and C2 are sensed and compared with 

one another to obtain an unbalanced voltage. This signal is 

then introduced into the proportional control to make the 

errors zero. The resulting signal from the controller output 

is added to signal vcont1. The obtained signal is then 

compared with signal vtri2 (there is 180ᵒ phase difference 

between vtri2 and vtri1). Next, the obtained signal G2 enters 

the second switch. In this way, two rates of D1 and D2
 will 

be created with half of the period of the phase difference, 

where, three-level voltage is obtained in the output 

converter. This not only increases the input voltage, but 

also reduces the switch voltage stress. It can also lower the 

filter size due to increased frequency [48-51]. 

 

3.4. Hybrid boost three-level DC-DC converters 
The single-phase diode-clamped three-level inverter is 

shown in Fig. 8(a), where there are four switches Qa1 − 

Qa4 with corresponding antiparallel diodes Da1 − Da4 . 

Leaning on this topology, two three-level DC-DC 

converters (buck and boost converters) are deduced, as 

shown in Fig. 8(b) and (c). Note that there are still two 

other boost three level converters shown in Fig. 9 [18], 

which can also be deduced from the inverter in Fig. 8(a). 

However, these two boost three level converters cannot 

operate individually, due to the unbalanced capacitor 

voltages across (C11, C12 ) or (C21, C22 ). For both 

improving  the dc-bus voltage and power level of PV 

generation systems and for obtaining narrower pulse 

voltages from the difference between wider ones through 

the idea based on the topology of a single-phase diode-

clamped inverter with two three-level legs , a new hybrid 

boost three- level converter can be combined naturally by 

the two boost three-level Converters I and II in Fig. 9. Vin1, 

Vin2, and Lf 1, Lf 2 represent the input dc voltages and 

filtering inductors of Converters I and II, respectively. 

Then, the input power level of the hybrid converter can be 

improved by two inputs of two series converters called 

Vin1 + Vin2 . Also, the output power level of the hybrid 

converter can also be enhanced by the parallel connected 

outputs of Converters I and II called (i1 + i2 ) as displayed 

in Fig. 9. Accordingly, the process of synthesizing the 

hybrid converter by the mode of inputs in series and 

outputs in parallel is depicted in Fig. 10. The input node c 

is cut off from node g1 in Converter I, which is 

abbreviated as “Cut I.” In addition, the other input node d 

is also cut off from node p2 in Converter II, abbreviated as 

“Cut II.” Then, the two input nodes c and d can be 

connected in series, i.e. both of the input dc voltage 

supplies Vin1 and Vin2 are in series. On the other hand, the 

output structures of Converters I and II are identical, nodes 

p1 and p2, as well as g1 and g2 can be connected in parallel 

leading to the “paralleled output +” and “paralleled output 

–” for the hybrid converter as shown in Fig. 10. The 

synthesized hybrid boost three-level converter is shown in 

Fig. 11, where the equivalent input dc voltage Vin and 

inductor Lf can be obtained linearly due to the input sides 

of Converters I and II in series. 

In addition, the parallel-connected capacitors (C11, C12 ) 

and (C21, C22 ) as shown in Fig. 10, can be equivalent to Cf 

1 and Cf 2 in Fig. 11, as well as the parallel-connected load 

resistors R1 and R2 which are equivalent to RL . However, 

the neutral points n1 and n2 in Fig. 10 have to be connected 

to each other, leading to the neutral point n which may 

keep the blocking voltages across power switches as the 

corresponding capacitors’ voltages in Fig. 11. So, the 

proposed hybrid converter, combined by Converters I and 

II in Fig. 9, contain Half-Bridges I and II, as shown in Fig. 

11. 

The significant point on this hybrid converter is that one 

inductor, two capacitors in series, and those power 

switches and diodes, which are simple to be united, are 

pursue to instate the topology with a transformer-less great 

voltage gain. 

So, the proposed converter can both act with a high 

voltage gain and fetch the duty cycles of power switches 

near to 0.5. 

Also, the voltages through the capacitors in series are well 

balanced in both stable and dynamic states, As the 

blocking voltages of the power switches are half of the 

output dc voltage. Finally, a 1-kW archetype is set up in 

our laboratory, where the measured maximum revenue of 

the proposed converter is about 93.1%. 

The three-level hybrid boost converter conversion function 

is also described further: 

d1 and d2 are the duty cycles of Q1 and Q2 , respectively. 

Then, all the duty cycles of power switches can be 

described as follows with the modulation indices ma and 

mb: 

a

b

mdd

mdd
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32

41 1
                                                            (1) 

 

Also, d3 and d4 are the duty cycles of Q3 and Q4, 

respectively. Then, the voltage gain M of the hybrid 

converter is written as follows by: 
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(c) 

Fig. 8. Single-phase diode-clamped three-level inverter 

and two classical three-level dc–dc converters[52]. 
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(b) 

Fig. 9. Two deduced boost three-level dc–dc 

converters[52]. 
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Fig. 10. Synthesized process of the hybrid boost three-

level dc–dc converter by the mode of inputs in series and 

outputs in parallel[52]. 

 
Fig. 11. Proposed hybrid boost three-level dc–dc 

converter[52]. 
 

 

3.5. Analysis of the new Converter 
The new converter with two switches is shown in Fig. 12, 

where Vin is the input voltage and the resistor Ro 

represents the load. Each of the two phases of the 

converter is composed of one switched inductor circuit 

and its corresponding switch and diode. The new 

converter combines switched inductor circuit and 

interleaved technique to integrate the advantage of these 

converters in one structure. The proposed structure is 

called switched inductor interleaved double boost 

converter (SIIDBC). The output voltage Vo is given by: 

 

                                                 (3) 

 
inCCo VVVV  21
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(input current) is  inThe current delivered by the source V

given by: 

   
                                                       (4) 

 

In the analysis, all the components are ideal while all the 

parasitic parameters are ignored. Also, the ripples of the 

capacitor voltages are neglected. In addition, since the 

converter is required to operate in a continuous conduction 

mode (CCM) for the renewable power system 

applications, the steady-state behavior of the converter has 

been analyzed in CCM. The operation of the second phase 

is the same as the first phase, so the equation of the first 

phase is provided. The equation of the second phase is the 

same as that of the first phase. Also, the values of 

inductors are equal. On the other hand, the voltage stress 

of the capacitors, diodes, and power devices are reduced. 

The new converter has a switching network for the 

inductor which allows the use of smaller inductors [53]. 
 

                             (5) 

 

The conversion function of this new converter is as 

follows: 

 

                                                           (6) 

 

 
Fig. 12 The circuit of the new converter[53]. 

 

 

3.6. Fault-tolerance basic converter (FIBC) 

topologies 
Considering fault-tolerance, basic modifications brought 

to the classic boost converter topology are given in Ref. 

[54]. These novel topologies let building error tolerant 

interleaved converter topologies with a vast voltage ratio 

and decreased input current ripple. For this proof, these 

topologies are solely proper for FC and PV applications. A 

2-leg FIBC is displayed in Fig. 13. The second is built 

from the non-floating version of the boost converter (i.e. 

upper section) and the floating version of the boost 

converter (i.e. lower section). The interleaving notion is 

guaranteed by the parallel connection among the non-

floating and floating versions of the boost converter and 

the respective shift among the two power switches (S1 and 

S2). 

This interleaving allows reducing the input current ripple. 

Further, this topology allows minimizing the electrical 

stresses (voltage and current) on the power devices. The 

voltage ratio is given by the following expression [54] and 

[55]: 

 

                                                  (7) 

 

Where, vdc is the DC bus voltage 

in [V], vfc denotes the FC stack voltage in [V], and D is 

the duty cycle value. 

Starting from this converter, others converters can be built 

[54] and [55]. Two novel topologies are shown in Fig. 14 

and Fig. 15. The first is a 4-leg FIBC, while the latter is a 

floating interleaved cascade boost converter or (FICBC). It 

is important to emphasize that the number of legs of FIBC 

topologies must be necessarily even in order to keep a 

balance between the non-floating and floating parts. If 2-

leg and 4-leg FIBCs are compared from the power switch 

fault-tolerance point of view, the 4-leg FIBC is more 

reliable. Indeed, once one leg of the 2-leg FIBC is lost, 

this leads to an unsteadiness between the non-floating and 

floating bus. In summary, this converter will tine all these 

affairs formerly given. On the other side, the loss of one 

leg of one of the sections (i.e. non-floating or floating) for 

a 4-leg FIBC could be maked up by the other leg on the 

defective part since the non-floating and floating part are 

absolute of each further. 

However, keeping the balance between the two parts leads 

to the leg overload, causing additional electrical stress, 

particularly on inductive components. An analysis carried 

out by Kabalo et al. [56] on a 2-leg, 4-leg and 6-leg FIBC 

based on several criteria (i.e. volume of inductors, FC 

current ripple, efficiency) suggested that the 4-leg FIBC is 

the best choice among the proposed converters. As to the 

FICBC, the cascade junction allows getting a high voltage 

respect and a decreased output voltage ripple. The FICBC 

voltage ratio is given by the following phrase: 

 

                             (8) 

 

 

Where, D1 and D2 represent the duty cycles of the first and 

second stages respectively. 

In order to minimize the input current ripple of the 

FICBC, a large inductor value and thus increasing the 

overall volume of the converter is required. Note that the 

reliability of the converter decreases when using the 

cascade connection. On the other side, the credibility of 

the FICBC can be added by using the interleaving 

implication, but this increments the intricacy of the 

converter. 

Starting from this lysis, the 4-leg FIBC has been selected 

in order to carry out a all investigation in terms of fault-

tolerance. This research will allow to work out remedial 

tactics for minimizing the unfavorable agents in case of 

degraded operating modes. 

In order to sate the fault tolerance requirements, fuses 

(Fuse 1, Fuse 2, Fuse 3, and Fuse 4) have been added in 

sequel with every power switch, as shown in Fig. 14. The 

oin iiii  21

2122211211 LLLLLL 

)1(

)31(

D

D

V

V

in

o






D

D

v

v
DM

fc

dc






1

1
)(

1
)1)(1(

2
)(

21





DDv

v
DM

fc

dc



 
 Journal of Solar Energy Research Vol 4 No 4 Autumn (2019) 287-299 

 

294 

 

fuses let isolating faulty legs in instance of SCFs. Also, the 

PEMFC has to be electrically secure (e.g. addition of a 

fuse series jointed with the FIBC) against feasible SCFs 

[57]. The diode D is applied to maintain the PEMFC from 

negative currents. This diode conducts the current for the 

all duration of the system revenue. As a result, in order to 

decrease its conduction losses, the parallel connection of 

two diodes is applied. In this converter, the ripple 

diminishes [58]. 

 
 

Fig. 13. 2-leg FIBC[58]. 
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Fig. 14. 4-leg FIBC[58]. 

 

 
Fig. 15. Floating Interleaved Cascade Boost Converter 

(FICBC)[58]. 
 

3.7. Multi-level boost converters  
A multi-level boost converter (MLBC) employs extra 

diodes and capacitor network at the output stage to 

achieve a higher gain for the same duty cycle when 

compared with conventional boost converters [59]. The 

voltage increase for N level multilevel boost converter is 

appointed by: 

 

                                                                 (9) 

 

Today, many researchers use multi-level 

converters (three-level, five-level, ...) in photovoltaic 

systems. According to Formula 11, it increases both the 

voltage level and the power. In addition, switches with a 

lower voltage stress can be used to enhance the converter 

level. References [60-63] have been used in this regard. 

As an example, the circuit schematic view of ZVS in 

MLBC is shown in Fig 16. M type full wave quasi-

resonant configuration is incorporated to the multi-level 

boost converter to achieve ZVS during the ‘on’ phase.  A 

diode is placed in series with the switch. Lr and Cr are 

designed such that both gain and resonance are achieved. 

The gain in ZVS with MLBC will be slightly less than the 

one without ZVS, accounting for the losses in new 

elements.  
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Fig. 16. ZVS in Multi level boost converter topology[64]. 

D

N

V

V

in

o




1



 
 Journal of Solar Energy Research Vol 4 No 4 Autumn (2019) 287-299 

 

295 

 

 
In this work, a high gain DC-DC converter along with 

zero voltage switching (ZVS) is proposed to minimize the 

switching losses [64-68]. 

 

3.8. A generic  converter 

Figure 17 illustrates the structure and of a generic 

 converter. It can be seen that the proposed 

converter has ‘n’ different arms and ‘n’ different legs 

leading to a total of ‘2n’ limbs. Each arm is comprised of a 

series connection of two capacitors and two arm switches 

labeled with suffixes ‘a’ and ‘b’. For example, arm no. 1 

consists of capacitors C1a and C1b connected in series with 

switches S1a and S1b. Each leg of the converter consists of 

a half-bridge cell composed of two switches switched in a 

complementary function. Leg 1 consists of S1p and S1n. In 

comparison to the double wing structure proposed in [69], 

it can be observed that an extra degree of freedom with 

respect to the location of input voltage and output voltage 

is introduced in the  converter. Both the input 

voltage Vin and output voltage can be connected across 

any of the ‘n’ arms of the converter. For a generic location 

of the input voltage, Vin on the mth arm of the converter, 

the “effective input” voltage, Vx across Cx can be 

expressed as: 

 

                                                             (10) 

 

For a generic location of the load across 

arm ‘K’, the output voltage Vout can then be expressed as: 

 

                                                 (11) 

 

Where, m denotes the arm across 

which the input voltage is connected and k is the arm 

across which the load is connected where k,m ≤ n. 

If k > m, the converter functions as a boost converter. 

Figure 18 also shows that one other degree of freedom can 

be obtained by placing the source or load across Cx. If the 

input voltage, Vin is placed across Cx and the load is 

connected across the generic arm, ‘k’ as described above, 

the output voltage, 

 

                                                            (12) 

 

This converter includes the following advantages:  

An inductor-less, high gain DC-DC converter with a high 

efficiency and high power density is a much desired 

circuit in electric vehicle (EV) powertrain and solar 

photovoltaic (SPV) power converters. Modular multi-level 

capacitor clamped DC-DC converter circuits (MLCCCs) 

provide a viable solution for this case. However, their 

application is limited owing to their limitations in terms of 

fixed output voltage gains and lack of fractional output 

gains [70]. 
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Fig. 17. A generic  converter[70]. 

 
There has also been many multiplier converters made by 

researchers around the world which, according to the 

statements of this paper one of them can be used in 

photovoltaic systems whose advantages and disadvantages 

can also be discussed. 
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Table 2 Advantages and Disadvantages of Boost converters 

 
Utilized in 

photovoltai

c systems 

Number of elements 

used in the circuit 

Advantages and Disadvantages DC-DC 

Converters 

yes Number of inductances: 1 
Number of capacitors: 1 

Number of diodes: 1 

Number of keys: 1 

1.Semiconductor power electronic switches with high voltage rate   
2.High cost of power electronic switches 

3. Large size and larger weight than TBLC. 

4. Application in power systems with a low voltage-power rate.        

Fig. 4. DC-DC 
boost converters 

yes Number of inductances: 1 

Number of capacitors: 4 

Number of diodes: 4 
Number of keys: 1 

1.Increase in power rate 

2.Reduction of power ripple 

3.Requires more elements than conventional boost converter in circuits 
4.Increasing the voltage level only with an inductance 

5. The cost of the converter is less than that of conventional boost 

converters. 
6.The disadvantage of the earth separated by the load and the source 

Fig. 5. Hybrid 

boost converters 

yes Number of inductances: 1 

Number of capacitors:2  

Number of diodes: 2 
Number of keys: 2 

1. Use of power electronic switches, with a lower voltage rate than 

conventional boost converters (about half voltage rate of conventional boost 

converter). 
2. Application in power systems with a medium and high voltage-power 

rate. 

3. Reducing the size in inductance filter of TBLC compared with inductance 
filter of conventional boost converters (about a quarter size of the 

conventional boost converter). 
4. Reducing the capacity of TBLC compared with that of conventional boost 

converters (about half of the capacity of conventional boost converters). 

5. Reducing the current ripple by a quarter. 
6. Increasing the frequency of the voltage across the LC filter to double the 

switching frequency. 

7. Decreasing the cost of power switch; Reducing the total weight and size 
of the converter. 

Fig. 6. Three 

level boost 

converter 

yes Number of inductances: 1 

Number of capacitors: 2 

Number of diodes: 8 
Number of keys: 4 

1. The converter's efficiency is about 93 %. 

2.The magnitude of duty of the cycle for increasing the voltage is about 0.5 

3. Voltage stress on the switch is half the output voltage. 
4. Application in power systems with a medium and high voltage-power 

rate. 

5. Decreasing the cost of power switch. 
6. Reducing the total weight and size of the converter. 

Fig. 11. Hybrid 

boost three level 

converter 

no Number of inductances: 4 

Number of capacitors: 2 
Number of diodes: 7 

Number of keys: 2 

1. The voltage stress of the capacitors, diodes, and power devices is 

reduced. 
 2. The converter has a switching network for the inductor which allows the 

use of smaller inductors. 

Fig. 12. Proposed 

dc-dc converter 

yes 2-Leg: 

Number of inductances: 2 
Number of capacitors: 2 

Number of diodes: 2 

Number of keys: 2 

4-leg: 

Number of inductances: 4 
Number of capacitors: 2 

Number of diodes: 5 

Number of keys: 4 

1. Including reduced input current ripple. 

2. Benefits of this topology, operating degraded modes lead to undesirable 
effects such as electrical overstress on components and input increasing 

current ripple.  

Fig. 13-15. FIBC 

yes Number of inductances: 2 
Number of capacitors: 2n 

Number of diodes: 2n 

Number of keys: 1 

1. Total advantages of three-level boost converters with more reduction in 
switching losses, cost, and weight. 

2. The complexity of the converter control is due to increased number of 

switches. 

Fig. 16. Multi-
level boost 

converter 

no Number of capacitors: 2 

n 

Number of keys: 4 n 

1.Inductor-less, high gain DC-DC converter witha  high efficiency and high 

power density  

2. Their application is limited owing to their limitations in terms of fixed 
output voltage gains and lack of fractional output gains. 

3. The complexity of control in the photovoltaic system is greater upon 

increase in the number of switches and applications in the stepper motors, 

due to the stepped output of the voltage. 

Fig. 17. A 

generic (k/M)X 

converter 
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