تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,099,050 |
تعداد دریافت فایل اصل مقاله | 97,206,640 |
اثر مواد حجیم بر کیفیت کمپوست ضایعات غذایی در راکتورهای خانگی | ||
مهندسی بیوسیستم ایران | ||
مقاله 11، دوره 50، شماره 3، آبان 1398، صفحه 615-631 اصل مقاله (1.17 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2019.266902.665102 | ||
نویسندگان | ||
زهرا نادری مایوان* 1؛ سید جعفر هاشمی2؛ رضا طباطبایی کلور2؛ محمد یونسی الموتی3 | ||
1دانشجوی کارشناسی ارشد مهندسی بیوسیستم، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران. | ||
2دانشیار گروه مهندسی بیوسیستم- دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران. | ||
3دانشیار گروه مهندسی مکانیک ماشین های کشاورزی و مکانیزاسیون، موسسه ی تحقیقات فنی و مهندسی کشاورزی،کرج، ایران. | ||
چکیده | ||
پسماندهای خانگی درصد زیادی مواد تجزیهپذیر دارند که برای تهیه کود گیاهی یا کمپوست منبع بسیار مناسب است. این پژوهش باهدف بررسی اثر موادحجیم بر بلوغ و کیفیت کمپوست ضایعات غذایی در راکتورهای خانگی انجام گردید. در این تحقیق از 4 تیمار به ترتیب ضایعات خانگی (FW)، ضایعات خانگی بههمراه باگاس نیشکر و زغالزیستی (FWSB)، ضایعات خانگی با خاکاره و زغالزیستی (FWGB) و ضایعات خانگی بههمراه نانخشک و زغالزیستی (FWBB) مورداستفاده قرار گرفت. باگاس نیشکر و خاکاره، نانخشک و زغالزیستی تولیدشده از لجن فاضلاب مرغداری برای دستیابی به C/N تعیین هدف شده (تقریباً 24) مورداستفاده قرار گرفتند. در پایان فرایند، میزان pH در تیمار FWSB بیشترین مقدار(1/8) و در تیمار FWBB کمترین مقدار را (88/6) دارا بود. EC در طول فرایند در تیمارها، یکروند مشابه صعودی را طی کردهاست. نسبت بهینه C/N در همهی تیمارها مشاهدهشد. همچنین FWSB دارای اثر مطلوبتری بر فرایند کمپوستسازی و کیفیت کمپوست نهایی است و با ایجاد تخلخل و حفظ رطوبت توده، سبب کنترل pH و EC میگردد. | ||
کلیدواژهها | ||
رآکتورخانگی؛ ضایعات غذایی؛ کمپوست؛ گازهای گلخانهای؛ نسبت C/N | ||
مراجع | ||
Abdi, R., Hashemi, S.J., Tabatabaee, S.R., (2017). Construction and evaluation domestic system of product compost from vegetative waste. Journal of Agricultural Mechanization and Systems Research.16(2),69-84. (In Farsi) An, C. J., Huang, G. H., Yao, Y., Sun, W., & An, K. (2012). Performance of in-vessel composting of food waste in the presence of coal ash and uric acid. Journal of Hazardous Materials, 203, 38-45. Awasthi, M. K., Pandey, A. K., Khan, J., Bundela, P. S., Wong, J. W., & Selvam, A. (2014). Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresource technology, 168, 214-221. Banegas, V., Moreno, J. L., Moreno, J. I., Garcia, C., Leon, G., & Hernandez, T. (2007). Composting anaerobic and aerobic sewage sludges using two proportions of sawdust. Waste Management, 27(10), 1317-1327. Cabanas-Vargas, D. D., & Stentiford, E. I. (2006). Oxygen and CO2 profiles and methane formation during the maturation phase of composting. Compost science & utilization, 14(2), 86-89. Chan, M. T., Selvam, A., & Wong, J. W. (2016). Reducing nitrogen loss and salinity during ‘struvite’food waste composting by zeolite amendment. Bioresource technology, 200, 838-844. Chang, J. I., & Hsu, T. E. (2008). Effects of compositions on food waste composting. Bioresource technology, 99(17), 8068-8074. Chen, L., De Haro, M. M., Moore, A., & Falen, C. (2011). The Composting Process: Dairy Compost Production and Use in Idaho CIS 1179. University of Idaho. Chen, R., Wang, Y., Wang, W., Wei, S., Jing, Z., & Lin, X. (2015). N2O emissions and nitrogen transformation during windrow composting of dairy manure. Journal of environmental management, 160, 121-127. Chen, Y. X., Huang, X. D., Han, Z. Y., Huang, X., Hu, B., Shi, D. Z., & Wu, W. X. (2010). Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere, 78(9), 1177-1181. Chen, Z., Zhang, S., Wen, Q., & Zheng, J. (2015). Effect of aeration rate on composting of penicillin mycelial dreg. Journal of Environmental Sciences, 37, 172-178. Chowdhury, A. K. M. M. B., Konstantinou, F., Damati, A., Akratos, C. S., Vlastos, D., Tekerlekopoulou, A. G., & Vayenas, D. V. (2015). Is physicochemical evaluation enough to characterize olive mill waste compost as soil amendment? The case of genotoxicity and cytotoxicity evaluation. Journal of Cleaner Production, 93, 94-102. Diaz, L. F., & De Bertoldi, M. (2007). History of composting. In Waste Management Series (Vol. 8, pp. 7-24). Elsevier. Finstein, M. S., & Morris, M. L. (1975). Microbiology of Municipal Solid Waste Composting1. In Advances in applied microbiology (Vol. 19, pp. 113-151). Academic Press. Gabhane, J., William, S. P., Bidyadhar, R., Bhilawe, P., Anand, D., Vaidya, A. N., & Wate, S. R. (2012). Additives aided composting of green waste: Effects on organic matter degradation, compost maturity, and quality of the finished compost. Bioresource technology, 114, 382-388. Ghaffari, S., Sepahi, A. A., Razavi, M. R., Malekzadeh, F., & Haydarian, H. (2011). Effectiveness of inoculation with isolated Anoxybacillus sp. MGA110 on municipal solid waste composting process. African Journal of Microbiology Research, 5(30), 5373-5378. Hachicha, S., Sellami, F., Cegarra, J., Hachicha, R., Drira, N., Medhioub, K., & Ammar, E. (2009). Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure—Physico-chemical characterization of the processed organic matter. Journal of Hazardous Materials, 162(1), 402-409. Haug, R. (1993). The practical handbook of compost engineering. Routledge. Huang, G. F., Wong, J. W. C., Wu, Q. T., & Nagar, B. B. (2004). Effect of C/N on composting of pig manure with sawdust. Waste management, 24(8), 805-813. Imbeah, M. (1998). Composting piggery waste: a review. Bioresource Technology, 63(3), 197-203. Iqbal, M. K., Nadeem, A., Sherazi, F., & Khan, R. A. (2015). Optimization of process parameters for kitchen waste composting by response surface methodology. International Journal of Environmental Science and Technology, 12(5), 1759-1768. Iyengar, S. R., & Bhave, P. P. (2006). In-vessel composting of household wastes. Waste management, 26(10), 1070-1080. Jaafarzadeh Haghighifard N, Abbasi N, Aalivar Babadi M, Bohrani R, Mirzayi Zadeh H. (2015). Co-compost green waste and dehydrated sludge, wastewater treatment plant at West Ahvaz. Journal of Soil and Water Sciences and Technology of Agriculture andNatural Resources, 19(71):205-16 (in Farsi). Javadian, B., Heydarzadeh, M.H., Amani, h. (2014). Providing new solutions for compost production from municipal waste and adapting to indigenous condicion. 5 eh conference on water, wastewater and solid waste. (In Farsi) Jiang, J., Liu, X., Huang, Y., & Huang, H. (2015). Inoculation with nitrogen turnover bacterial agent appropriately increasing nitrogen and promoting maturity in pig manure composting. Waste management, 39, 78-85. Khan, N., Clark, I., Sánchez-Monedero, M. A., Shea, S., Meier, S., & Bolan, N. (2014). Maturity indices in co-composting of chicken manure and sawdust with biochar. Bioresource technology, 168, 245-251. Kim, J. D., Park, J. S., In, B. H., Kim, D., & Namkoong, W. (2008). Evaluation of pilot-scale in-vessel composting for food waste treatment. Journal of hazardous materials, 154(1-3), 272-277. Kulikowska, D. (2016). Kinetics of organic matter removal and humification progress during sewage sludge composting. Waste Management, 49, 196-203. Lakhdar, A., Hafsi, C., Rabhi, M., Debez, A., Montemurro, F., Abdelly, C., ... & Ouerghi, Z. (2008). Application of municipal solid waste compost reduces the negative effects of saline water in Hordeum maritimum L. Bioresource Technology, 99(15), 7160-7167. Larney, F. J., Yanke, L. J., Miller, J. J., & McAllister, T. A. (2003). Fate of coliform bacteria in composted beef cattle feedlot manure. Journal of environmental quality, 32(4), 1508-1515. Lazcano, C., Gómez-Brandón, M., & Domínguez, J. (2008). Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72(7), 1013-1019. Lehmann, J., & Joseph, S. (Eds.). (2009). Biochar for environmental management: science, technology and implementation. Routledge. López-Cano, I., Roig, A., Cayuela, M.L., Alburquerque, J.A., Sánchez-Monedero, M.A., 2016. Biochar improves N cycling during composting of olive mill wastes and sheep manure. Waste Manag. 49, 553–559. Makan, A. (2015). Windrow co-composting of natural casings waste with sheep manure and dead leaves. Waste management, 42, 17-22. Mohee, R., Boojhawon, A., Sewhoo, B., Rungasamy, S., Somaroo, G. D., & Mudhoo, A. (2015). Assessing the potential of coal ash and bagasse ash as inorganic amendments during composting of municipal solid wastes. Journal of environmental management, 159, 209-217. Mulec, A. O., Walochnik, J., & Bulc, T. G. (2016). Composting of the solid fraction of blackwater from a separation system with vacuum toilets–Effects on the process and quality. Journal of cleaner production, 112, 4683-4690. Palmiotto, M., Fattore, E., Paiano, V., Celeste, G., Colombo, A., & Davoli, E. (2014). Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environment international, 68, 16-24. Pandey, P. K., Cao, W., Biswas, S., & Vaddella, V. (2016). A new closed loop heating system for composting of green and food wastes. Journal of cleaner production, 133, 1252-1259. Paradelo, R., Moldes, A. B., & Barral, M. T. (2013). Evolution of organic matter during the mesophilic composting of lignocellulosic winery wastes. Journal of environmental management, 116, 18-26. Parthan, S. R. (2012). Improved cost estimation for solid waste management in industrialising regions. Raut, M. P., William, S. P., Bhattacharyya, J. K., Chakrabarti, T., & Devotta, S. (2008). Microbial dynamics and enzyme activities during rapid composting of municipal solid waste a compost maturity analysis perspective. Bioresource Technology, 99(14), 6512-6519. Ravindran, B., & Sekaran, G. (2010). Bacterial composting of animal fleshing generated from tannery industries. Waste management, 30(12), 2622-2630 Sánchez-Monedero, M. A., Roig, A., Paredes, C., & Bernal, M. P. (2001). Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresource technology, 78(3), 301-308. Sangamithirai, K. M., Jayapriya, J., Hema, J., & Manoj, R. (2015). Evaluation of in-vessel co-composting of yard waste and development of kinetic models for co-composting. International Journal of Recycling of Organic Waste in Agriculture, 4(3), 157-165. sawdust. Waste management, 24(8), 805-813. Sundberg, C., Smårs, S., & Jönsson, H. (2004). Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresource Technology, 95(2), 145-150. Thompson, W., Leege, P. B., Millner, P. D., & Watson, M. E. (2001). Test methods for the examination of composting and compost. The United States Composting Council Research and Education Foundation. The United States Department of Agriculture. Tognetti, C., Mazzarino, M. J., & Laos, F. (2007). Improving the quality of municipal organic waste compost. Bioresource Technology, 98(5), 1067-1076. Turan, N. G. (2008). The effects of natural zeolite on salinity level of poultry litter compost. Bioresource technology, 99(7), 2097-2101. Walker, L., Charles, W., & Cord-Ruwisch, R. (2009). Comparison of static, in-vessel composting of MSW with thermophilic anaerobic digestion and combinations of the two processes. Bioresource technology, 100(16), 3799-3807. Wang, X., Selvam, A., Chan, M., & Wong, J. W. (2013). Nitrogen conservation and acidity control during food wastes composting through struvite formation. Bioresource technology, 147, 17-22. Xiu-lan, Z., Bi-qiong, L., Jiupai, N., & De-ti, X. (2016). Effect of four crop straws on transformation of organic matter during sewage sludge composting. Journal of Integrative Agriculture, 15(1), 232-240. Yang, F., Li, G. X., Yang, Q. Y., & Luo, W. H. (2013). Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting. Chemosphere, 93(7), 1393-1399. Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., & Zhang, X. (2012). Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and soil, 351(1-2), 263-275. Zhang, L., & Sun, X. (2015). Effects of earthworm casts and zeolite on the two-stage composting of green waste. Waste management, 39, 119-129. Zhang, L., & Sun, X. (2016). Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc. Bioresource technology, 218, 335-343. Zhou, Y., Selvam, A., & Wong, J. W. (2014). Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues. Bioresource technology, 168, 229-234. Zorpas, A. A., & Loizidou, M. (2008). Sawdust and natural zeolite as a bulking agent for improving quality of a composting product from anaerobically stabilized sewage sludge. Bioresource Technology, 99(16), 7545-7552. | ||
آمار تعداد مشاهده مقاله: 391 تعداد دریافت فایل اصل مقاله: 309 |