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1. ‘Introduction 
The behavior and mechanical properties of nanostructures can 

be investigated using a variety of methods. One of these methods 

is the principles of quantum mechanics. Quantum mechanics 

calculations performed by solving the Schrödinger equation are 

the most accurate method for studying the behavior of 

nanostructures. This computational approach is expensive and 

limited to studying small systems. Experimental techniques to 

determine the mechanical properties of nanostructures are widely 

used by atomic force microscopy to apply various mechanical 

loads on nanostructures and measure response. Such empirical 

measurements are useful for validating mathematical models but 
depend heavily on the accuracy of these devices as well as on the 

control of nanoscale objects, which is a major challenge [1]. 

Another method is molecular dynamics. Molecular dynamics 

is based on computer simulation in which atoms and molecules 

are allowed to interact for a period of time under the known laws 

of physics and to predict the motion of atoms. Since molecular 

systems generally contain a large number of particles, it would be 

time-consuming and costly to analyze them for complex and large 

systems. Experimental observations and molecular dynamics 

simulations show that the behavior of materials changes at the 

micro- or nano-scale, and the size effect becomes important, as 

interatomic and molecular forces also influence the behavior of 
the structural material. 

In the theory of classical continuum mechanics, it is assumed 
that the stress at any point is a function of strain at that point. 

Therefore, the theory of classical continuum mechanics theory 

does not hold true for nanomaterials. But since classical 

continuum mechanics has other advantages, such as lower 

computational cost and so on, than other methods, so researchers 

have sought to modify it to include size effects. Among these 

theories are Eringen's theory, strain gradient, coupling stress, 

surface elasticity, and so on. These theories have been applied to 

various articles for different structures such as beams plates 

cylinder, etc [2-19]. 

2. Discussion 
Karličić et al. [20] performed the free vibration analysis of the 

viscoelastic orthotropic multi-nanoplate system (VOMNPS) 

embedded in the viscoelastic medium and subjected to the in-

plane magnetic field by using Eringen's nonlocal theory. The 

governing equations are derived based on the Kirchhoff's plate 

theory and solved by applying the Navier's and trigonometric 

method. In addition, they performed an asymptotic analysis in 

order to determine critical complex natural frequencies of the 

system. 

Fernández-Sáez et al. [21] investigated the bending vibration 

of a nanoplate with an attached mass using the strain gradient 

elasticity theory for homogeneous Lamé material, under 
Kirchhoff assumptions. They analyzed the effect of the attached 

mass (as a sensor) by an exact eigenvalues method for a general 
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case, and by an approximate closed-form expression for the small 

intensity of the mass. 
Ghorbanpour Arani et al. [22] studied the vibration analysis 

of Magnetostrictive rectangular nanoplate subjected to the 

uniform and uni-directional magnetic field. They derived motion 
equations using Hamilton’s principle based on Reddy’s third-

order shear deformation theory in conjunction with Eringen's 

nonlocal theory. 

Using the Eringen’s nonlocal theory, Atanasov et al. [23] 

investigated Forced transverse vibrations of an elastically 

connected nonlocal orthotropic double-nanoplate system 

subjected to an in-plane magnetic field. The governing equations 

are derived based on Kirchhoff–Love plate theory and are solved 

analytically. 

Bakhshi Khaniki and Hosseini-Hashemi [24] analyzed 

dynamic behavior of double-layered nanoplate systems (DLNPS) 

with respect to a moving nanoparticle. They derived Governing 
equations of motion by using D’Alembert’s principle, Kirchhoff-

Love plate, and Eringen’s nonlocal theory. They employed 

Galerkin’s and Laplace transform methods to solve governing 

equations. 

Despotovic [25] studied the stability and vibration of a square 

single-layer graphene sheet under body force by incorporating 

Eringen’s nonlocal constitutive equation into the classical plate 

theory. They solved the equilibrium equations by using 

Galerkin’s method and investigated the influence of body load 
and nonlocality on stability and free vibration of the nanoplate. 

Ghadiri et al.  [26] investigated Thermo-mechanical vibration 

of an orthotropic single-layer cantilever and propped cantilever 

nanoplate, by using Eringen’s nonlocal elasticity theory. Based 

on classical plate theory, they derived the governing equation 

using Hamilton's principle and used differential quadrature 

method to solve the governing equation. 

Ghorbanpour Arani et al. [27] carried out nonlocal vibration 

and dynamic qualitative analysis of embedded smart orthotropic 

poly-vinyli-dene fluoride (PVDF) nanoplate based nano-

electromechanical sensors. The nanoplate is presumed under a 
moving nanoparticle on an arbitrary elliptical path. They modeled 

friction generated by the motion as the Coulomb model. 

Ghorbanpour et al. [28] used the refined zigzag theory to 

study the electro-magneto buckling behavior of sandwich 

nanoplate resting on Pasternak foundation and subjected to 

external electric and magnetic potentials. The sandwich 

nanoplate composed of a metal core integrated by two 

magnetoelectroelastic (MEE) layers. 
Hosseini and Jamalpoor [29] presented an analytical solution 

to study the influence of surface effects on the thermo-mechanical 

vibration of a double-FGM viscoelastic nanoplates-system which 

embedded between the Pasternak foundation by incorporating 
Eringen nonlocal theory. The governing equations of motion are 

derived from Hamilton’s principle according to the plates 

Kirchhoff's plate theory. They proposed the nanoplate is coupled 

by an internal Kelvin–Voigt viscoelastic medium and resting to 

Pasternak elastic foundation. 
In a similar article, according to Eringen’s nonlocal theory, 

Hosseini et al. [30] investigated the influence of Small-scale 

effects on free vibrational behavior of a double FGM viscoelastic 

nanoplate system resting on Pasternak foundation and subjected 

to thermal load. They assumed nanoplate is made of functionally 

graded materials (FGMs). The nanoplates are bonded with each 

other using Kelvin-Voigt viscoelastic layer and surrounded by a 
Pasternak elastic foundation.  

According to Kirchhoff plate theory and nonlocal elasticity of 

Eringen’s theory, Hosseini Hashemi et al. [31] presented an 

analytical method for forced vibration of visco-nanoplate based 

on and resting on Visco-Pasternak (VP) medium. They used 

Kelvin Voigt model for visco-nanoplate to derive the governing 

equation. 

Li et al. [32] performed size-dependent analysis of vibrations 

and stabilities in parametric resonances of axially moving 

viscoelastic piezoelectric nanoplate subjected to thermo-electro-

mechanical loads. They used Kirchhoff plate theory and 
Eringen’s nonlocal theory to derive the governing equations and 

employed Galerkin method (GM) and complex mode method 

(CMM) to determined Natural frequencies of nanoplate. 

By exploiting the Navier’s method, Liu et al. [33] presented 

the analytical solutions for vibration and biaxial buckling of 

double-viscoelastic-FGM-nanoplate systems that are connected 

via visco-Pasternak medium Based on the Eringen’s nonlocal 

elastic theory and the Kelvin model. 

Malikan [34] performed a study of nonlinear shear buckling 

of piezoelectric nanoplate based on modified couple stress theory. 

He considered the geometrical nonlinearity mixing the 

displacement field of the simplified first-order shear deformation 
theory (S-FSDT) with the nonlinear von-Karman relations. 

Malikan [35] carried out buckling analysis of the rectangular 

nanoplate subjected to biaxial non-uniform compression load in 

the framework of the modified couple stress continuum theory. 

By using Hamilton’s principle, they derived governing equations 

based on simplified first-order shear deformation theory 

(S-FSDT) and accounting von-Karman nonlinear strains. 

Mehar et al. [36] presented free vibration analysis of a 

nanoplate including the Eringen nonlocal elasticity theory based 

on the Higher-order shear deformation theory (HSDT). They 

prepared the finite element method to solve the motion equation 
and discussed the influence scale effect and geometrical and 

material parameters on the frequencies. 

Moradi et al. [37] investigated the vibration behavior of 

functional graded (FG) circular and annular nanoplate resting on 

the Visco-Pasternak foundation. They modeled material 

properties via Mori–Tanaka homogenization technique in the 

thickness direction and assumed the nanoplate subjected to 

mechanical, thermal and magnetic load. They used the modified 

strain gradient theory (MSGT) and the modified couple stress 

theory (MCST) to derive the governing equation. They also 

employed the differential quadrature method (DQM) and the 

Galerkin method (GM) to solve the governing equation. 
Ponnusamy and Amuthalakshmi [38] performed dispersion 

analysis of double-layered nanoplate under Winkler foundation 

subjected to thermal and magnetic load including Eringen’s 

nonlocal theory. They demonstrated that the thermal and 

magnetic load and Winkler foundation increases the natural 

frequencies of nanoplates. 

Shahrbabaki [39] presented the three-dimensional nonlocal 

elasticity for vibrating simply-supported rectangular nanoplate 

and wave propagation in an infinite nonlocal solid by using the 
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potential functions for Helmholtz displacement vector 

representation. He also presented a new approach to analyzing 

three-dimensional nanoplates with other boundary conditions. 

Their results showed when nonlocal parameter is high, the effect 

of boundary conditions on non-dimensional natural frequencies 

Disappears. Also in the nonlocal theory, the difference between 

two- and three-dimensional results is more significant. 

By using Eringen’s nonlocal theory, Wang et al. [40] reported 
an investigation on transverse nonlinear steady-state vibrations of 

double-layered nanoplate (DLNP) in the presence of 3:1 internal 

resonance between the first two modes by using multiple scales 

method. In addition, they employed the Lyapunov stability theory 

to determine the stability analysis of nanoplates. They assumed 

the van der Walls force bonding between the layers and the DLNP 

resting on Winkler elastic foundation. 

Using Eringen’s nonlocal theory, Zenkour and Sobhy [41] 

performed vibration analysis of piezoelectric Kelvin–Voigt 

viscoelastic orthotropic rectangular nanoplates under 

hygrothermal load and resting on visco-Pasternak’s foundation. 
They derived the equations of motion from Hamilton’s principle 

based on a two-variable shear deformation theory.  

by employing a Hamiltonian system instead of Lagrangian 

system, Zhou et al. [42] determined the exact value of the in-

phase and out-of-phase natural frequencies of rectangular double-

layered orthotropic nanoplate embedded in an elastic medium. 

They used the Kirchhoff plate theory Based on Eringen’s 

nonlocal theory and symplectic methodology. Using the 

Hamiltonian system, the governing equation is reduced to a set of 
one-order ordinary differential equations.  

Barati and Shahverdi [43] analyzed the vibrational behavior 

of double-layered nanocrystalline silicon nanoplates resting on 

Winkler- Pasternak foundation. They employed modified couple 

stress theory to capture size-dependent effects. They obtained the 

governing equations via Hamilton’s principle in the framework 

of two-variable refined plate model. 

Barati and Shahverdi [44] presented new dynamic modeling 

and studied vibration analysis of double-layered FG nanoplates 

under hygrothermal environments. One side of the nanoplates 

elastically connected together by interlayer springs, and the other 

side of each nanoplate is mounted on a winkler-pasternak 
foundation. By incorporating the nonlocal-strain gradient 

elasticity theory, they derived the governing equations based on 

Hamilton’s principle and solved via Galerkin’s method. 

According to the interlayer connection of the nanoplates and 

the elastic medium in the previous article, Barati [45] presented 

vibration analysis of double-layered nanoplates made of FGM in 

magneto-hygro-thermal environments based on higher-order 

refined plate theory. He employed the nonlocal-strain gradient 

elasticity theory by incorporating stiffness-softening and 

stiffness-hardening effects. In their article, He derived governing 

equations based on Hamilton’s principle and solved via 
Galerkin’s method. 

Barati and Shahverdi [46] investigated the influence of 

nanoporous mass sensors based on a vibrating heterogeneous 

nanoplate. The Nano-pores are modeled with modified rule of 

mixture. By incorporating nonlocal-strain gradient theory, they 

derived the governing equations according to Hamilton’s 

principle and solved via Galerkin’s method. 

By employing the nonlocal theory of Eringen, Ebrahimi et al. 

[47] performed the wave propagation analysis of a magneto-

electro-elastic functionally graded (MEE-FG) nanoplate 

considering a refined higher-order plate theory. They studied the 

effect of wave number, nonlocal parameter, magnetic potential, 

etc. on the wave dispersion characteristics  

Ebrahimi and Dabbagh [48] studied the wave propagation 

problem of double-layered nanoplates under a longitudinal 

magnetic field. Their proposed formulation was according to the 

nonlocal-strain gradient theory to capture scale effects and in the 
framework of Kirchhoff plate theory. 

Ebrahimi and Barati [49] investigated flexoelectricity and 

surface effects on vibration characteristics of piezoelectric 

nanoplate resting on the Winkler-Pasternak foundation. They 

used Hamilton’s principle and Galerkin’s method to obtain the 

vibration frequencies. 

Jalaei and Thai [50] analyzed the dynamic instability of 

viscoelastic porous FG nanoplates subjected to biaxially 

oscillating loading and longitudinal magnetic field. By using 

quasi-3D sinusoidal shear deformation plate theory in the 

framework of nonlocal-strain gradient theory, they derived the 
governing equations via Hamilton’s principle, then solved via 

Navier and Bolotin’s methods. 

Karami et al. [51] investigated wave dispersion in FG 

nanoplate with porosity on Winkler–Pasternak foundation and 

under in-plane magnetic field. They assumed the material 

properties vary in the thickness direction and to be temperature-

dependent. They used second-order shear deformation theory in 

the framework of nonlocal-strain gradient theory to drive the 

governing equations. 

Karami .B and Karami.S [52] developed a nonlocal-strain 

gradient plate model for Buckling analysis of FG nanoplate in 

thermal environments assuming temperature-dependent material 
properties. They used a four-unknown refined plate to derive the 

governing equations and solved them via Galerkin method. 

Li et al. [53] analyzed the bending of a layered two-

dimensional piezoelectric quasicrystal nanoplate under a 

sinusoidal mechanical load and a sinusoidal electric potential 

load incorporating Eringen’s nonlocal theory. They present exact 

solution utilizing pseudo-Stroh formalism and the propagator 

matrix. 

Mohammadia and Rastgoo [54] investigated the size-

dependent nonlinear vibration analysis of the composite 

nanoplate resting on nonlinear Pasternak foundation and based on 
the von Kármán type nonlinearity. They assumed that the 

composite nanoplate consists of three layers; the core layer 

having a gradient of three-direction and the other two layers are 

lipid face sheets based on Kelvin-Voigt model (for lipid layers). 

They solved the nonlinear differential equations were obtained 

By the Bubnov-Galerkin method and the multiple scale method. 

Xu et al. [55] investigated the effects of in-plane magnetic 

field and size-dependent on orthotropic double-layered nanoplate 

system (DLNS) embedded in an elastic environment. By applying 

Hamilton’s principle incorporating Eringen’s nonlocal elasticity 

theory, they obtained the governing equations. 

Zhang and Zhou [56] studied the chaotic motion of the 
nanoplate resting on a nonlinear Winkler foundation using 
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Melnikov’s method. They showed while the parameters are 

chosen in the chaotic regions, chaotic behaviors may happen. 

Ghorbanpour and Zamani [57] performed free vibration 

analysis of rectangular sandwich nanoplate resting on the elastic 

foundation by assuming that the core is made of functionally 
graded porous material and the face sheets are made of 

piezoelectric material. They employed Vlasov’s model 

foundation for modeling the elastic foundation. In another article, 

Ghorbanpour and Zamani [58] examined the effect of the electric 

field on bending behavior of nanoplate with the same conditions. 
Arefi and Zenkour [59] examined bending analysis of 

sandwich nanoplate that isotropic core embedded by two 

piezoelectric face sheets and subjected to Thermo-electro-

mechanical loading. They derived the governing equations by 

employing the virtual work method in the framework of the 

trigonometric shear and normal deformations plate theory. 

Arefi and Zenkour [60] performed vibration analysis of 
electro-thermo-mechanical sandwich nanoplate with viscoelastic 

core and viscoelastic piezoelectric face sheets. They considered 

Two-variable sinusoidal shear deformation plate theory 

incorporating Kelvin–Voigt viscoelasticity model to derive the 

equations of motion. 

Arefi et al. [61] used Eringen’s nonlocal to analyze vibration 

behavior of rectangular three-layered nanoplate on Pasternak 

foundation. The core is made of functionally graded in the 

thickness direction and the face sheets are made of piezomagnetic 

material. On the basis of the first-order shear deformation theory, 

they derived the equations of motion via Hamilton’s principle and 
obtained the solution using Navier’s method. 

By employing Navier’s solution, Arefi et al. [62] presented 

the analytical solution for Bending analysis of sandwich plate 

resting on the Pasternak foundation by assuming a porous core 

and two piezomagnetic face sheets in conjunction with nonlocal-

strain gradient theory. 

Arefi and Zenkour [63] analyzed the bending behavior of a 

three-layered nanoplate includes a nano-sheet integrated with a 

piezo-magnetic face-sheet subjected to thermo-magneto-electro-

mechanical load and resting to Pasternak’s foundation.  

According to modified nonlocal elasticity theory Jamalpoor 

and Kiani [64] analyzed free vibration of double-FGM 
viscoelastic nanoplate including the surface effects. The 

nanoplates are connected together by Kelvin–Voigt visco-

Pasternak medium. Based on Kirchhoff plate theory and 

Hamilton’s principle, They employed Navier’s solution to solve 

the governing equations. 

Mechab et al. [65] developed Eringen’s nonlocal theory for 

free vibration analysis of rectangular FG nanoplate under 

Winkler–Pasternak elastic foundations and taking porosities 

effects into account. Hamilton principle and two-variable refined 

plate theories are employed for derivation of the differential 

equations. 
In a similar article, Mechab et al. [66] by using the Monte 

Carlo method performed Probabilistic analysis to study the 

influence of porosity in a rectangular FGM nanoplate under 

Winkler–Pasternak elastic foundations. They used the virtual 

displacement principle to obtain the governing equation. 

Hosseini et al. [67] carried out biaxial buckling and free 

vibration analysis of FGM nanoplate resting on visco-Pasternak 

foundation. They considered the Eringen and the Gurtin-

Murdoch surface elasticity theories to capture the nonlocal and 

surface effects, respectively. 

Hosseini et al. [68] investigated the influence nanosensors on 

vibration analysis of  FGM nanoplate resting on the Pasternak 
foundation by using the Mindlin plate theory in conjunction with 

Eringen nonlocal theory. The nanoplate subjected to external 

electric voltage and external magnetic potential. 

According to nonlocal-strain gradient theory in the 

framework of Kirchhoff plate theory, Jafari et al. [69] performed 

free vibration analysis of a rectangular multiple nanoplate 

systems embedded in a visco-Pasternak medium subjected to 

external magnetic and electric potentials and hygrothermal effect. 

Jamalpoor et al. [70] presented magneto-electro-elastic 

bending analysis of biaxial buckling and free vibration of a 

double nanoplate using Eringen nonlocal theory. They assuming 

that the nanoplates are connected by visco-Pasternak model. 
based on Eringen nonlocal theory, Khanmirza et al. [71] 

studied mass nanosensor effect on the vibration of magneto-

electro-elastic nanoplate resting on visco-Pasternak substrate. 

The nanoplate is under electric voltage and magnetic potential. 

They derived explicit analytical solutions to analyze the 

sensitivity property of nanosensor. 

Kiani et al. [72] proposed a theoretical model by employing 

nonlocal Eringen theory and third-order shear deformation plate 

theory to investigate vibration response of magneto-electro-

thermo-elastic nanoplate resting on the visco-Pasternak medium. 

Liu et al. [73] presented analytical solutions of low-velocity 
transverse impact of a nanosphere on a circular nanoplate using 

the Kirchhoff plate theory and by considering the van der Waals 

interaction between the nanosphere and the nanoplate. They used 

Gurtin–Murdoch’s theory to capture surface effects of the 

nanoplate. 

Liu et al. [74] established a theoretical model to investigate 

the dynamic response of a rectangular nanoplate subjected to a 

low-velocity impact by a nanoparticle by assuming the van der 

Waals interaction between the particle and the plate. They 

derived the governing equations by using the surface elasticity 

theory and residual surface stress of the nanoplate. 

Ansari et al. [75] studied large amplitude free vibrations 
rectangular nanoplates including stress effects for various 

boundary conditions and considered Gurtin-Murdoch's theory to 

capture the small-scale. They employed the first-order shear 

deformable nanoplate in conjunction with the von-Kármán’s 

assumptions to obtain the governing equations. 

based on nano-electromechanical systems (NEMS), Ebrahimi 

and Hosseini [76] investigated the nonlinear vibration of double-

layered viscoelastic nanoplates subjected to hydrostatic and 

electrostatic actuations by incorporating von-Kárman geometric 

nonlinearity. They modeled nanoplate via Eringen's nonlocal 
elasticity theory and Gurtin-Murdoch theory. They also used the 

differential quadrature method (DQM) for computing the 

nonlinear frequency. 

By using von Kármán deformation theory, Ebrahimi and 

Hosseini [77] investigated the influence of temperature change 

on the nonlinear vibration of double-layered viscoelastic 

nanoplates based-NEMS in thermal environment and subjected to 

hydrostatic and electrostatic actuations. To achieve the governing 
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equation, they used Hamilton's principle incorporating Eringen’s 

nonlocal elasticity and Gurtin–Murdoch theory. 

Hosseini et al. [78] carried out vibration analysis of multi 

nanoplate system under Thermomechanical load including 

surface effects. The nanoplates are made of viscoelastic and 

functionally graded materials that each nanoplate is connected via 

Kelvin–Voigt visco-Pasternak medium to each other. To achieve 

the equations of motion, they employed Hamilton’s principle 

incorporated with Eringen's nonlocal theory accounting for the 

size scale effect. 
Lin et al. [79] the nonlinear behavior and pull-in instability of 

circular nanoplate under the influence of the electrostatic force, 

Casimir force and surface effects. They applied the hybrid 

differential transformation and finite difference approximation 

method to solve the nonlinear governing equation. 

According to the Eringen’s nonlocal elasticity theory, Lin et 

al. [80] proposed the classical plate theory for nonlinear Analysis 

of circular nanoplate actuator subjected to electrostatic van der 

Waals (vdW) forces, tensile loads and hydrostatic pressures. The 

nonlinearity of this problem is due to the load. They applying a 

combination of differential transformation and finite difference 
schemes to obtain the results. 

Mirkalantari et al. [81] proposed a theoretical model by 

employing strain gradient theory and first-order shear 

deformation plate theory considering Gurtin-Murdoch method to 

investigate static pull-in instability of rectangular nanoplate under 

hydrostatic and electrostatic actuation. They derived the 

governing equation utilizing the principle of minimum potential 

energy, linearized by means of the step-by-step linearization 

method (SSLM) and solved via generalized differential 

quadrature (GDQ).  
According to Eringen’s nonlocal theory and Gurtin-Murdoch 

surface model, Yang et al. [82] developed an analytical model to 
investigate the influence of nonlocal small scale, surface 

elasticity modulus,  and surface residual stress on the dynamic 

pull-in instability and bifurcation of circular nanoplate subjected 

to electrostatic and Casimir forces. By using the homotopy 

perturbation method, they solved the nonlinear governing 

equation. 

Abbasi and Ghassemi [83] performed bending analysis of 

piezoelectric nanoplate under thermomechanical loading 

including Eringen’s nonlocal theory and surface effect. The 

nanoplate modeled according to the two-variable refined plate 

theory. 
The surface stress and nonlocal small scale effects on uniaxial 

and biaxial buckling analysis of rectangular piezoelectric 

nanoplate investigated by Fathi and Ghassemi [84] considering 

the two variable-refined plate theory. They utilized finite 

difference method to solve the governing equations were 

extracted via the virtual work principle. 

Jamali and Ghassemi [85] studied the vibration behavior of 

piezoelectric nanoplates subjected to mechanical and electrical 

in-plane forces including surface layer effects. They extracted the 

governing equation by using two variable refined plate theory and 

solved via finite difference method. 

Karimi et al. [86] investigated and compared the value of the 
surface layers on the out-of-phase and in-phase vibration 

behavior of a double-layer magneto–electro–thermo-elastic 

nanoplates considering surface layer. They simulated the 

nanoplates are coupled by van der Waals forces and each of the 

nanoplate surrounding elastic medium by Winkler and shear 

moduli. 

Karimi and Shahidi [87] studied the influence of surface 

layers on the in-phase and out-of-phase natural frequencies of 

skew double-layer magneto–electro–thermo-elastic (DLMETE) 

nanoplates based on nonlocal elasticity, surface energy, and 

refined plate theory. They considered van der Waals interactions 

of the layers and proposed each layer surrounded via the 
Pasternak model. Equilibrium equations were extracted via 

Hamilton’s principle and were solved via the Galerkin method. 

Also, Navier’s method was implemented for the validation of the 

results. 

Hosseini et al. [88] developed an analytical model to studied 

the influence of the magnetic field and the small-scale parameter 

on vibration behavior of rotating FG circular nanoplate including 

porosity. They employed the first-order shear deformation theory 

and the modified couple stress theory to achieve the governing 

equations. 

Mahinzare et al. [89] used modified couple stress theory to 
investigate the vibration behavior of bi-directional FG 

piezoelectric rotating circular nanoplate composed of two 

different materials with continuously varying along the thickness 

and radius based on the power-law model. In the framework of 

the first shear deformation theory, they derived and solved the 

governing equations, via Hamilton’s principle and differential 

quadrature method (DQM), respectively. 

Jamali et al. [90] presented buckling analysis of the nanoplate 

and nanocomposite plate with a central square cutout resting on 

the Winkler foundation.  To improve mechanical properties, the 

nanoplate reinforced via carbon nanotubes (CNTs) with the 

uniformly distributed. They applied the classical plate theory 
(CPT) by incorporating the Eringen’s nonlocal theory to simulate 

the plate and they obtained the critical buckling load via 

Rayleigh-Ritz energy method. 

Utilizing the third-order shear deformation theory 

incorporating with nonlocal-strain gradient theory, a dynamic 

analysis was carried out by Ghahnavieh et al. [91] for the 

vibration response of a magneto-electro-elastic nanoplate-based 

mass nanosensors resting on Pasternak foundation. They assumed 

the effective properties of nanoplate change continuously along 

the thickness according to the power-law function. 

By using the introduced effective elastic moduli, Bochkarev 
[92] developed the theory of the large deflection of a plate with 

accounting surface stresses based on the von Karman hypothesis 

and strain-consistent model of surface elasticity. He examined the 

presented theory for solving the compressive buckling of a 

rectangular nanoplate under the different flexural boundary 

conditions. 

Bochkarev and Grekov [93] formulated the system of von 

Karman equations on the basis of Gurtin-Murdoch surface 

elasticity for a nanoplate Assuming plate stress. The then solved 

a modified Kirsch problem for an infinite nanoplate with a 

circular hole including plane stress in respect of effective. 

Li and Pan [94] proposed a surface piezoelectricity model to 
investigate the surface effect on bending behavior of a 

piezoelectric nanoplate subjected to uniform mechanical and 
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electric loading in framework of the sinusoidal shear theory. They 

assumed the piezoelectric nanoplate consists of a bulk core 

integrated by two surface layers. 

Guo et al. [95] studied the size-dependent and flexoelectric 

effect on the bending behavior of laminated piezoelectric 
nanoplate subjected to inhomogeneous electric loads. For this 

purpose, they introduced a stress function based Ritz-type 

solution procedure and imposing the flexoelectric effect to it for 

the first time. They showed that flexoelectricity has a 

significantly effect on small-scale dielectrics and stress 

distributions. 

Wang et al. [96] presented the influence of the flexoelectric 

effect on the static bending analysis of Cantilevered Piezoelectric 

Nanoplate under mechanical and electrical loads. They supposed 

the Kirchhoff plate theory and the extended linear piezoelectric 

theory to achieve governing equations and used finite difference 

method (FDM) to obtain the results. By employing Eringen's 
nonlocal theory in the framework of a refined exponential shear 

deformation plate theory, Sahmani and Fattahi [97] developed a 

nonlocal plate model to predict the axial instability characteristics 

of zirconia nanosheets under buckling load. They used 

perturbation technique solve the governing equation. They used 

molecular dynamics simulation to calibrate Nonlocal parameter. 

 Ho et al [98]  Proved numerically and theoretically that for 

some metal nanoplates under finite strain, the Poisson's ratio 

becomes negative. this Materials called auxetics. They studied 

the influence of Poisson’s ratios on auxetic metal nanoplates.  

Shahsavari et al. [99] investigated dynamic responses of 
nanoplate embedded within visco-Pasternak foundation under 

moving load and hygrothermal environment. To incorporate the 

scaling effects, they considered Eringen's nonlocal theory based 

on the classical plate theory. 

Liu and Chen [100] studied dynamic responses of the finite 

periodic nanoplate by employing Mindlin plate theory and 

Eringen's nonlocal theory. They investigated the effects of 

nanoplate width and thickness and boundary conditions. 
Jamshidian et al. [101] investigated the influence of surface 

energy on nanoplates by using gradient continuum theory and 

molecular dynamics simulations. They showed good agreement 

between molecular dynamics simulation and continuum theory. 
Jalali et al. [102] investigated vibrational analysis of single 

layered graphene sheets with out-of-plane defects using two 

methods of molecular dynamics and Eringen's nonlocal elasticity. 
They modeled defects by employing Stone-Wales defect model 

and their results are indicated the defects increase the frequency. 

Jalali et al. [103] carried out the nonlinear frequency analysis 

of single layered graphene sheets (SLGSs) with an attached 

ultrafine nanoparticles (NPs) incorporating nonlocal elasticity. 

They performed molecular dynamics (MD) simulation to obtain 
the proper value of nonlocal parameter. 

Mohammadimehr et al. [104] performed complete 

mechanical analysis of microcomposite circular-annular 

sandwich plate subjected to hydro-thermo-magneto-mechanical 

loads based on modified strain gradient theory in the framework 

of first order shear deformation theory (FSDT). The sandwich 

nanoplate composed of isotropic homogeneous core with 

integrated by CNT reinforced composite facesheets. 

 

3. Conclusion 

The results of this research will play an important role in the 

future life of humans and bring about great changes. Reviewing 

recent articles indicate that nanotechnology enables engineers 

and scientists to achieve promising, unique properties for 
materials. These special properties were investigated in the areas 

of mechanical, thermal, electrical and magnetic properties. The 

results of these researches show the properties of the material in 

the nano-scale can be very different from those on the macro-

scale. The development of computers has contributed to 

molecular dynamics calculations and scientists find out the 

properties of nanomaterials without doing too many expensive 

experiments. 
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