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Abstract 
Bio-absorbent palm fiber was applied for removal of cationic violet methyl dye from 

water solution. For this purpose, a solid phase extraction method combined with the 
artificial neural network (ANN) was used for preconcentration and determination of 
removal level of violet methyl dye. This method is influenced by factors such as pH, the 
contact time, the rotation speed, and the adsorbent dosage. In order to find a suitable 
model of parameters and calculate the desired output, two radial basis function (RBF) 
and multi-layer perceptron (MLP) non-recursive functions, which are among widely 
used artificial neural networks, were used for training the input data. The performance 
of this method is tested by common statistical parameters including RMSE, MAE, and 
CE. The results show that the artificial neural network algorithm has a good 
performance in simulating and predicting the removal of violet methyl dye. 
 
Keywords: Palm fiber; Violet methyl colour; Adsorbent; Neural network; Prediction. 
 

                                                        
* Corresponding author: Tel: +989120722359; Fax: +9842422435, Email: rashinandayesh@gmail.com 

Introduction 
Chemical dyes are one big part of organic 

compounds that cause pollution in natural waters. These 
dyes are used for industrial and domestic purposes. 
Textile industry releases the highest amount of dye to 
the environment [1-3]. The use of dyes increases due to 
industrial development and growing demand for it. 
Methyl violet is a heterocyclic aromatic, odorless, solid 
compound that is soluble in water, ethanol, and di-
ethylene glycol. The existence of this dye is dangerous 
for aquatic life because it is considered as mutagenic 
and mitotic poison, and thus carcinogenic. Removing 

methyl violet as an alkaline dye from the aqueous 
solution was investigated during the photo-catalytic 
reaction and Sono photo-catalytic by titanium dioxide 
(TiO2) nanoparticles. Studies have shown that higher 
temperatures and lower initial concentration lead to 
higher removal rates. During recent years, various 
chemical methods have been developed to remove color 
dyes, including adsorption [4], Fenton process [5], 
photo/ferrioxalate system [6], and photo-catalytic and 
electrochemical combined treatments [7]. Adsorption is 
the result of the interaction of physical attraction forces 
between porous solid surfaces and molecules of 
substances taken from the fluid phase. Solid phase 
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extraction and two beam spectrophotometer were used 
in this study. Various agricultural waste materials have 
been studied for the removal of different dyes from 
aqueous solutions at different operating conditions. 
Agricultural waste includes durian (Durio 
zibethinus Murray) peel [8], guava (Psidium guajava) 
leaf powder [9], peanut hull [10], Citrullus lanatusrind 
[11]. Palm fiber used in this study, is a chemically inert, 
non-toxic, biodegradable substance. This abundant 
renewable source is an agricultural byproduct that can 
be used as an absorbent for the removal of dyes from 
aqueous solutions. Through a process called activation, 
carbon-containing materials such as palm fiber are 
converted to activated carbon which is composed of a 
two phase process. The first step includes a pyrolysis of 
an agricultural by-products/wastes which increase the 
number of pores. While in second step, enlargement of 
pores in the carbonized material is achieved. In this 
study, activated carbons derived from palm fiber present 
comparable adsorption capacities which can be 
recommended as a suitable absorbent for methyl violet 
from textile wastewater. Besides, the adsorbed methyl 
violet can be easily extracted from adsorbent and there 
is no need to use a modifier to adjust the surface of the 
palm fibers.  Furthermore, palm fibers can be used 
several times which in turn, shows the high performance 
of the method. The outstanding characteristic of the 
present study is using algorithms, artificial intelligence, 
and updated artificial neural network functions in 
anticipating the amount of determination and 
elimination of methyl violet dyes in the prepared sample 
solutions. In this process, after performing a few 
optimal tests, an algorithm can be created based on 
obtained data. Next, instead of doing test in other 
different circumstances, the removal percentage values 
can be predicted by the prepared artificial neural 
network algorithms. Reducing the cost of raw materials 
as well as reducing the use of expensive laboratory 
equipment and instruments can be noted as the 
advantages of this method. Also, the time of the analysis 
and interpretation can be considerably shortened using 
this method. In the present study, the ability of two 
common artificial neural network (ANN) functions (i.e., 
radial basis function, RBF, and multilayer perceptron, 
MLP) are assessed to predict the amount of removed 
dye. Finally, the performance of these artificial neural 
networks is tested by reliable statistics standards. 

 

Materials and Methods 
Materials used in this study include methyl violet dye 

with a molecular mass of 393.95, hydrochloric acid 
37%, and sodium hydroxide, all produced by Merck 

Company (Germany) with high analytical purity. 
Furthermore, twice distilled water was used. The palm 
fiber prepared from palm trees of Jannat Makan village 
in the suburb of Gotvand city was used as an adsorbent. 

About 1 cm glass cells for measuring the absorption 
and drawing the whole color solutions in λ= 581.6 nm 
and two beam spectrophotometer Lambda135 model 
made by Perkin-Elmer manufacturers were used in this 
study. A pH meter (F-11 model made by Horiba in 
Japan) was used to control the pH of aqueous solutions. 
For multiple stirring of the solution, a shaker (HS 501 
digital) made by IKA-Werker in Germany was used. In 
order to weigh the studied samples, a balance BP210D 
(Sartorius Company, Switzerland) with a weighing 
capacity of 200 g and accuracy of 0.0001 was used. A 
centrifuge device made by Kokusan manufacturers in 
Japan was used for centrifuge tests. All Shushed 
balloons, volumetric flasks, pipettes, Erlenmeyer flasks, 
funnels, and glass stirrers were made of pyrex. 

Preparation of samples for analysis 
In the present study, palm fiber was prepared in 

winter from palm trees of Jannat Makan village, (in the 
suburb of Gotvand city in Khouzestan province, Iran). It 
was washed for several times by detergent and drinking 
water before using as a sorbent in order to remove dust 
and mud and was rinsed by distilled water for several 
times. Next, it was dried by the oven at 80 ℃ for 24 h. 
Dried palm fiber was crushed by gristmill (at different 
times of grinding to make different estimated sizes) to 
obtain modified palm fiber. The laboratory screening 
was used in various meshes (18, 25, 35, and 60) to 
obtain different particle sizes (0.25, 0.5, 0.1, and 0.75 
mm). Afterward, 5 g of palm fiber was gradually added 
to 70 ml of concentrated hydrochloric acid in a 100 ml 
bécher to prepare modified palm fiber. To completely 
remove the excess acid, it was smoothened by thick 
filter paper after 2 h. After that, ethylene-diamine was 
added to a 30 ml volumetric flasks, and the adsorbent 
was filtered and washed by distilled water after 2 h until 
the leachate is a colorless and clear. Then, solid 
adsorbent on the filter paper was placed for 24 h on 
aluminum foil in the oven at 80 ℃ and was dried. 

Static laboratory method 
Static tests were conducted at 25 ℃ to remove methyl 

violet dye and to study the effect of important 
parameters including pH, the amount of adsorbent, the 
contact time, and stirring speed of solution. For this 
purpose, 50 ml of dye solution with concentrations of 
100 and 200 ppm was added to a certain amount of 
palm fiber as an absorbent (0.1 g) and then was stirred 
in the shakers at a constant speed of 120 rpm. Samples 
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coefficient of determination (R2), which has a range of 0 
to 1, is close to 1. If this parameter is 1, there will be a 
perfect correlation between measured and predicted 
data. On the other hand, if the coefficient of 
determination is 0, the regression equation cannot help 
to predict values. 

 

Results and Discussion 
Several factors were investigated to obtain optimum 

conditions for removal of violet methyl dye. To study 
the effect of pH on the amount of adsorbed dye, 50 ml 

of colour solution with 100 mg/L of concentration was 
spilled to 10 Erlenmeyer flasks. Then pH solution was 
adjusted by NaOH and HCl, and 0.0744 g of adsorbent 
size 0.25 was added to each flask and was stirred on a 
shaker at around 120 rpm for 30 min. The solution was 
cleared and then the absorption was read at the 
maximum wavelength in 581.6 nm. Selected ranges 
were chosen for other parameters affecting the dye 
removal, including the number of shaker rounds, the 
contact time with the adsorbent, and the adsorbent 
dosage. The training and test data are shown in Table 1 
and 2, respectively. 

Table 1. Experimental data for training an ANN model
Real output 

percent 
Rotation 

speed (rpm) 
Time 
(min) 

pH Adsorbent 
dosage (g/L) 

Run 

88.41 80 50 9.5 1.2 1 
83.7 80 30 11 1.2 2 

60.93 100 50 9.5 0.4 3 
79.95 100 10 11 1.2 4 
95.64 80 30 9.5 2 5 
78.01 100 30 9.5 1.2 6 
91.32 120 50 9.5 1.2 7 

 
Table 2. List of data for test and validation of the designed ANN algorithms 

Real output 
percent 

Rotation 
speed (rpm) 

Time 
(min) 

pH  Adsorbent 
dosage (g/L) 

Run 
 

62.33 100 30 8 0.4 1 
66.38 100 30 11 0.4 2 
92.96 100 30 8 2.0 3 
90.78 100 30 11 2.0 4 
71.16 80 10 9.5 1.2 5 
80.86 120 10 9.5 1.2 6  
87.25 80 30 8 1.2 7 
87.00 120 30 8 1.2 8 
90.10 120 30 11 1.2 9 
57.59 100 10 9.5 0.4 10 
83.70 100 10 9.5 2.0 11 
97.32 100 50 9.5 2.0 12 
72.61 100 10 8 1.2 13 
87.38 100 50 8 1.2 14 
90.20 100 50 11 1.2 15 
59.86 80 30 9.5 0.4 16 
69.80 120 30 9.5 0.4 17 
96.52 120 30 9.5 2.0 18 
79.46 100 30 9.5 1.2 19 
79.54 100 30 9.5 1.2 20 
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100-200 ppm and the adsorption capacity ranged from 
96.10 to 96.66 mg g–1 for tap water, from 96.31 to 96.40 
mg g–1 for Karun water, from 96.25 to 96.33 mg g–1 for 
Karkheh dam water, and from 95.32 to 96.55 mg g–1 for 
Ramak Company sewage. Based on the results, water 
purified with this method can be reused in industries. In 
addition, the adsorption capacity of methyl violet was 
found to be more dependent on pH and the adsorbent 
dosage. The adsorption capacity increased sharply by 
enhancing the adsorbent dosage but it remained constant 
at the concentration of 0.1 mg g-1. As demonstrated, 
time of stirring and the number of shaker rounds are 
important variables in determining methyl violet 
adsorption capacity. Therefore, these variables were 
chosen to be the input parameters of the computational 
the artificial neural network models.  

 
Conclusions 

In this study, bio-absorbent palm fiber was applied 
for removal of cationic violet methyl dye from water 
solution and simulating it using the artificial neural 
network (ANN). Based on different experimental 
conditions, a suitable artificial neural network (ANN) 
algorithm was achieved accordingly. The performance 
of two artificial neural network functions (i.e., RBF and 
MLP) were evaluated by statistical parameters and 
found that the radial basis function (RBF) has a higher 
ability in the removal of violet methyl dye compared to 
multilayer perceptron (MLP) non-recursive function. 
The advantages of using a neural network in the above 
method are reducing the examination time, reducing the 
costs, and decreasing the use of required laboratory 
samples. 

 
 

References 
1. Šmelcerović M., Đorđević D., Novaković M., 

Mizdraković M. Decolorization of a textile vat dye by 
adsorption on waste ash. J. Serb. Chem. Soc. 75: 855–
872 (2010). 

2. Kim S., Lee Y.G., Jerng D.W. Laminar film 
condensation of saturated vapor on an isothermal 
vertical cylinder. Int. J. Heat Mass Transfer. 83: 545-
551 (2015). 

3. Sharma P., K.Saikia B., R.Das M. Removal of methyl 
green dye molecule from aqueous system using reduced 
graphene oxide as an efficient adsorbent: kinetics, 
isotherm and thermodynamic parameters. Colloids Surf 
A Physicochem Eng Asp. 457: 125–133 (2014). 

4. Tan I.A.W., Hameed B.H., Ahmad A.L. Equilibrium 
and kinetic studies on basic dye adsorption by oil palm 
fibre activated carbon. Chem Eng J. 127: 111–119 
(2007). 

5. Behnajady M.A., Modirshahla N., Ghanbary F. A 

kinetic model for the decolorization of C.I. Acid yellow 
23 by Fenton process. J Hazard Mater. 148, 98–102 
(2007). 

6. Huang Y.H., Tsai S.T., Huang Y.F., Chen C.Y. 
Degradation of commercial azo dyes reactive Black in 
photo/ ferrioxalate system. J Hazard Mater. 140: 382–
388 (2007). 

7. Neelavannan M.G., Revathi M., Ahmed Basha C. 
Photocatalytic and electro-chemical combined 
treatment of textile wastewater. J Hazard Mater. 149: 
371–378 (2007). 

8. Hameed B.H., Hakimi H. Utilization of durian durio 
zibethinus murray peel as low cost adsorbent for the 
removal of methylene blue from aqueous solution. 
Biochem Eng J. 39: 338–343 (2008). 

9. Ponnusami V., Vikiram S., Srivastava S.N. 
Guava Psidium guajava leaf powder: novel adsorbent 
for removal of methylene blue from aqueous solutions. 
J Hazard Maters. 152: 276–286 (2008). 

10. Tanyildizi M.S. Modeling of adsorption isotherms and 
kinetics of reactive dye from aqueous solution by 
peanut hull. Chem Eng J. 168: 1234–1240 (2011). 

11. Bharathi K., Suyamboo A., Ramesh S.T. Equilibrium, 
thermodynamic and kinetic studies on adsorption of a 
basic dye by Citrullus lanatus rind. Iran J Energy 
Environ. 3, 23–34 (2012).  

12. Çetintaş S., Bingöl D. Optimization of Pb(II) 
biosorption with date palm (Phoenix Dactylifera L.) 
seeds using response surface methodology. J. Water 
Chem. Technol. 40: 370-378 (2018). 

13. Khajeh M., Sarafraz-Yazdi A., Fakhrai Moghadam A. 
Modeling of solid-phase tea waste extraction for the 
removal of manganese and cobalt from water samples 
by using PSO-artificial neural network and response 
surface methodology. Arabian J.Chem. 10: S1663-
S1673 (2017).  

14. Spanila M., Pazourek J., Farková M., Havel J. 
Optimization of solid-phase extraction using artificial 
neural network in combination with experimental 
design for determination of resveratrol by capillary 
zone electrophoresis in wines. J. Chromatogr. A. 1084: 
180–185 (2005).  

15. Moody J., Darken C.J. Fast learning in networks of 
locally-tuned processing units. Neural Computation. 1: 
281-294 (1989). 

16. Broomhead D.S, Lowe D. Multivariable functional 
interpolation and adaptive networks. Complex Syst. 2: 
321-355 (1988).  

17. Eftekhari Zadeh E., Feghhi S.A.H., Roshani G.H., 
Rezaei A. Application of artificial neural network in 
precise prediction of cement elements percentages 
based on the neutron activation analysis. Eur. Phys. J. 
Plus. 131: 167 (2016). 

18. Levenberg K. A method for the solution of certain 
non-linear problems in least squares. Quart. Appl. 
Math. 2: 164–168 (1944). 

19. Marquardt D.W. An algorithm for least-squares 
estimation of nonlinear parameters. J. Soc. Ind. Appl. 
Math. 11: 431–441 (1963). 

20. Fan J.Y., Yuan Y.X. On the quadratic convergence of 
the Levenberg-Marquardt method without 



Using Artificial Neural Network Modeling in Predicting the Amount of … 

231 

nonsingularity assumption. Computing. 74: 23–39 
(2005). 

21. Fan J., Pan J. A note on the Levenberg-Marquardt 
parameter. Appl. Math. Comput. 207: 351–359 (2009). 

22. Gavin H.P., Yau S.C. High-order limit state functions 
in the response surface method for structural reliability 
analysis. Structural Safety. 30: 162-179 (2008).  

23. Amini K., Rostami F. Three-steps modified 
Levenberg–Marquardt method with a new line search 
for systems of nonlinear equations. J. Comput. Appl. 
Math. 300: 30–42 (2016). 

24. Azimi A., Farhanieh B., Hannani S. Implementation of 
geometrical domain decomposition method for solution 
of axisymmetric transient inverse heat conduction 
problems. Heat Transfer Eng. 29: 255–271 (2008). 

25. Zhang N., Duan Z., Tian C. A complete axiom system 
for propositional projection temporal logic with 
cylinder computation model, Theor. Comput. Sci., 609: 
639–657 (2016). 

26. Mu H., Li J., Wang X., Liu S. Optimization based 
inversion method for the inverse heat conduction 
problems. In. IOP Conference Series: Earth and 
Environmental Science, Ordos, China. 64: no. 012094 
(2017). 

27. Czel B., Grof G. Inverse identification of temperature-
dependent thermal conductivity via genetic algorithm 
with cost function-based rearrangement of genes. Int. J. 
Heat Mass Transfer. 55: 4254–4263 (2012). 

28. Liu F.B. Particle swarm optimization-based algorithms 
for solving inverse heat conduction problems of 
estimating surface heat flux. Int. J. Heat Mass Transfer. 
55: 2062–2068 (2012). 

29. Paulsen B.T., Bredmose H., B.Bingham H. An 
efficient domain decomposition strategy for wave loads 
on surface piercing circular cylinders. Coast Eng. 86: 
57-76 (2014). 

30. Eftekhari M., Yadollahi A., Ahmadi H., Shojaeiyan 
A., Ayyari M. Development of an artificial neural 

network as a tool for predicting the targeted phenolic 
profile of grapevine (Vitis vinifera) foliar wastes. Front 
Plant Sci. 9: 1–10 (2018). 

31. Duda P. A general method for solving transient 
multidimensional inverse heat transfer problems. Int. J. 
Heat Mass Transfer. 93: 665-673 (2016). 

32. Liu C.S., Chang C.W. Nonlinear problems with 
unknown initial temperature and without final 
temperature, solved by the GL (N, R) shooting method. 
Int. J. Heat Mass Transfer. 83: 665–678 (2015). 

33. Agha S.R., Alnahhal M.J. Neural network and multiple 
linear regression to predict school children dimensions 
for ergonomic school furniture design. Appl Ergon. 43: 
979–984 (2012).  

34. Mustafa M.R., Rezaur R.B., Rahardjo H., Isa M.H. 
Prediction of pore-water pressure using radial basis 
function neural network. Eng. Geol. 135-136: 40-47 
(2012). 

35. Santos R.B., Bonzi S.J., Rupp M., Fileti A.M.F. 
Comparison between multilayer feedforward neural 
networks and radial basis function network to detect 
and locate leaks in a pipeline transporting gas. Chem. 
Eng. Trans. 32: 1375-1380 (2013). 

36. Fan H.Y., Lu W.Z., Xi G., Wang S.J. An improved 
neural-network-based calibration method for 
aerodynamic pressure probes. J. Fluids Eng. 125: 113-
120 (2003). 

37. Wu D., Warwick K., Ma Z., Burgess J.G., Pan S., Aziz 
T.Z. Prediction of Parkinson’s disease tremor onset 
using radial basis function neural networks. Expert Syst 
Appl. 37: 2923–2928 (2010).  

38. Fan M., Li T., Hu J., Cao R., Wei X., Shi X., Ruan W. 
Artificial neural network modeling and genetic 
algorithm optimization for cadmium removal from 
aqueous solutions by reduced graphene oxide-supported 
nanoscale Zero-Valent Iron (nZVI/rGO) composites. 
Materials (Basel). 10: 544-566 (2017). 

 

 


