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ABSTRACT: Air quality prediction is highly important in view of the health impacts 
caused by exposure to air pollutants in urban air. This work has presented a model based 
on support vector machine (SVM) technique to predict daily average carbon monoxide 
(CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, 
i.e.  -SVM and  -SVM techniques, were used to predict average daily CO 
concentration as a function of 12 input variables. Then, forward selection (FS) technique 
was applied to reduce the number of input variables. After converting 12 input variables 
to 7 using the FS, they were fed to SVM models (FS-( -SVM) and FS-( -SVM)). 
Finally, a comparison among SVM models operation and previously developed 
techniques, i.e. classical regression model and artificial intelligent methods such as ANN 
and adaptive neuro-fuzzy inference system (ANFIS) was carried out. Determination of 
coefficient (R

2
) and mean absolute error (MAE) for  -SVM ( -SVM) were 0.87 (0.40) 

and 0.87 (0.41), respectively, while they were 0.90 (0.39) and 0.91 (0.35) for ANN and 
ANFIS, respectively. Results of developed SVM models indicated that both FS-( -
SVM) and FS-( -SVM) regression techniques were superior. Furthermore, it was 
founded that the performance of FS-( -SVM) and FS-( -SVM) models were generally 
a bit better than the best FS-ANFIS and FS-ANN solutions for short term forecasting of 
CO concentrations. 

Keywords: Air pollution, forward selection, carbon monoxide, artificial intelligent, 
Tehran. 

 
 
 

INTRODUCTION

 

Predicting the next day's air pollution 

levels is the first and the most important 

step in urban air quality management to 

provide proper controlling strategies. 

Nowadays, air pollution forecasting has 

become a significant issue, especially in 

large cities like Tehran, Iran. Most of the 
                                                           
* Corresponding Author Email: m-vesalinaseh@araku.ac.ir 

air pollution problems in Tehran are related 

to carbon monoxide (CO) and particulate 

matter less than 10µm (PM10). Among 

these pollutants, CO becomes more 

concerning given that it occupies more 

than 75% of air pollutants weight in the 

atmosphere of Tehran (Bayat, 2005). 

Therefore, predicting daily levels of this 

pollutant can play a significant role in 
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reducing possible risks. In past decades, 

different approaches such as classical 

regression methods (Noori et al., 2008; 

Sahin et al., 2004; Shakerkhatibi et al., 

2015;), deterministic models (Jorquera, 

2002; Gokhale et al., 2007; Murena et al., 

2009; Elangasinghe et al., 2014) and 

artificial intelligent (AI) techniques (Pérez 

et al., 2000; Perez-Roa et al., 2006; Hrust 

et al., 2009; Wang et al., 2015) 

demonstrated that they can be used 

satisfactorily  for air pollution forecasting. 

Statistical approaches such as classical 

regression and AI methods have some 

advantages over deterministic techniques. 

They do not need data about emissions and 

their structure is often more familiar than 

deterministic models (Nunnari et al., 2004). 

On the other hand, most deterministic 

operative models for estimating the 

dispersion of gases and particles in the 

atmospheric boundary layer are based on the 

Gaussian approach. Such models concentrate 

on the hypothesis that states pollutants are 

dispersed in homogenous turbulence. Yet, 

considering the presence of the ground, 

turbulence is not generally homogenous 

along the vertical path (Pelliccioni et al., 

2006).  

Among the statistical approaches, 

classical regression methods are linear, 

model driven, and parametric in nature, 

assuming strong prior knowledge about the 

unknown dependency. However, in many 

real world problems, this underlying 

assumption is not always true. Further, 

such approaches are impractical in dealing 

with high-dimensional cases (Liong et al., 

2002; Noori et al., 2008). Recently, AI 

models such as artificial neural network 

(ANN) and adaptive neuro-fuzzy inference 

systems (ANFIS) are being widely used to 

address the shortcomings of the parametric 

approach (Jalili Ghazi Zade & Noori, 2008; 

Noori et al., 2010b; Dehghani et al., 2014). 

Yet, these methods lack underlying 

mathematical theory and are usually 

motivated by biological arguments. 

A novel tool from the AI field known as 

support vector machine (SVM) has gained 

popularity in the machine learning 

community (Cristianini et al., 2000). It has a 

functional form (similar to classical 

regression models) and its complexity is 

determined by the available data to be 

"learned" (similar to AI approaches). It is 

found that the empirical performance of 

SVM is generally consistent the best ANN 

solutions (Hearst et al., 1998). It has been 

hypothesized that this is because there are 

fewer model parameters to be optimized in 

the SVM approach, reducing the possibility 

of over-fitting the training data and thus 

increasing the actual performance (Brown et 

al., 1999). Compared with traditional ANN, 

learning in SVM is very robust regarding the 

computations precision (Anguita et al., 

1999). With the introduction of  -

insensitive loss function, the applications of 

SVM in non-linear regression estimation and 

time series prediction has been extended 

(Bray et al., 2004). Also, it has been applied 

successfully to environmental problems 

(Noori et al., 2009a; Noori et al., 2009b; 

Luna et al., 2014). Lu and Wang (2005) 

examined the feasibility of applying SVM 

and classical radial basis function (RBF) 

network to predict air pollutant levels in 

advancing time series based on the 

monitored air pollutant database in Hong 

Kong downtown area. They reported that 

SVM outperforms the conventional RBF 

network in predicting air quality parameters 

with different time series and it has better 

generalization performance than the RBF 

model. Osowski & Garanty (2007) presented 

a method of daily air pollution forecasting by 

using SVM and wavelet decomposition 

based on the observed data of nitrogen 

dioxide (NO2), CO, sulfur dioxide (SO2) and 

dust, for the past years by considering actual 

meteorological parameters like wind, 

temperature, humidity and pressure. Salazar-

Ruiz et al. (2008) offered a SVM model for 

prediction of maximum tropospheric ozone 

concentrations for the next day in the 
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Mexicalie-Calexico border area in US. Luna 

et al. (2014) investigated on the behavior of 

air pollution and meteorological variables 

(NO2, nitrogen monoxide (NO), nitrogen 

oxides (NOx), CO, ozone (O3), scalar wind 

speed, global solar radiation, temperature, 

and moisture content in the air), using the 

method of principal component analysis 

(PCA) for exploratory data analysis. They 

proposed forecasts of O3 levels applying 

nonlinear regression methods like ANN and 

SVM, from primary factors. The study 

concluded that the models’ predictions were 

reliable, and PCA-ANN-SVM confirmed 

their robustness as a promissing method for 

modeling and analying of O3 concentrations 

in the tropospheric levels. Moazami et al. 

(2016) developed an appropriate 

methodology for determination of 

uncertainty in support vector regression 

(SVR) as a well-known modeling approach 

in atmospheric science based on running 

SVR model many times to predict the next 

day CO concentrations in Tehran. Thereafter, 

they compared their results with ANFIS and 

ANN and showed that the SVR had less 

uncertainty in CO prediction than the ANN 

and ANFIS models. In another study, Azeez 

et al. (2018) developed a hybrid model based 

on the integration of three models, 

correlation-based feature selection (CFS), 

SVR and GIS, to predict vehicular emissions 

on roads in an urban areas of Kuala Lumpur, 

Malaysia. The suggested model was 

developed with seven road traffic CO 

predictors selected via CFS (sum of vehicles, 

sum of heavy vehicles, heavy vehicle ratio, 

sum of motorbikes, temperature, wind speed, 

and elevation). Their suggested model 

resulted high validation accuracy and 

correlation coefficient and introduced as a 

useful tool for traffic CO assessment on 

roads. Ghaemi et al. (2018) used a LaSVM-

based online algorithm for air pollution 

prediction in Tehran. Pollutant concentration 

and meteorological data were fed to the 

developed online forecasting system. The 

authers evaluated performance of the system 

by comparing the prediction results of the air 

quality index (AQI) with those of a 

traditional SVM algorithm. Their results 

showed significant increase of speed by the 

online algorithm while preserving the 

accuracy of the SVM classifier.  

Similar to statistical and mathematical 

models, SVM has also some disadvantages. 

The large number of input variables is one 

of the main problems for SVM planning. 

SVM models are not designed to eliminate 

superfluous inputs, thus solving the 

quadratic programming during the training 

procedure becomes difficult with standard 

solvers (Kecman, 2005). Moreover, high 

number of input variables may prevent 

SVM to find the optimized models. 

Therefore, if possible, it is recommended 

to reduce input variables even though this 

omits some parts of information. 

In the present paper, two regression 

models, i.e.  -SVM and  -SVM are 

presented for average daily CO 

concentration prediction using forward 

selection (FS) method for input selection. 

Then the results of the models are 

compared and superior models for 

predicting the average daily CO 

concentration are reported. Finally, a 

comparison between superior models and 

some previously developed models, i.e. 

multiple linear regression (MLR) technique 

(Noori et al., 2008), ANN and ANFIS 

models (Noori et al., 2010a), is carried out.     

MATERIAL AND METHODS 
Tehran is the capital and the largest city of 

Iran which is located between 35
o
 34' to 

35
o
 50' N and 51

o
 02' to 51

o
 36' E with the 

area about 570 km
2
. It is surrounded by 

mountains to the north, west and east. Its 

current population includes about 

8,000,000 (Bayat, 2005). There are 21 air 

quality measurement stations in Tehran 

(Fig. 1). The results of previous studies 

about air pollution of Tehran demonstrate 

that 90% of total air pollutants are 

generated from traffic and only 10% are 
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from other sources (Bayat, 2005). In 

comparison with other air pollutants in the 

atmosphere of Tehran, CO is more 

significant because it forms more than 75% 

of air pollutants (Bayat, 2005). For this 

study, the pollution and meteorological 

data during 2004-2005 are obtained from 

Gholhak station in the north of Tehran at 

35
o
 41' N and 51

o
 19' E with the altitude of 

1190.8 m above sea level (Fig. 1). To 

predict CO concentration in the future, (i.e. 

next 24 hours), the daily arithmetic 

averages of six air pollutants: PM10, total 

hydrocarbons (THC), NOx, methane (CH4), 

SO2 and O3 and also six meteorological 

variables: pressure (Press), temperature 

(Temp), wind direction (WD), wind speed 

(WS) and relative humidity (Hum) are 

used. Statistical analysis of used data is 

listed in Table 1. 

 

Fig. 1. Air quality stations in Tehran and the location of Gholhak station 

Table 1. Statistical analysis of used data 

Parameter PM10 THC NOx CH4 SO2 O3 Press Temp WD WS Hum Solar CO 
Unit µg/m3 ppm ppm ppm ppm ppm mBar oC Deg m/s %RH KW/M2 ppm 

Average 9.81 4.03 0.18 1.67 0.03 0.01 845.97 18.93 182.28 0.84 49.17 0.25 4.93 
Max 190.27 8.73 0.64 4.73 0.07 0.04 903.30 38.29 282.73 20.71 94.29 0.59 9.67 
Min 3.05 0.00 0.00 0.00 0.00 0.00 597.59 0.59 32.27 0.00 10.14 0.01 1.30 

Median 8.92 4.34 0.12 1.82 0.03 0.01 850.71 20.87 181.61 0.80 47.64 0.27 4.81 
St. 

Deviation 
9.08 1.78 0.16 0.97 0.01 0.01 19.80 9.07 28.59 1.18 18.55 0.12 1.53 

 

When the number of candidate covariates 

(N) is small, one can choose a prediction 

model by computing a reasonable criterion 

(e.g., root mean square error (RMSE), 

squared errors of prediction (SSE) or cross-

validation error) for all possible subsets of 

the predictors. However, as N increases, the 

computational burden of this approach 

increases very quickly. This is one of the 

main reasons why step-by-step algorithms 

like FS are popular. FS has been successfully 

used by many researchers in order to build 

robust prediction models (Chen et al., 2004; 

Eksioglu et al., 2005; Wang et al., 2006; 

Khan et al., 2007). In this approach, which is 

based on linear regression model, the first 

step is ordering the explanatory variables 

according to their correlation with the 

dependent variable (from the most to the 

least correlated variable). Then, the 
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explanatory variable which is highly 

correlated with the dependent variable is 

selected as the first input. All remained 

variables are then added one by one as the 

second input according to their correlation 

with the output and the variable which most 

significantly increases the determination 

coefficient (R
2
) is selected as the second 

input. This step is repeated N-1 times to 

evaluate the effect of each variable on model 

output. Finally, among N obtained subsets, 

the subset with optimum R
2
 is selected as the 

model input subset. The optimum R
2
 is 

integral to a set of variables after which 

adding new variable does not significantly 

increase the R
2
 (Chen et al., 2004).  

There are many papers and books, which 

provide a detailed description of the SVM 

theory (Vapnik, 1998; Cristianini and 

Shawe-Taylor, 2000; Yu et al., 2006; Chen 

et al., 2007; Noori et al., 2009a, 2011, and 

2015a), and hence only a brief description of 

SVM is given here. In a regression SVM, 

you have to estimate the functional 

dependence of the dependent variable y  on 

a set of independent variables x . It assumes 

that, like other regression problems, the 

relationship between the independent and 

dependent variables is given by a 

deterministic function f  plus the addition of 

some additive noise ( noisexfy  )( ). The 

task is then to find a functional form for f  

that can correctly predict new cases that the 

SVM has not been presented before. This 

can be achieved by training the SVM model 

on a sample set, i.e., training set. This 

process involves the sequential optimization 

of an error function (Noori et al., 2015b). 

Depending on the definition of this error 

function, two types of SVM models can be 

recognized: regression SVM type 1 (also 

known as  -SVM regression) and regression 

SVM type 2 (also known as  -SVM 

regression).  

Assume that training input and output 

data are defined as vectors xiR
n
 and yiR

k
 

for i=(1, …, N) which are independent and 

identically distributed data with sample size 

N.  -SVM and  -SVM regression models 

map xi to higher dimensional feature space 

R
k
, where k and n (k>>n) represent the 

dimensions of feature space, using a function 

of (xi) to linearize the nonlinear relationship 

between xi and yi. The estimation function of 

yi is defined as   bxwy  . , where w  and 

b are the vectors of coefficients and a 

constant, respectively. These two parameters 

for each  -SVM and  -SVM regression 

model are derived by minimizing the error 

function Eqs. (1) and (2), respectively; 

subject to Eq. (3): 
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where C  = the capacity constant,   = the 

accuracy demanded for the approximation, 

  is the kernel function, and i  and 


i are 

slack variables.  

Different kernels can be selected to 

construct different types of SVM 

regression models. Typical examples 

include: polynomial kernels which have 

three tuning parameters; sigmoid kernel 

which has two tuning parameters; and RBF 

kernel which has one tuning parameter. 

The RBF kernel, given by   in Eq. (4), has 

been reported as the best choice over other 

kernel functions (Dibike et al., 2001; Noori 

et al., 2009a). Parameter   controls the 

amplitude of the Gaussian function and 

thus, controls the generalization ability of 

SVM.  

 2
( , ) expi iK x x x x    (4) 
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RESULTS AND DISCUSSION 
In this paper, the RBF is used as the kernel 

function of  -SVM and  -SVM regression 

models for the following reasons. First, 

unlike the linear kernel, the RBF kernel can 

handle the case when the relation between 

class labels and attributes is nonlinear. 

Besides, the linear kernel is a special case of 

RBF (Keerthi et al., 2003). Second, the 

number of tuning parameters influences the 

complexity of model selection. The RBF 

kernel has fewer tuning parameters than the 

polynomial and sigmoid kernels (Li et al., 

2008). Another reason is that RBF kernels 

tend to give good performance under 

general smoothness assumptions (Noori et 

al., 2009a).  

Building  -SVM and  -SVM 

regression models from training set requires 

values for C and   (tuning parameters of 
-SVM model), C and   (tuning parameters 

of  -SVM model) and  , while using the 

RBF kernel function. Fine tuning of these 

variables can greatly improve the 

generalization capacity of the prediction 

system. The   value is important in RBF 

model and can lead to under-fitting and 

over-fitting in prediction. Under-fitting 

happens when the models are unable to 

predict the data that have been trained. 

Conversely, over-fitting occurs when the 

models tend to memorize all the training 

data but are unable to be generalized for 

unseen data; hence, only trained data points 

can be predicted. A massive increase in the 

  will cause the risk of over-fitting because 

all the support vectors distances are taken 

into account; thus a complex model is built. 

On the other hand, when the   value is 

changed to an extremely small value, the 

machine would ignore most of the support 

vectors and hence leads to a failure in the 

trained point prediction, known as under 

fitting (Han et al., 2007). The   parameter 

has a default value in Statistica software 

equal to 1/k, where k is the number of input 

variables (in this step k is equal to 12). The 

best fitting   value can be obtained by trial 

and error. In this research,   parameter is 

set to several values. Parameter C is a 

regularization parameter that controls the 

trade-off between maximizing margin and 

minimizing training error. If C is too small, 

insufficient stress will be placed on fitting 

the training data. On the other hand, too 

large C values result in over-fitting of the 

training data. But, Wang et al. (2003) 

indicated that prediction error is scarcely 

influenced by C. The optimal value for   

and   depends on the type of noise present 

in data, which is usually unknown. Even if 

enough knowledge of the noise is available 

for selecting an optimal value for   and  , 

there is a practical consideration of the 

number of resulting support vectors (Liu et 

al., 2006). In this research for finding 

optimal C,   and   values, a grid search in 

each model is performed as described by 

Hsu et al. (2003). The grid search algorithm 

works in simple way. It simply takes 

samples from the space of the independent 

variables. For each sample, the model 

predictions is computed and compared with 

the best value found from the previous 

iterations. If the newly found value is better 

than the previous one, the new results are 

stored. This process is repeated until the end 

of iterations is reached. The grid search 

algorithm performs the sampling by 

partitioning the space of the independent 

variables into a grid scheme, with the 

boundaries of the grid determined by the 

start and end values for the independent 

variables. The intensity of the computation 

is determined not only by the start and end 

values but also by the size of the steps used 

to forward the search from one location of 

the independent space to another. When 

using the grid search algorithm for response 

optimization, it is recommended that search 

is confined to those regions of independent 

space falling within the boundaries of the 

data set for which the models where trained. 

Making predictions in regions of 

independent space substantially laying 
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outside the boundaries of the data set used 

to train the model may lead to unreliable 

results. The grid search technique is 

unguided algorithms based on brute 

computing power. Hence, it can be 

computationally more expensive than other 

optimization techniques. For solving this 

problem, a two-step grid search method 

(Chen & Yu, 2007) with ten-fold cross-

validation is used to derive the tuning 

parameters in the  -SVM and  -SVM 

regression models (C, , ). First, a coarse 

grid search is used to determine the best 

region of these three-dimensional grids. 

Then, a finer grid search is conducted to 

find the optimal parameters. The training 

and the following forecasting work in this 

study are performed using the Statistica 

software. However, RMSE has been 

assessed on different   values in the  -

SVM (Fig. 2) and  -SVM (Fig. 3) 

regression models and then 22 models for 

each type of SVM regression technique is 

developed.  

 

Fig. 2. The Gamma ( ) values versus RMSE index for the  -SVM model 

 

Fig. 3. The Gamma ( ) values versus RMSE index for the  -SVM model 
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Among these 22 developed SVM 

models, the optimal parameters in the  -

SVM and  -SVM regression models in the 

training phase are achieved as (C, , 

)=(6.00, 0.016, 1.7) and (C,  ,  )=(6.00, 

0.498, 1.7), respectively. The average daily 

CO concentrations are almost identical to 

the observed ones, indicating that the 

model is well trained, and that it can 

describe the relevant input-output 

relationship. The results of training and 

testing steps for  -SVM regression and  -

SVM regression models are shown in 

Table 2 based on R
2
 and mean absolute 

error (MAE). Also, the temporal variations 

of the observed and predicted average daily 

CO concentration using the  -SVM and 
-SVM regression models for testing period 

are plotted in Figs. 4 and 5, respectively. 

These figures and Table 2 indicate that 

the both models are comparable in terms of 

prediction accuracy and they have same 

performance in prediction of average daily 

CO concentration. Thus, type of SVM 

regression model does not have any effect 

on the SVM models operation. In addition, 

in the  -SVM regression model, 

prediction error is scarcely influenced by 

  values and for all of the 22  -SVM 

regression models, which are developed in 

this research, the   value varied between 

0.2 to 0.5. C and   values, in the 22  -

SVM regression models, varied between 5 

to 250 and 0.001 to 7.5, respectively. 

In the present investigation, the FS 

method is used as a linear input selection 

technique in order to select the best subset 

of 12 input candidates. First, correlation 

between each input variable and the 

desired output is evaluated as in Table 3. 

Table 2. Results of training and testing of  -SVM,  -SVM, FS-( -SVM), and FS-( -SVM) models 

Model 
Training Testing 

R
2
 MAE R

2
 MAE 

 -SVM 0.95 0.27 0.87 0.40 

 -SVM 0.94 0.30 0.87 0.41 

FS-( -SVM) 0.94 0.29 0.90 0.34 

FS-( -SVM) 0.93 0.29 0.90 0.35 

PCA-MLR (Noori et al. (2008)) 0.44 0.91 0.34 0.851 

FS-ANFIS (Noori et al. (2009a)) 0.90 0.36 0.91 0.35 

FS-ANN (Noori et al. (2009a)) 0.90 0.36 0.9 0.39 

 

Fig. 4. Predicted and observed average daily CO concentration for testing of  -SVM regression model 
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Fig. 5. Predicted and observed average daily CO concentration for testing of  -SVM regression model 

Table 3. Correlation between each input variable and the output variable CO 

Variable R
2 

Variable R
2 

Temp 0.269864 O3 0.026751 
Hum 0.200260 WS 0.026637 
Press 0.182048 NOx 0.022939 
Solar 0.090988 THC 0.019880 
SO2 0.078278 CH4 0.014117 

PM10 0.070747 WD 0.007734 

Table 4. Results of FS procedure 

Input subset R
2 

Temp 0.2699 

Temp,SO2 0.3458 

Temp, SO2, THC 0.4594 

Temp, SO2, THC, Press 0.4615 

Temp, SO2, THC, Press, CH4 0.5193 

Temp, SO2, THC, Press, CH4, NOx 0.6055 

Temp, SO2, THC, Press, CH4, NOx, O3 0.6325
* 

Temp, SO2, THC, Press, CH4, NOx, O3, Solar 0.6337 

Temp, SO2, THC, Press, CH4, NOx, O3, Solar, PM10 0.6339 

Temp, SO2, THC, Press, CH4, NOx, O3, Solar, PM10, Hum 0.6345 

Temp, SO2, THC, Press, CH4, NOx, O3, Solar, PM10, Hum, WD 0.6347 

Temp, SO2, THC, Press, CH4, NOx, O3, Solar, PM10, Hum, WD, WS 0.6349 

*After this value, variations of R
2
 are negligible and thus, inputs related to this value are selected. 

Second, the variable with highest 

correlation, i.e. Temp with R
2
=0.26, is 

selected as the first and the most important 

input. Then, remained candidates are 

implemented into the model one by one and 

the new variable which provides the best 

modeling result is selected as new input and 

added to previous selected input (i.e. Temp). 

For evaluation of modeling goodness, R
2
 is 

used. This step is repeated several times until 

adding new variable to inputs, has not 

significant improvement in the model output. 

In other words, if the increase in R
2
 is more 

than 5%, the new variable is selected. Finally, 

input variables with most significant effect on 

output are selected and other variables are 
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removed. Results of FS are shown in Table 4 

where seven candidates according to their 

importance are selected as input variables: 

Temp, SO2, THC, Press, CH4, NOx, and O3 

and other candidates are removed.  

In this section, to evaluate the effect of 

input selection on  -SVM and  -SVM 

regression models operation, the input 

variables resulting from FS method are 

considered as SVM inputs, i.e. 7 inputs 

(FS-( -SVM) and FS-( -SVM) models). 

The optimal parameters for FS-( -SVM) 

and FS-( -SVM) regression models are 

obtained same as the previous section 

(SVM models development). The best 

fitting   value can be obtained by try and 

error. From Figs. 6 and 7 it is clear that 

between 26 developed models for each 

type of SVM regression model, the best 

fitting   value for FS-( -SVM) and FS-(

 -SVM) regression models are 0.500 and 

0.496, respectively.  

 

Fig. 6. The Gamma ( ) values versus RMSE index for the FS-( -SVM) regression model 

 

Fig. 7. The Gamma ( ) values versus RMSE index for the FS-( -SVM) regression model 
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Similar to previous section, a two-steps 

grid search method with ten-fold cross-

validation is used to derive the tuning 

parameters in the models (C, , ). 

However, the optimal values of C and   in 

the FS-( -SVM) regression model are 

obtained as 3.200 and 0.045 by grid search 

algorithm, respectively, whereas for the 

FS-( -SVM) regression model, the best 

fitting C and   values are 2.100 and 0.465, 

respectively. Results of these models for 

training and testing steps are listed in Table 

2. Furthermore, observed and predicted 

average daily CO concentrations by both 

models are calculated and shown in Figs. 8 

and 9, respectively. These figures and 

Table 2 indicated that both models have 

same performance in prediction of average 

daily CO concentrations. Thus, similar to 

previous section, type of SVM regression 

model does not have any effect on the 

SVM models operation. 

 

Fig. 8. Predicted and observed average daily CO concentration for testing of FS-( -SVM) regression 

model 

 

Fig. 9. Predicted and observed average daily CO concentration for testing of FS-( -SVM) regression 

model 
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In the past decades different statistical 

models such as MLR, ANN, ANFIS, and 

SVM models have been used by many 

researchers for short term air pollution 

forecasting in many parts of the world. The 

present work is the progress of tow 

previously papers published for daily 

average CO concentration in the atmosphere 

of Tehran. In the first work authors 

developed MLR model based on PCA (PCA-

MLR model) to forecast daily CO 

concentration in the atmosphere of Tehran 

(Noori et al., 2008). The second research 

investigated the capability of ANN and 

ANFIS models developed using two data 

reduction techniques, i.e. FS and Gamma test 

methods. It concluded that FS technique was 

a proper solution to improve the performance 

of ANN and ANFIS models (Noori et al., 

2010a). Results of PCA-MLR, FS-ANN, and 

FS-ANFIS models for training and testing 

steps are presented in Table 2.  

According to Table 2, it is proved that 

the AI techniques have better performance 

than PCA-MLR model. In addition, it is 

founded that the performance of FS-( -

SVM) and FS-( -SVM) models are 

generally similar to the best FS-ANFIS and 

FS-ANN solutions for short term 

forecasting of CO concentrations. 

Moreover, for better judgment, the 

developed discrepancy ratio (DDR), which 

is proposed by Noori et al. (2010a), is used 

to check the robustness of the models. The 

normalized value of DDR (QDDR) for all 

models in testing step is calculated and the 

standard normal distribution for each 

model is illustrated in Fig. 10. It should be 

noted that in error distribution graph, more 

tendencies to the centerline and also, larger 

value of the maximum QDDR, indicate more 

accuracy. The maximum QDDR values for 

models are plotted in this figure. The 

values for FS-ANFIS, FS-ANN, FS-( -

SVM), and FS-( -SVM) models are 4.1, 

4.2, 4.4, and 4.3, respectively. Considering 

the maximum QDDR values, all four models 

approximately have the same performance, 

although FS-( -SVM) and FS-( -SVM) 

regression models slightly have better 

performance than the others. 

 

Fig. 10. Standardized normal distribution graph of DDR values for  (e)-SVM,  (nu)-SVM, FS-( (e)-

SVM), and FS-( (nu)-SVM) regression models in the testing step (Noori et al., 2008) 
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CONCLUSION 
Considering the importance of daily CO 

concentration in the atmosphere of Tehran, 

this research aimed to develop proper 

prediction models using SVM technique. 

Since input selection is a significant step in 

modeling, FS method is used and SVM 

models are developed. The goodness of each 

model is evaluated using R
2
 and MAE 

statistics and also, DDR. The following 

conclusions could be founded from the 

present study: 1- Input selection improves 

prediction capability of both  -SVM,  -

SVM regression models. It reduced the 

output error and improved the model 

performance. 2- The type of SVM regression 

models does not have any significant effect 

on SVM models operation. 3- Considering 

R
2
 and MAE indices, FS-ANFIS, FS-ANN, 

FS-( -SVM), and FS-( -SVM) models 

approximately have the same performance. 

Also, the same result is obtained using DDR. 

4- To reduce computational efforts, we 

recommend developing a method for SVM 

parameter optimization instead of grid search 

algorithm. In addition, since the result of 

SVM regression techniques are faced with 

uncertainty, we recommend that corrective 

measures such as utilization of Mont-Carlo 

simulation method should be considered. 5- 

Finally, input variables preprocessing by FS 

is recommended for increasing SVM 

regression models operation, especially in 

some cases which there is not a great deal of 

knowledge about the input variables. 
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