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Abstract 
This work describes a knowledge–guided clustering approach for mineral potential mapping (MPM), by which the optimum number of 
clusters is derived form a knowledge–driven methodology through a concentration–area (C–A) multifractal analysis. To implement the 
proposed approach, a case study at the North Narbaghi region in the Saveh, Markazi province of Iran, was investigated to discover 
porphyry Cu–bearing favorability zones. Whereby, various exploratory indicators were extracted from a multidisciplinary geospatial 
data set comprising of geology, geophysics and geochemistry criteria. Those indicators were prepared from magnetometry and geo–
electrical survey, lithogeochemical samples and geological field operation. The optimum number of clusters was obtained by running 
the knowledge–based methods of index overlay and fuzzy gamma operators, indicating five clusters from the C–A multifractal curve. 
Accessing to exploratory drilling lets us to find out the most efficient synthesized favorability map that was generated by a fuzzy 
algebraic sum operator (or a gamma value equal to one). Assuming the optimum number of clusters, three clustering methods, namely 
fuzzy C–means (FCM), K–means and self–organizing map were examined for MPM. Note that the FCM as an unsupervised data–
driven methodology, had superiority over other clustering analyses by generating mineral favorability map in close association with 
drilling results. 
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Introduction 
Mineral potential mapping (MPM) is a 
sophisticated geospatial data processing and 
integration task, by which a district/deposit scale 
region is delimited into some favorable potential 
zones to detect ore mineralization targets with 
higher certainty. For achieving this aim, one of the 
important steps is accessibility to a 
multidisciplinary and high quality geospatial data 
set in which data are powerful footprints of sought 
mineral target (Abedi et al., 2013a,b). According to 
the type of sought mineral target, various 
exploratory criteria, namely geology, remote 
sensing, geochemistry and geophysics are taken 
into account. Therefore, if indicator layers extracted 
from exploratory criteria are quantified correctly, 
synthesized indicators presenting mineral 
favorability zones will be reliable (Carranza, 2008). 
   Utilizing a variety of available exploratory data 
and maps, and the capabilities of the geographical 
information system (GIS), an MPM can easily be 
generated to reveal the most probabilistic locations 
in terms of favorability for unknown ore 
occurrences (Carranza, 2008). Therefore, several 
exploratory indicators are generated to integrate and 
analyze synthesized favorability maps ( Najafi et 
al., 2014; Yousefi & Carranza, 2015a, b; Kashani et 
al., 2016). An exploration information system has 

been also suggested as a new idea for an 
information system to better integrate the 
conceptual mineral deposit model with available 
data set to support exploration targeting and discuss 
how best to categorize a mineral system as scale–
dependent subsystem to form a mineral deposit 
(Yousefi et al., 2019). 
   Different MPM methodologies have been 
developed in the last two decades, which in general 
can be divided into three main categories (Pan & 
Harris, 2000; Carranza, 2008; Kashani et al., 2016). 
Methods of data integration are categorized into (1) 
knowledge–driven, (2) data–driven, and (3) hybrid 
approaches.  
   In supervised data–driven methods, known 
mineral deposits are used as "training points" to 
create spatial relationships with specific geological, 
geochemical and geophysical features (Carranza, 
2008; Kashani et al., 2016). Relationships are 
quantified to assign a weight of importance for each 
indicator on the basis of a computational algorithm 
(Carranza & Hale, 2002a; Kashani et al., 2016), and 
ultimately those indicators are integrated into a 
single mineral favorability map ( Nykänen & 
Salmirinne, 2007; Kashani et al., 2016). Examples 
of data–driven methods are logistic regression 
(Agterberg & Bonham–Carter, 1999; Carranza & 
Hale, 2001; Mejía–Herrera et al., 2015), neural 
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networks (Singer & Kouda, 1996; Porwal et al., 
2003, 2004; Harris et al., 2003; Nykänen, 2008; 
Abedi & Norouzi, 2012;), weights of evidence 
(Bonham–Carter, 1989; Agterberg et al., 1990; 
Carranza & Hale, 2002b), support vector machine 
(Abedi & Norouzi, 2012; Shabankareh & 
Hezarkhani, 2017), and random forests (Carranza & 
Laborte, 2016; Zhang et al., 2016). Unsupervised 
data–driven methods (without needing to training 
points) are clustering algorithms which divide 
multidimensional feature space into some clusters 
(Paasche & Eberle, 2009; Eberle & Paasche, 2012; 
Abedi et al., 2013b). 
   Another main group for MPM is knowledge–
driven methods, which are based on a geoscientists’ 
opinions (Abedi et al., 2013a,b; Kashani et al., 
2016). They are Boolean logic (Bonham–Carter, 
1989, 1994; Abedi et al., 2013b), index overlay 
(Bonham–Carter, 1994; Carranza et al., 1999; 
Abedi et al., 2013b; Mirzaei et al., 2014; Sadeghi et 
al., 2014; Sadeghi & Khalajmasoumi, 2015), fuzzy 
logic (An et al., 1991; Chung & Moon, 1991; Abedi 
et al., 2013c; Moradi et al., 2015; Sadeghi & 
Khalajmasoumi, 2015; Kashani et al., 2016), 
outranking methods (Abedi et al., 2012a,b; Abedi et 
al., 2013a; Abedi et al., 2015), and evidential belief 
functions (Moon, 1990; Tangestani & Moore, 
2002). Hybrid algorithms are also a combinatory of 
knowledge– and data–driven methods, where 
simultaneous consideration of both approaches are 
taking into consideration (Porwal et al., 2003, 2004; 
Pazand & Hezarkhani, 2015). 
    Despite three main groups of MPM, two novel 
approaches have been proposed to outperform 
synthesized mineral favorability maps that are (a) a 
hybrid algorithm by simultaneous consideration of 
both locations of known mineral occurrences and 
expert attitudes, and (2) weighting to the continuous 
spatial evidence without consideration of the 
location of known mineral occurrences and expert 
judgments (Yousefi & Carranza 2015c, 2016a, b). 
   Among data–driven methods, unsupervised 
algorithms of clustering have been rarely applied in 
MPM. One reason can be related to unknown 
number of clusters which has substantial effect on 
the final synthesized mineral favorability map. 
Correct determination of the cluster number has 
been investigated in several field of studies (e.g. 
Rajabinasab & Asghari 2019). This work has 
examined a knowledge–guided clustering 
methodology, where the optimum number of 
clusters is determined on the basis of multifractal 

characteristics of a knowledge–driven mineral 
favorability map in association with the geological 
setting of a prospect zone. Index overly and fuzzy 
gamma operators are employed here to integrate 
indicator layers, and subsequently mineral 
favorability maps are divided into some clusters. 
The cluster number is defined to run fuzzy C–
means (FCM), K–means (KM) and self–organizing 
map (SOM) algorithms. On the basis of drilling 
results, the FCM clustering could efficiently 
localize two separate zones in association with 
porphyry copper mineralization at the North 
Narbaghi prospect zone in Saveh, Markazi province 
of Iran. A deposit–scale MPM in porphyry ore 
mineralization system usually utilizes several types 
of exploratory data that are geophysical evidences 
derived from magnetometry and geo–electrical 
surveys, geological evidences from the geological 
data set (i.e. lithology, lineament and alteration), 
and geochemical evidences (Abedi et al., 2017).  
   The remainder of this research has been prepared 
as follows. Geological setting of the North 
Narbaghi porphyry copper mineralization is 
explained in the second section. Geospatial dataset 
is constructed in the third section, where a 
multidisciplinary database is designed from 
geophysical (magnetometry and geo–electrical 
data), geological and geochemical surveys. In 
fourth section, indicator layers are integrated 
through a knowledge–guided clustering algorithm. 
Then in fifth section, the performance and quality 
of generated mineral favorability maps are 
discussed by comparison to the geometry of the 
main source of Cu mineralization. Finally, main 
achievements are summarized in the conclusion. 
 
Geological setting of the North Narbaghi Cu 
mineralization 
From the geological point of view, the North 
Narbaghi Cu deposit as a type of volcano–genetic 
mineralization, is located on the volcanic belt of the 
Urmia–Dokhtar magmatic assemblage (UDMA) in 
the structural geology divisions of Iran (Ramazi & 
Jalali, 2015). This volcanic belt, shown in Fig. 1a, 
is classified as an Andean–type magmatic arc due to 
the closure of the Neo–Tethys ocean between the 
Arabian plate and the Eurasian plate  (Shahabpour, 
2005; Kazemi et al., 2019). The Saveh district is 
located at the UDMA zone, as the main host of the 
porphyry deposits such as Cu, Au and Mo in Iran 
(Berberian & King, 1981; Rezaei et al., 2015). The 
main rock units dominated the North Narbaghi have 
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been summarized in three main groups as following: 
(1) Monzogranite to quartz monzonite units hosted 
the most Cu mineralized regions, severely 
dominated by argillic alteration (Fig. 2a). The 
number of magmatic intrusions in the region is 
somewhat high, where most portions were exposed 
in small sizes. The age of these masses is equivalent 
to the early Oligocene. The structural lineaments of 
the region have substantially controlled the 
deployment of such magmatic intrusions since most 
intrusive sources in adjacency to the Saveh were 
manifested on the margins of the lineaments. 
Therefore, such phenomena could be in association 
with a batholith source as the feeder of the intrusive 
masses in this region. Two types of hydrothermally 
alteration were visible in this unit. Phyllic alteration 
occurred in portions with minerals of pyrite, sericite 
and quartz. In addition, over areas with depletion of 
the Cu mineralization, the argillic alteration has 
severely affected the rocks. Meanwhile, the 

intrusive units were intact and unaltered in some 
portions as well. 
(2) Basaltic andesite rocks with a distinct silicic 
alteration. Volcanic activities in the North Narbaghi 
copper deposit led to the generation of the basaltic 
andesite unit within the porphyritic hornblende 
andesite rocks (Fig. 2b), with a dark gray color and 
a distinct outcrop than the surrounding rocks. These 
rocks were mostly surrounded by the monzogranite 
and quartz monzodiorite units. 
(3) Porphyritic hornblende andesite units affected 
by the hydrothermally propylitic alteration have 
surrounded the mineralized Cu zones (Fig. 2c). 
Intense alteration of coarse crystals namely chlorite, 
epidote and carbonate has appeared in the andesite 
unit, leading to the transformation of plagioclase 
and amphibole into such minerals. Moreover, the 
andesine rock, as the oldest unit with an Eocene age 
and the most extensive rock, occurred in the south 
of the North Narbaghi.  

 

 
Figure 1. The general geological setting of Iran (a), the simplified geological units in the North Narbaghi copper deposit and the 
alteration map (b). 
 

 
Figure 2. Sample photos of the main rock units in the North Narbaghi, (a) monzogranite to quartz monzonite, (b) basaltic andesite, and 
(c) porphyritic hornblende andesite (Dehghan Nayeri 2018). 
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Chlorite alteration was also sporadically visible 
in some portions and its intensity has increased in 
adjacency to the mineralized regions 
(Ghalamghash, 1998; Ramazi & Jalali, 2015). 
   Structural lineaments (i.e. faults, fractures and 
contacts) with few traces in the area had low impact 
on the Cu mineralization. The disseminated type of 
the Cu mineralization was not strongly in 
association with the structural lineaments, while the 
effect of the faults just led to partially Cu 
enrichment. The largest fault trace was observed in 
the west portion of the studied region with an 
approximate north–south trend (Dehghan Nayeri, 
2018). 
 
Geospatial data set 
In the following sub–sections, seven indicator 
layers from geological, geochemical, and 
geophysical data are extracted to construct a 
multidisciplinary geospatial database. A decision 
matrix with 9136 rows of data points and 7 columns 
of indicators was constructed to synthesize mineral 
favorability maps. Processing of each indicator was 
such that each layer lies at an interval from 0 to 1 to 
suppress perturbation effect arising from different 
data scales. 
 
Geological layers  
Due to the presence of the main host rocks of Cu 
mineralization in the region, the monzogranite to 
quartz monzonite units were assigned the highest 
score by expert decision makers (DMs). The 
importance of other rocks with lower impact on ore 
mineralization was reflected in the rock type 

indicator layer (Fig. 3a). In addition, since phyllic 
alteration has occurred in regions with higher 
enrichment of Cu–bearing mineralization, the 
highest score was assumed for this attribute in the 
alteration indicator layer. The lowest score is 
considered for the propylitic alteration, which 
surrounds the main regions of mineralization. The 
importance of alteration system in the porphyry 
type Cu mineralization was taken into account as 
the second geological indicator layer (Fig. 3b). 
Since there were no traces of copper mineralization 
in association with the fault activities in the North 
Narbaghi, this layer was not involved in the 
exploratory decision matrix. 
 
Geochemical layers  
Totally, 47 lithogeochemical samples were 
collected systematically with a regular grid distance 
of 250 m over the North Narbaghi. The sampling 
distance reduced to 50 m over the monzogranite and 
quartz monzonite units where there were sharp 
geological evidences of the Cu mineralization. The 
normalized map of the Cu concentration as a 
geochemical indicator layer is shown in Fig. 4a. To 
investigate spatially correlation among 
concentration of analyzed elements, the descriptive 
statistical characteristics of the main eight elements 
correlated with Cu are presented in Table 1. The 
Pearson’s linear correlation coefficient for six 
elements of Mo, Zn, Co, As, Sb and Li against the 
Cu concentration is tabulated in Table 2. These 
positive correlations were only negative for Mg 
element (–0.567), where depletion has occurred in 
the mineralized zones. 

 

 
Figure 3. The geological indicator layers, (a) rock type, and (b) alteration. 
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Table 1. Descriptive Statistical summaries of main correlated elements (in ppm) 
Element Min Max Mean Median Std. Skewness Kurtosis 

Cu 3.83 13333 2256.10 134.13 4333.3 1.88 4.95 

Mo 0.66 11.30 3.12 1.94 3.30 1.51 3.99 

Zn 7.53 568 69.17 24.00 103.98 2.79 12.50 

Co 6.00 167 45.44 20.57 53.92 1.48 3.64 

As 3.33 5960 668.46 42.00 1483.1 2.50 8.11 

Sb 3.33 229 27.33 5.51 55.82 2.64 8.66 

Mg 0.06 3.07 1.06 1.06 0.78 0.69 3.06 

Li 0.75 144 22.13 10.00 32.56 2.078 6.76 

 
Table 2. Pearson’s linear correlation coefficient 

Cu 1.00 

Mo 0.845 1.00 

Zn 0.573 0.440 1.00 

Co 0.872 0.734 0.504 1.00 

As 0.869 0.863 0.518 0.748 1.00 

Sb 0.816 0.869 0.464 0.653 0.963 1.00 

Mg -0.567 -0.563 -0.292 -0.605 -0.518 -0.478 1.00 

Li 0.631 0.444 0.388 0.811 0.541 0.389 -0.543 1.00 

 Cu Mo Zn Co As Sb Mg Li 

 

 
Figure 4. The normalized geochemical indicator layers, (a) Cu concentration, and (b) PC1. 

 
   The principal component analysis (PCA), known 
as a multivariate statistical technique, reduces the 
dimension of eight lithogeochemical elements. 
Indeed, it produces principal components (PCs), 
while the most correlated one with ore 
mineralization must be searched to be selected as an 
indicator layer. In this analysis, PC scores are 
calculated by projection of the original geochemical 
data onto the PC axes (eigenvectors). The elements 
of the eigenvector that calculate the PC scores of 
the original input data are called loadings (or 
eigenvalues), which are in fact the linear equation 

coefficients for introducing an eigenvector. The 
original PCs can be rotated to maximize elements 
loading in contrast by moving each PC axis to a 
new position such that the estimates of each 
variable on the PC axis are near the extremities or 
near the origin. Therefore, the highest loadings have 
a value of ± 1 and the lowest ones reach to 0. Table 
3 lists eight PCs, in which PC1 with a variation 
variance of 68.5% was in close adaptation with the 
Cu mineralization. The PC1 as an indicator layer 
was portrayed in Fig. 4b. 
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Table 3. The PC analysis for correlated elements in Cu mineralization, where PC1 was chosen as the main factor 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Mo 0.381 -0.284 -0.211 -0.024 -0.434 0.725 -0.113 0.047 
Cu 0.405 -0.052 0.038 0.134 -0.381 -0.537 -0.614 -0.059 
Zn 0.262 -0.055 0.869 -0.4 0.026 0.104 0.039 -0.016 
Co 0.386 0.294 0.03 0.268 -0.395 -0.197 0.705 0.017 
As 0.397 -0.281 -0.07 0.125 0.445 -0.107 0.056 0.728
Sb 0.374 -0.438 -0.143 0.039 0.4 -0.097 0.183 -0.666 
Mg -0.291 -0.381 0.408 0.766 -0.077 0.101 -0.006 -0.018 
Li 0.303 0.641 0.084 0.378 0.382 0.324 -0.273 -0.139 

% variance 68.51 11.39 8.97 6.09 2.56 1.43 0.88 0.17 

 
Geophysical layers  
Magnetometry and geoelectric surveys as 
widespread geophysical tools can provide valuable 
pieces of information about the types of alteration, 
rock and ore mineralization, especially in 
prospecting porphyry–type targets ( Thoman et al., 
1998; Clark, 1999; John et al., 2010). Cu–content 
porphyry deposits are often surrounded by 
contrasting zones of various alterations around the 
center of the deposition. Roughly speaking, such 
alterations are localized by changes of magnetic 
intensity over their regions, where weak regional 
magnetic intensity increases sharply over the 
potassic zone (for presence of iron–oxide content as 
magnetite), decreases over the sericitic/phyllic 
zones, and gradually intensifies over the propylitic 
zone. In analogous to magnetic anomalies, the 
lowest electrical resistance (Res) and the highest 
induced polarization (IP) are associated with the 
sericitic/phyllic alterations that have high sulfide 
content. Since potassic alteration (as the core of 
porphyry deposits) is depleted in total sulfide 
minerals, and the propylitic alteration has low 
amounts of pyrite minerals, they often correspond 
to regions with higher electrical resistance and 
lower polarization (electrical chargeability). 
   Magnetometry survey was carried out along 28 
N–S profiles, where 1077 data were measured at 
40–m spacing apart with a station interval of 20 m. 
The total field magnetic intensity is shown in Fig. 
5a. The intensity of the Earth’s magnetic field was 
about 47,680 nT, with an inclination and 
declination angles of 53.5 and 4.3 degrees, 
respectively. After removing the regional magnetic 
field by a polynomial data fitting approach, the 
reduced–to–pole (RTP) transformation of the 
residual magnetic data was calculated to remove the 
inclination effect of the Earth’s magnetic field by 
projecting it at the north pole. In fact, the RTP filter 
corrects (1) the location of the magnetic anomaly by 
moving the positive portion of the observed signal 
over the main causative source of the magnetic 

anomaly, (2) enhances the intensity of magnetic 
signal and (3) produces almost a symmetric pattern 
of an anomaly. The RTP map shown in Fig. 5b 
indicates that the magnetic field anomalies at the 
center of the Narbaghi have substantially reduced, 
which is mainly related to the monzogranite to 
quartz monzonite units with the phyllic alteration. 
Porphyry hornblende andesite unit shows an 
evident dipolar nature of a magnetic anomaly, 
where no evidences of the Cu–bearing 
mineralization were observed in geological field 
operation. Therefore, the indicator layer of the RTP 
was generated in Fig. 6a as an input layer in the 
final preparation of the MPM. 
   To investigate the electrical properties of 
subsurface layers in the region, 7 time–domain 
direct current electrical profiles with an electrode 
spacing of 20 m (increase to a maximum of 40 m) 
were deployed to measure resistivity and induction 
polarization at depth. The measurements were 
carried out using pole–dipole and pole–pole arrays 
to obtain data from deeper sources. Since the 
purpose of this research was to generate a 2D MPM 
map, a horizontal slice was extracted from each 
inverted electrical model. This depth slice was 
selected at the center of probable Cu mineralization 
zone. Fig. 6b and 6c show the indicator maps of the 
electrical resistivity and chrgability used in the 
designing of the geospatial database. Both maps 
indicate that the central part of the prospect area has 
higher plausibility for Cu mineralization, where the 
phyllic alteration has occurred within the 
monzogranite to quartz monzonite units. 
 
Mineral potential mapping  
In this study, knowledge– and data–driven methods 
of MPM were used in two sequential phases as a 
hybrid approach to guide mineral favorability 
mapping for localizing the main target(s) 
responsible for Cu–bearing mineralization. The 
inference network (decision tree) for final 
preparation of the MPM is presented in Fig. 7.   
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Figure5. The total magnetic field intensity (a) and the RTP magnetic data after removing a regional Earth’s magnetic field (b). 

 

 
Figure 6. Normalized geophysical indicator layers, (a) magnetometry, (b) IP, and (c) Res. 

 

 
Figure 7. Decision tree flowchart for generating final MPM in Cu exploration. 

 
The proposed knowledge–guided clustering 

approach performs in two phases, including the 
knowledge–driven stage and the clustering stage. 
The procedure of implementing this method has 

been summarized in Fig. 8. After designating a 
multidisciplinary geospatial database consisting of 
aforementioned indicator layers, the knowledge–
driven method of fuzzy gamma operator is run for 
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MPM, where the optimum value of the gamma 
should be searched in case of accessing to prior 
information. In first phase, the optimum synthesized 
fuzzy favorability map is analyzed through a C–A 
multifractal method to divide this map into some 
populations which often control by geological and 
alteration setting of sought mineral target. These 
populations correspond to the number of clusters 
which is passed to the second phase of proposed 
approach. On the basis of this number, a group of 
clustering algorithms, namely the FCM, KM and 
SOM are implemented to outline most favorable 
zones in association with probable Cu 
mineralization. 

 

 

Phase I: 

Knowledge‐driven stage 

Phase II: 

Clustering stage  
Figure 8. The proposed diagram for the knowledge-driven 
guided clustering approach in generating MPM. 
 
Knowledge–driven mapping 
The weights of importance which differentiate 
superiority of indicator layers to each other were 
determined through a Delphi method (Dehghan 
Nayeri, 2018). A group of experts in exploration of 
porphyry–type ore mineralization was gathered to 
assign such weights presented in Table 4. The index 
overlay method as a popular knowledge–driven 
technique was first utilized to compare its final 
favorability map with the ones acquired from the 
fuzzy gamma operator. Figure 9a presents the C–A 

multifractal curve of the index overlay output, 
where the prospect region in the North Narbaghi 
has been divided into five populations. Reclassified 
favorability map based on the fractal thresholds was 
portrayed in Fig. 9b, where a distinct potential zone 
at the center of the area is evident. This zone 
comprises of two separate sub–zones located over 
the monzogranite to quartz monzonite units with 
evidences of the phyllic alteration.  

Since the central portions of the North Narbaghi 
porphyry–Cu mineralization were drilled by 21 
vertically boreholes to envisage its mining 
potential, the productivity index of each drilling 
was calculated in Table 5 to evaluate the efficiency 
of the MPM. Whereby the efficiency of each 
mineral favorability map can be evaluated. The 
productivity value was calculated from multiplying 
the Cu concentration (in ppm unit) by its ore 
thickness (in meter) along each drilling, finally 
being normalized by the total length of each 
borehole. 

In fact, the productivity index presents the 
average of the Cu grade along the borehole. 
Boreholes 10, 13 and 21 were excluded in the MPM 
efficiency analysis owing to their high uncertainty 
in grade analysis. Figure 1b has indicated the 
borehole location. The scatter plot of the 
productivities versus the values of mineral 
favorability generated by the index overlay at the 
locations of boreholes was plotted in Fig. 9c. The 
Pearson’s linear correlation coefficient  
for the fitted linear curve was also calculated equal 
to 0.47. It is evident that positive correlation must 
happen when the favorability map is in consistency 
with the mineralized zones. 

In the next step, MPM was performed through 
implementing the fuzzy gamma operator (FGO). 
Among all the developed fuzzy operators (An et al., 
1991), the FGO, as a combination operator of the 
fuzzy sum and the product, is the most popular one 
used in the knowledge–driven MPM. 

 
Table 4. The normalized weight of each criterion in the final copper prospectivity map acquired from a group of geoscientist decision 
makers 

Final weights Weight Criterion Weight Sub-layer Weight Layers 
0.12500 0.50 Rock type 

1 Surface studies 0.25 
Geology 

0.12500 0.50 Alteration 

0.27000 0.60 Cu 
1 Lithogeochemical 0.45 Geochemistry 

0.18000 0.40 PC factor 

0.10500 1.00 RTP 0.35 Magnetic 

0.3 Geophysics 0.08775 0.45 Rs 
0.65 Electric 

0.10725 0.55 IP 
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Table 5. The descriptive of the drilled boreholes with their productivity values. 
 

Borehole ID Length (m) Productivity (ppm) 

1 224.35 8.38 
2 184.45 84.62
3 128.7 885.26
4 110.4 199.99 
5 179.2 378.85 
6 96.1 167.22 
7 152.75 726.78 
8 55 107.38 
9 52 205.02 
10 93.4 14.68 
11 96 290.52
12 78 382.40 
13 126 696.23 
14 56.6 11.02 
15 142 113.84 
16 113 119.26 
17 71.8 732.55 
18 54 13.44 
19 53.5 132.45 
20 74.8 65.51
21 68.3 952.46 

 

 
Figure 9. The index overlay output, (a) the C-A multi-fractal curve, (b) the MPM, and (c) the curve of the productivity versus the 
MPM values at the drilling locations. 
 

Assigning different values of gamma and simple 
implementation are reasons for its popularity. The 
optimum value of the gamma is required to be 
searched by experts among all synthesized fuzzy 
favorability maps (Nykänen & Salmirinne, 2007; 
Kashani et al., 2016). According to Nykänen & 
Salmirinne (2007), the FGO approach method can 
be utilized to integrate indicator layers without 
restriction on the selection of the fuzzy gamma 
value, and it is controlled entirely according to 

experts’ opinion. On the other hand, the FGO is 
influenced by the pros and cons of both the fuzzy 
product (more pessimistic than the fuzzy AND) and 
fuzzy sum (more optimistic than fuzzy OR) 
operators. By applying this method, MPMs was 
generated for various gamma values (i.e. γ = 0, 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9 and 1). Then, to find 
an optimal gamma, the curves of the productivities 
versus the MPM values at the drilling locations for 
each gamma value were plotted in Fig.10. By 
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comparing the linear regression values obtained, the 
highest correlation coefficient (0.48) was obtained 
for γ=1 (Fig. 11c), where this gamma is equivalent 
to a fuzzy sum product. Therefore, this gamma was 
selected as an optimum value for MPM (Fig. 11b) 
since the consistency between the MPM values and 

the productivity values of drillings is maximum. 
The C–A multifractal curve of the optimum value 
has divided the study are into five populations (Fig. 
11a), similar to the result of the index overlay with 
two distinct favorable zones at the center of the 
North Narbaghi (Fig. 9b).  

 

 
Figure 10. The curve of the Pearson’s linear correlation coefficient values calculated from productivity versus the MPM values at the 
drilling location for various gamma values. 
 

 
Figure 11. The optimum gamma operator output for generating the MPM, (a) the C-A multi-fractal curve, (b) the MPM and (c) the 
curve of the productivity versus the MPM values at the drilling locations. 
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Therefore, we can infer that different 
knowledge–driven methods will lead to mineral 
favorability maps with five populations in this 
region. 
 
Guided clustering mapping  
According to knowledge driven methods, five 
populations were generated through running a C–A 
multifractal curve, where the number of populations 
was assumed as the optimum number of clusters. 
Clustering outputs were generated for three 
algorithms of the FCM, KM, and SOM in a Matlab 
environment. All generated clustering outputs have 
highlighted a ribbon of high potential zone (i.e. 
cluster label 5) in the center of the study area (Figs. 
12a, 12b, 12c), whereas this ribbon has been 
divided into two distinct zones by the FCM method 
(Fig. 12a) in comparison to the results of the KM 
and SOM. The results of MPM for such 
unsupervised data–driven method are in close 
accordance with the maps of knowledge–based 
methods, where the central portion of the prospect 
zone has been localized as the most favorable Cu–
bearing zone. 

In the knowledge–driven MPMs, experts need to 
figure out the most realistic relations between the 
input indicator layers and the final potential map. 
When each expert assigns the weight of importance 
to each indicator layer, it may lead to a bias 
weighting. Therefore, different weights of indicator 
layers will lead to different maps of the mineral 
favorability. To tackle this issue in MPM, data–
driven methods can be a panacea. Running data–
driven methods does not need to determine the 
weight of each indicator layer, so automatically an 

MPM can be generated. In cases of no accessing to 
the training data points for implementing a 
supervised data–driven method, unsupervised 
techniques like clustering can be considered. As 
pointed in this study, a knowledge–guided 
clustering algorithm was proposed to find the 
optimum number of clusters in the first phase and 
then to cluster a multidisciplinary geospatial 
database in the second phase. Among three 
clustering methodologies applied in this study, the 
FCM method could better present the location of 
the Cu–bearing mineralization.  
   Figure 13 has depicted a 3D model of the Cu 
grade where two distinct zones similar to the map 
generated by the guided FCM clustering are 
evident. 
 
Discussion 
A knowledge–guided fuzzy inference approach was 
applied in this region to investigate the applicability 
of a fuzzy inference system approach in producing 
a copper potential map (Barak et al., 2019). The 
method was implemented in three main stages 
consisting of (1) fuzzification of input/output data 
set, (2) designing an inference engine system, and 
(3) defuzzification of synthesized geospatial 
indicators. The mineral favorability map was 
prepared and reclassified into five classes through a 
multifractal approach. Whereby the synthesized 
indicator layers demonstrated a Pearson’s linear 
correlation coefficient of 0.44 in recognizing copper 
mineralization at depth. In addition, the eastern and 
central portions of the North Narbaghi were 
proposed as favorable potential zones for further 
mining operation (Fig. 9b in Barak et al., 2019). 

 

 
Figure 12. The clustering outputs, (a) FCM, (b) KM, and (c) SOM, where the optimum cluster number was estimated from the fractal 
analysis of the optimum gamma operator. 
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Figure 13. 3D visualization of Cu mineralization overlaid by the FCM map. 

 
Those regions are matched with the ones 

highlighted in this study (Figs. 11b, 12a, 13).  
   Since geo–electrical and magnetometry data in 
this region are available, it is recommended 
generating a 3D favorability map rather than a 2D 
map. Note that the 3D indicator layers can be 
prepared from 3D inversion of geophysical data, 
while generated and subsequently integrated 
geophysical models can provide better insights into 
the geometry of the Cu mineralization. Thus, 3D 
mineral potential mapping could much better be 
compared to the drilling results in the deposit–scale 
cases. Implementation of this suggestion is beyond 
of the scope of this study. 
 
Conclusion 
A knowledge–guided clustering approach was 
proposed for mineral favorability mapping, where 
the optimum number of clusters was determined by 
a C–A multifractal analysis of a knowledge–based 
data integration. For this study, the North Narbaghi 
Cu deposit in Saveh, Markazi province of Iran, was 
investigated as a deposit–scale case study. 
Exploratory geospatial datasets comprising of 
geophysical, geochemical and geological criteria 
were processed to construct an exploratory decision 

matrix for MPM. Synthesized mineral favorability 
map, derived from an optimum fuzzy gamma 
operator, revealed five clusters in association with 
the geological setting of the prospect zone. This 
number of clusters was fixed in running of three 
clustering algorithms, namely the FCM, KM, and 
SOM. Note that the FCM output had superiority 
over other clustering methods in this case study for 
better determining the geometry of the Cu grade in 
the North Narbaghi. Therefore, researchers in the 
field of geospatial data integration for MPM can 
search the number of populations in the input or 
synthesized indicator layers, and subsequently 
assume it as the number of clusters for 
implementing an unsupervised clustering algorithm.  
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