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Abstract 

orecasting the volatility of a financial asset has wide implications in 

finance. Conditional variance extracted from the GARCH 

framework could be a suitable proxy of financial asset volatility. Option 

pricing, portfolio optimization, and risk management are examples of 

implications of conditional variance forecasting. One of the most recent 

methods of volatility forecasting is Realized GARCH (RGARCH) that 

considers a simultaneous model for both realized volatility and 

conditional variance at the same time. In this article, we estimate 

conditional variance with GARCH, EGARCH, GIR-GARCH, and 

RGARCH with two realized volatility estimators using gold intraday 

data. We compared models, for in-sample fitting; by the log-likelihood 

value and used MSE and QLIKE lose functions to evaluate predicting 

accuracy. The results show that the RGARCH method for GOLD 

outperforms the other methods in both ways. So, using the RGARCH 

model in practical situations, like pricing and risk management would 

tend to better results. 
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1. Introduction 

Examples of volatility prediction applications include option pricing, 

optimal portfolio selection, and risk management. Variance, standard 

deviation, conditional variance, or all of these indicators, is, in fact, a 

proxy for volatility and a tool for its estimation. Today, in many types 

of research, the conditional variance estimated from GARCH family 

models has used a reasonable estimate of volatility. 

In conventional GARCH models, only daily stock returns are used 

to predict daily conditional variance. Since the information obtained 

from daily returns is lower than the different criteria derived from 
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intraday data, the information set of conventional GARCH models is 

limited. In addition, since GARCH models are based on moving 

average with decreasing weight, these models act a bit slow to react to 

volatility changes (Andersen et al., 2003). Thus, there was a tendency 

to introduce the intraday criteria in the framework of GARCH models. 

Engel (2002) proposed to include realized variance as an exogenous 

variable in GARCH models. The disadvantage of this innovation is 

that only one-day ahead conditional variance prediction is possible. 

Recently, Hansen et al. (2012) presented a model called “realized 

GARCH”, which provides a framework for modeling the realized 

volatility and conditional variance at the same time in one model. 

In this paper, using the Gold five-minutes intra-day data from April 

2012 to April 2018, we compare the realized GARCH model with 

some conventional GARCH models such as GARCH, EGARCH, and 

GJR-GARCH. The comparison will be in two ways. First, we consider 

how well data has been fitted in the models. Then, we examine the 

accuracy of the prediction of the conditional variance of the sample by 

using the rolling window approach and using a loss function to select 

the most accurate model.  

 

2. Literature Review 

The GARCH models are widely used in finance.  Concerning the case 

of option valuation, the latest studies have been done by Badzko et al. 

(2015) and Huang et al. (2017); the latest study showed that using the 

GARCH model for the S&P index is more appropriate than another 

volatility method in the case of option pricing.  Regarding portfolio 

optimization, GARCH is used by Ðrnovkiewicz et al. (2016) and 

Sahamköping et al. (2018). 

In order to explain how the GARCH models emerge, we should put 

aside the heteroscedasticity assumption of the linear regression. Engel 

(1982) introduces a particular type of heteroscedasticity in which the 

variance of the innovation term is a function of the lags of squared 

innovations. The introduction of this kind of heterogeneity variance 

provided a very important tool for economists and especially 

researchers in the field of financial econometrics to measure and 

estimate the conditional variance of a series. Consider an AR(1) 

process for asset returns as in equation (1). 
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0 1 1  t t tr r    (1) 

 

Where rt represents the asset returns and  εt is an iid with zero means. 

In this case, the conditional variance of  εt may vary over time and be 

a function of the previous innovations. This model was originally 

presented by Engel (1982). The reason for introducing this model was 

that although it is observed, εt are independent, but their square is 

related to each other. Engel suggested the following equation for the 

conditional variance εt, which is known as ARCH (p). 

 

(2)                                                       2 2 2

t 0 1 t 1 p t pσ a a ε a ε     

 

The number of the lag of an ARCH model, p, is large, leading to an 

increase in the number of estimated parameters. As a result, Bollerslev 

(1986) suggested the following model overcome this problem. 

 

(3) 

p q
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Where ai and bj are assumed to be positive to ensure that the variance 

is positive. This model is known as the Generalized ARCH model, 

GARCH (p, q). If q is zero, then this model will be reduced to 

ARCH(p).  

Since in the GARCH model, εt appear in squared form in the 

equation, the sign of these shocks does not affect the conditional 

variance. Meanwhile, it has been observed that negative shocks or bad 

news increase the variance more than the positive shocks or good 

news. Also, the parameters of a GARCH model should be restricted to 

ensure that the variance stays positive. For this purpose, Nelson 

(1991) introduced the EGARH model as follows. 

 

(4) 

p q
t i i t i

0 i j t j

i 1 j 1t i

ε γ ε
a a b h

σ
th

 



 


     

2

th lnσt   



302/ Modeling Gold Volatility: Realized GARCH Approach … 

In this model, when εt is positive, the total shock effect is(1 +

γt)εt, and if there is bad news, the total shock effect will be as large 

as(1 − γt)εt. If bad news is supposed to have a higher variance, we 

expect γ to be negative. Apart from the fact that the effects of good 

and bad news are considered differently invariance, this model has the 

advantage of the GARCH model, which variance will always be 

positive for any coefficients. 

Another way to consider the effect of good and bad news on the 

variance is by using a dummy variable as follows: 

 

(5) 

p p q
2 2 2 2

t 0 i t i i t i t i j t j

i 1 i 1 j 1

σ a a ε γ S ε b σ   

  

       

 

In which St−i is a dummy variable that is zero if εt−1 is positive, 

and 1 if εt−1 is negative. In this case, the effect of a positive shock is 

aiεt−i
2 and the effect of a negative shock is(ai+γi)εt−i

2  . By assumption 

of the effect of bad news on the variance, we expect γi to be positive. 

This model is known as GJR introduced by Glosten, Jagannathan, and 

Runkle (1993). 

After these initial models, a number of models and explanations 

were introduced for conditional variance modeling. Some researchers 

tried to use another explanatory variable apart from the squared 

innovation in the model, which became known as GARCH-X models. 

In 2003, Engle first used the realized variance criteria to explain the 

conditional variance. This effort, although was an improvement of the 

GARCH models, but actually, it was the same GARCH-X 

specification. In fact, the realized variance was added as an exogenous 

variable to the GARCH model.  

An important problem of using realized volatility in a GARCH-X 

framework is that the models only can predict variance for the next 

period. Engel and Gallo (2006) introduced the first model in which a 

structure was presented for realized volatility so that an additional 

latent volatility process was considered for each realized measure in 

the model. This model is known as the Multiplicative Error Model. 

Another model concerning realized volatility as an endogenous 

variable is the HEAVY model presented in Shepard and Sheffard 
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(2010), which as a mathematical view is a nested MEM model. Unlike 

traditional GARCH models, these models operate on the basis of 

multivariate latent volatility processes. For example, three latent 

volatility processes are used in a MEM model, but the HEAVY model 

includes at least two latent volatility processes. 

In one of the most recent works done in this regard, Hansen et al. 

(2012), introduced the third equation into a GARCH model to 

simulate the realized volatility in an Endogenous way.  They consider 

conditional variance as a function of realized volatility as follows: 

 

(6) t t tr h ε  

(7) t t 1 t 1h ω βh γx     

(8)  t t t tx ξ φh τ ε u     

 

In which 𝑥𝑡 is the realized volatility, ℎ𝑡 denotes the conditional 

variance, and τ (.) is the leverage function. Equation (6) and (7) 

represent the mean and conditional variance, respectively as in 

conventional GARCH models replacing equation (8) in equation (7). 

Adding regression (8) distinguishes realized GARCH models from 

conventional GARCH models. This equation is known as the 

measurement equation because it relates the realized measure to the 

hidden volatility (Hansen et al., 2012). Leverage function in the 

simplest form could be zero but Hansen (2012) suggest𝜏(𝜀𝑡) =

𝜆1(𝜀𝑡) + 𝜆2(𝜀𝑡
2 − 1), so this function can capture asymmetric 

behavior of shocks too. This model is known as the RGARCH model.  

Tian et al (2015) used this method and traditional GARCH methods to 

estimate the daily volatility of the short-term interest rate in the euro–

yen market. The results have indicated that the RGARCH model has 

better performance than traditional GARCH models regarding the 

prediction of the conditional variance. Sharma & Vipul (2016) 

investigate the variance predict the performance of the RGARCH 

model for 16 stock indices in a 14-year period. They indicated that the 

results are sensitive to the performance decision criteria. Wei et al. 

(2017) construct a new realized GARCH model by introducing the 

perturbation of leveraged parameter in the volatility equations of the 



304/ Modeling Gold Volatility: Realized GARCH Approach … 

realized GARCH model. The empirical analysis of the high-frequency 

data of the Shanghai Stock Exchange 50 index shows that using their 

new model can improve the prediction accuracy of a measure of risk 

to a certain extent.  Huang et al. (2017) conduct an extensive empirical 

analysis on S&P500 index options using realized GARCH and the 

results show that their computationally fast formula outperforms 

competing methods in terms of pricing errors, both in-sample and out-

of‐sample.  Jiang et al. (2018) apply realized GARCH models by 

introducing several risk measures of intraday returns into the 

measurement equation, to model the daily volatility of E-mini S&P 

500 index futures returns. The empirical results show that realized 

GARCH models using the generalized realized risk measures provide 

better volatility estimation for the in-sample and substantial 

improvement in volatility forecasting for the out-of-sample. 

Although we expect that the RGARCH model outperforms other 

GARCH models, but there is some evidence that it depends on the 

type of asset. In this paper, we intend to examine the performance of 

the RGARCH model in predicting the conditional variance of GOLD 

in comparison with other GARCH family models. 

 

3. Methodology 

In order to estimate a realized GARCH model, intraday data should be 

used so the realized volatility which is needed in this procedure could 

be calculated. So, we have used five-minutes gold trades in forex 

(XAU/USD)1. The data has been gathered from April 2012 to April 

2018.  

In GARCH models, there is a mean equation, which in this paper is 

considered as an AR(1) prose. 

 

(9) 0 1 1t t tr r      

 

In which tr  is the daily return on financial assets. This 

specification of the model makes it possible to assume that the return 

is related to a constant amount, along with a coefficient of return on 

                                                           
1. The data is available in many forex source such as link below: 
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the trading day before and the shock of that day. We also consider 

equations (10) to (12) for the estimation of the traditional GARCH 

models as the following; 

 

(10) 
1

2 2 2

t 0 t 1 t1 1σ a a ε b σ     
GARCH(1,1) 

(11) 
t 1 t 1

0 t 1
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2
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EGARCH(1,1) 

(12) 
2 2 2 2

t 0 t1 11 t 1 t 1 t 1σ a a ε γS ε b σ        GJR-GARCH(1,1) 

 

And RGARCH as follows; 

 
t t 1 t 1 t

2h ω βh x h, ln t     

(13)  t t t tx ξ φh τ ε u     

   2

t 1 t 2τ ε ε (ε 1)t     

 

In which 𝑥𝑡 is the realized volatility, ℎ𝑡 denotes the conditional 

variance, and τ (.) is the leverage function that relates the volatility to 

variance equation which distinguishes realized GARCH models from 

conventional GARCH models. This equation is also known as the 

measurement equation because it relates the realized measure to the 

hidden volatility (Hansen et al.. 2012). We used two proxies of 

realized volatility which are RV and BV. So we mention RV-GARCH 

and BV-GARCH as the realized GARCH models with using RV and 

BV proxies of the realized volatility respectively. These two proxies 

can be calculated as follows: 

 

(14) 
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Where 𝑟𝑖,𝑡 represents the ith intraday return in day t, M denotes the 

number of trades in a day and 𝜇 is equal to√2/𝜋 ≅ 0.79788. One 
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important difference between RV and BV is that the first is not robust 

to jumps but the latter is.  

A good model not only should fit data well but also it should have 

more accurate performance in predicting out of sample volatility. So 

in this paper both in-sample and out of sample modeling performance 

has been investigated. For in-sample fitting, as the method of 

estimation is ML, the Log L value is a reasonable measure to compare 

models.  

To compare the predictive performance of conventional GARCH 

models to the realized GARCH model, the rolling window technique 

of size 500 has been used. Therefore we used the first 500 data to 

predict the conditional variance of day 501 and compared it with the 

actual volatility of the same day. Then we omit the first day and add 

day 501 to predict volatility and compare it with actual one of day 502 

and so on. 

we used the method of Hansen et al. (2005) to estimate the actual 

volatility as follow: 

 

1 2

2 1
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  (16) 

 

Where n is the number of the trading day, 𝑥𝑡 is the daily return and �̂� 

denotes the average of daily returns in n days. After defining the 

actual volatility, a loose function should be used in order to rank the 

models by the accuracy of predicted volatility. Patto (2011) showed 

that among 9 loose functions to rank the volatility, only MSE and 

Qlike are robust in the possible existence of proxy error and these two 

only should be used. These equations are as follow: 

 

(17)   2 2 2

1,k,t 1,k,t t tMSE E l       ,     l (σ σ̂ )  
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The lower lose function, the better model and among all models, 



Iran. Econ. Rev. Vol. 24, No.1, 2020 /307 

the model with the lowest value in the loose function is the most 

accurate model. 

 

4. Empirical Results and Discussion 

In order to estimate the model, we have used five-minutes gold trades 

in forex (XAU/USD) from April 2012 to April 2018. Table 1 shows 

the daily GOLD return in which indicates that 90% of the returns are 

between -1.3% and 1.3%. Kurtosis and Skewness calculated from the 

winsorized gold return at 1st and 99th percentiles1 suggest that the 

center part of the returns distribution doesn’t differ much from the 

normal distribution. 

 

Table 1: Descriptive Statistics of Daily GOLD Return in Full Sample 

n smallest 
5th 

percentile 
mean median 

95th 

percentile 
largest std. dev. Skewness* Kurtosis* 

1941 -9.50% 1.30% 0 0 1.30% 4.90% 0.86% -0.04 3.97 

Note: Kurtosis and Skewness are calculated from the winsorized gold return at 1st 

and 99th percentiles. 

 

The predictive performance of GARCH models should be 

investigated in both in the sample and out of sample data. Table 2 

represents the log-likelihood of  GARCH models. As the logL for RV-

GARCH is bigger than other models, it means the RV-GARCH model 

fits the gold data better. 

  

Table 2: LogL Value of the Models Estimated in Full Sample 

MODEL Log L Rank 

GARCH -1685.792 4 

EGARCH -1685.858 5 

GJR-GARCH -1685.789 3 

RV-GARCH -1676.404 1 

BV-GARCH -1677.098 2 

 

For out of sample performance evaluation of  GARCH models, 

one-step-ahead conditional variances of the models were predicted 

and the value of loose functions for each model was calculated. The 

                                                           
1. Winsorised the data means data less than 1% taken as 1th percentile and the data more than 
99% is taken as 99th percentile this will remove the outlier data. 
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result is shown in table 3. As it could be seen, the top two models are 

BV-GARCH and RV-GARCH Respectively. İt implies that for 

predicting Gold volatility, the most accurate model is BV-GARCH. İn 

figure 1 time-series of realized daily variance and conditional variance 

predicted one-step ahead for the best model, BV-GARCH, is depicted.  

 

Table 3: The Value of Lose Function 

MODEL MSE (*1000000) Rank Qlike Rank 

GARCH 6.07505 3 -4084.77 3 

EGARCH 6.10756 5 -4073.43 4 

GJR-GARCH 6.07724 4 -4051.65 5 

RV-GARCH 6.06677 2 -4095.48 2 

BV-GARCH 5.88260 1 -4102.83 1 

 

 
 

Therefore, we observed that the realized GARCH models (BV-

GARCH and RV-GARCH, respectively) had the highest performance 

in terms of both in-sample and out-of-sample prediction of conditional 

variance (volatility). Since over-estimation and under-estimation of 

risk, would costs to the investor, the use of the RGARCH models can 

minimize this cost. 
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5. Conclusion 

In this paper, using the Gold five-minutes intra-day data from April 

2012 to April 2018, we estimate the conditional variance of GARCH, 

EGARCH, and GJR-GARCH as well as the RGARCH model using 

two RV and BV proxies for intra-day realized volatility. A good 

model not only should fit data well but also it should have accurate 

performance in predicting out of sample volatility. So in this paper 

both in-sample and out of sample modeling performance has been 

investigated. We compared models, for in-sample fitting, by the log-

likelihood value and used MSE and QLIKE lose functions to evaluate 

predicting accuracy. The results show that the RGARCH method for 

GOLD outperforms the other methods in both ways.  

Therefore, the use of RGARCH models instead of conventional 

GARCH models provides a more accurate estimate for the conditional 

variance as a proxy of volatility which is a key factor in many risk 

management and portfolio management. 
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