تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,799 |
تعداد دریافت فایل اصل مقاله | 97,231,022 |
حل دقیق پاسخ جریان آب زیرزمینی در آبخوان بسته به تغییرات سطح آب رودخانه | ||
اکوهیدرولوژی | ||
مقاله 9، دوره 6، شماره 4، دی 1398، صفحه 957-968 اصل مقاله (775.98 K) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2019.282765.1132 | ||
نویسندگان | ||
ایرج سعیدپناه* 1؛ سمیه محمدزاده روفچائی2 | ||
1استادیار گروه عمران دانشکدۀ مهندسی، دانشگاه زنجان | ||
2دانشجوی کارشناسی ارشد مهندسی عمران، دانشگاه زنجان | ||
چکیده | ||
در پژوهش حاضر یک مدل ریاضی به منظور شبیهسازی اندرکنش بین جریان آب زیرزمینی و تغییرات تراز آب رودخانه و همچنین بررسی نوسانات هد هیدرولیکی در آبخوان مجاور رودخانۀ جزر و مدی با به دست آوردن یک حل دقیق ارائه شده است. این مدل ریاضی براساس مفاهیم هیدرولیک جریان آب زیرزمینی تحت تأثیر تغییرات تراز آب رودخانه و تغییرات سطح آب زیرزمینی ناشی از نوسانات مرز سمت چپ آبخوان پایهگذاری شده است. دو مسئلۀ پایین افتادن و بالا رفتن سطح آب رودخانه بررسی شده است. بررسی محاسبات نشان میدهد با دور شدن از مرز جزر و مدی، مقادیر نوسانات کاهش مییابد و موجهایی با دامنۀ نوسان کمتر ایجاد میشوند. تأثیر جزر و مد در مقاطع بین 1 تا 2 کیلومتری از مرز جزر و مدی چشمگیرتر است و همچنین با افزایش قابلیت انتقال، میزان هد هیدرولیکی سطح آب افزایش مییابد و در مقطع با فاصلۀ 700 متر از مرز جزر و مدی، تأثیرات تغییر قابلیت انتقال روی هد سطح آب چشمگیر است. برای صحتسنجی حل دقیق ارائهشده از نرمافزار Modflow استفاده شد. مقایسۀ نتایج بهدستآمده از حل دقیق و نرمافزار Modflow، کارآمد بودن حل دقیق ارائهشده برای شبیهسازی اندرکنش بین هیدرولیک آبخوان بسته و رودخانۀ جزر و مدی را نشان میدهد. | ||
کلیدواژهها | ||
آبخوان بسته؛ اندرکنش آبخوان و رودخانه؛ جریان غیردائمی آب زیرزمینی؛ روش تفکیک متغیرها؛ مدل ریاضی | ||
مراجع | ||
[1]. Ophocleous. M. Interactions between groundwater and surface water: the state of the science. Journal of Hydrology. 2002; 10: 52–67. [2]. Chuang M.H, Yeh H.D. An analytical solution for the head distribution in a tidal leaky confined aquifer extending an infinite distance under the sea. Advances in Water Resources. 2007; 30(3): 439-445. [3]. Saeedpanah I, Golmohamadi Azar R, New analytical expressions for two-Dimensional aquifer adjoining with streams of varying water level. Water Resources Management. 2017; 31(1): 403–424. [4]. Saeedpanah I, Golmohamadi Azar R, New analytical solutions for unsteady flow in a leaky aquifer between two parallel streams. Water Resources Management. 2017; 31(7): 2315–2332.
[5]. Dong, L., Chen, J., Fu, C. and Jiang, H. Analysis of groundwater-level fluctuation in a coastal confined aquifer induced by sea-level variation. Hydrogeology Journal. 2012; 20: 719–726.
[6]. Guo Q. N, Li H. L, Boufadel M. C, xia Y, Li G. Tide-induced groundwater head fluctuation in coastal multi-layered aquifer systems with a submarine outlet capping. Advances in Water Resources. 2007; 30(8):1746–1755.
[7]. Huang, C.S.,Yeh, H.D. and Chang, C.H. A general analytical solution for ground- water fluctuations due to dual tide in long but narrow islands. water resources research. 2012; 48.
[8]. Maas, C., and W. J. De Lange. On the negative phase shift of groundwater tides near shallow tidal rivers—The Gouderak anomaly, Journal of Hydrology. 1987; 92: 333– 349.
[9]. Jiao, J. J., and Z. Tang. An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer, water resources research. 1999; 35(3), 747–751.
[10]. Tang ZH, Jiao, J.J. A two-dimensional analytical solution for groundwater flow in a leaky confined aquifer system near open tidal water. Hydrological processes. 2001; 15:573–585.
[11]. Li, H., G. Li, J. Cheng, and M. C. Boufadel. Tide-induced head fluctuations in a confined aquifer with sediment covering its outlet at the sea floor, water resources research. 2007; 43(3).
[12]. Li H, Jiao J.J. Tidal groundwater level fluctuations in L-shaped leaky coastal aquifer system. Journal of Hydrology. 2002; 268(1- 4): 234-243.
[13]. Guo H. P, Jiao J. J, Li HL. Groundwater response to tidal fluctuation in a two-zone aquifer. Journal of Hydrology. 2010; 381(3- 4):364–371.
[14]. Bansal, R. K. and Das, S. K. Analytical solution for transient hydraulic head, flow rate and volumetric exchange in an aquifer under recharge condition, Journal of Hydrology and Hydromechanics. 2009; 57(2): 113-120.
[15]. Singh, S.K. Aquifer response to sinusoidal or arbitrary stage of semipervious stream. Journal of Hydraulic Engineering. 2004; 130(11), 1108-1118.
[16]. Elfeki, A.M., Uffink, G.J., Lebreton, S. Simulation of solute transport under oscillating groundwater flow in homogeneous aquifers. Journal of Hydraulic research. 2007. 45(2): 254-260.
[17]. Chen JW, Hsieh HH, Yeh HF, Lee CH. The effect of the variation of river water levels on the estimation of groundwater recharge in the Hsinhuwei River, Taiwan. Environ Earth Sci. 2010. 59:1297.
[18]. Bansal RK, Das SK. Response of an unconfined sloping aquifer to constant recharge and seepage from the stream of varying water level. Water Resources Management. 2011; 25:893–911
[19]. Dong L, Chen J, Fu C, Jiang H. Analysis of groundwater-level fluctuation in a coastal confined aquifer induced by sea-level variation. Hydrogeology Journal. 2012; 20(4):719–726.
[20]. Rai S, Manglik A. An analytical solution of Boussinesq equation to predict water table fluctuations due to time varying recharge and withdrawal from multiple basins, wells and leakage sites. Water Resources Management. 2012; 26:243–252.
[21]. Huang CS, Lin WS, Yeh HD. Stream filtration induced by pumping in a confined, unconfined or leaky aquifer bounded by two parallel streams or by a stream and an impervious stratum. Journal of Hydrology. 2014; 513(26):28–44.
[22]. Li H, Jiao J.J. Tide-induced groundwater fluctuation in a coastal leaky confined aquifer system extending under the sea. water resources research. 2001; 37(5): 1165–1171.
[23]. Li H, Jiao J. J. Tide-induced seawater–groundwater circulation in a multi-layered coastal leaky aquifer system. Journal of Hydrology. 2003; 274(1- 4):211–224.
[24]. Hussein, M., Schwartz, F.W. Modeling of flow and contaminant transport in coupled stream–aquifer systems. Journal of Contaminant Hydrology. 2003; 65: 41–64.
[25]. Kim, K.Y., Kim, T., Kim, Y., Woo, N.C. A semi-analytical solution for groundwater responses to stream-stage variations and tidal fluctuations in a coastal aquifer. Hydrological Process. 2007; 21(5): 665–674.
[26]. Xu, X., Huang, G., Zhan, H., Qu, Z., Huang, Q. Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas. Journal of Hydrology. 2012; 412:170–181.
[27]. Budge, T.J., Sharp, Jr. JM. Modeling the usefulness of spatial correlation analysis on karst systems. Ground Water. 2009; 47(3):427–37.
[28]. Palma, H. C., Bentley, L. R. A regional-scale groundwater flowmodel for the Leon–Chinandega aquifer, Nicaragua. Hydrogeology Journal. 2007; 15:1457–72.
[29]. Telogloua L.S, Bansal, R k. Transient solution for stream–unconfined aquifer interaction due to time varying stream head and in the presence of leakage. Journal of Hydrology. 2012; 428: 68–79.
[30]. Saeedpanah I, Golmohamadi Azar R. Solution of Unsteady Flow in a Confined Aquifer Interacting with a Stream with Exponentially Decreasing Stream Stage. ASCE's Journal of Hydrologic Engineering. 2019; 24(2): 1–11.
[31]. Lal, A.M.W. Numerical errors in groundwater and overland flow models. Water Resour. Res. 2000; 36 (5): 1237–1247.
[32]. Hanson, R.T., S.E. Boyce, W. Schmid, J.D. Hughes, S.M. Mehl, S.A. Leake, T. Maddock III, and R.G. Niswonger. One-water Hydrologic Flow Model (MODFLOW-owhm). U.S. Geological Survey, Techniques and Methods. 2014; 6–A51.
[33]. Xia. Y, Li. H.L, Boufadel. M.C. A new perturbation solution of groundwater table fluctuations in tidal beaches. J. Hydrodynamics. 2010, 22(5), 55-60.
[34]. Harbaugh, A.W. MODFLOW-2005, the U.S. Geologica Survey modular ground-water model – the ground-water flow process. U.S. Geological Survey, Techniques and Methods. 2005; 6-A16. | ||
آمار تعداد مشاهده مقاله: 616 تعداد دریافت فایل اصل مقاله: 331 |