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Abstract 
Joint economic lot sizing (JELS) addresses integrated inventory models in a supply 

chain. Most of the studies in this field either do not consider the role of the 

transportation cost in their analysis or consider transportation cost as a fixed part of 

the ordering costs. In this article, a model is developed to analyze an incremental 

quantity discount in transportation cost. Appropriate equations are derived to 

compute the costs related to the inventory systems in the buyer and vendor sites. 

Then, a procedure including five steps is proposed to optimize the model and 

determine the values of the decision variables. To analyze the performance of the 

incremental discount, the JELS problem is studied in two other states of 

transportation costs.  These states include fixed transportation cost and all-unit 

quantity discount.  Moreover, some numerical analyses are carried out to show the 

impact of transportation costs and inventory-related parameters on the system 

performance. According to the results of the sensitivity analyses, it is observed that 

all-unit quantity discount leads to a better performance of the system in comparison 

with the incremental quantity discount. 
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Introduction 
Traditionally, inventory management of a supply chain (SC) is 

considered from the viewpoint of individual entities such as 

producers, distributors, or sellers. In this approach, each entity 

considers only the parameters directly related to his company. 

Although this approach optimizes the inventory decisions for an 

individual company, there is no guarantee that it is optimal for the 

whole SC. With the seminal work of Goyal (1976), a stream of 

research has emerged aiming at the coordination of the decisions 

related to the inventory management in the whole SC rather than 

individual entities in it. Integrated inventory models in SC literature 

are usually referred to as joint economic lot sizing (JELS) problem. 

The underlying problem of a JELS problem can be stated as follows. 

A supply chain consisting of one vendor and one buyer is considered. 

The vendor manufactures an item at a rate P and incurs holding cost 

for each item in inventory and also sets up cost for each produced lot.  

Each lot produced in the vendor site is delivered to the buyer 

according to a specific shipment policy, e.g. equal-sized-shipments. 

The demand at the buyer site is deterministic which is satisfied from 

the items received from the vendor site. The objective is to determine 

the size of the lot produced by the vendor and the shipment policy so 

that the system cost can be optimized. 

Considering an infinite production rate and a lot-for-lot shipment 

policy, the literature of JELS started with the basic model of Goyal 

(1976). After that, studies of JELS have been developed according to the 

different shipment policies. We refer the interested readers to Ben-Daya, 

Darwish and Ertogral (2008) for more information on these policies. 

Finally, Hill (1999) presented a general model for this problem, placing 

no restrictive assumptions on the shipment policies. Besides extending 

the JELS models based on the shipment policy, this topic has recently 

been developed in various directions, including 1) SC structure; 2) 

stochastic demand and lead time; 3) price sensitive demand; 4) product 

quality; 5) product deterioration; 6) set up/order cost or lead time 

reduction; and 7) learning effect. Considering transportation policies and 

their costs is another approach for developing JELS models. In 

comparison with the other directions mentioned, there are a few works in 

this regard. In fact, most studies in the domain of JELS do not explicitly 
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take into consideration the transportation costs between the actors of 

different layers of SC. Transportation costs have been usually analyzed as 

a fixed part of the ordering cost.  

In this paper, transportation costs are analyzed in a JELS problem. 

More specifically, a supply chain is considered to be consisting of one 

vendor and one buyer in which the vendor is a manufacturer that 

produces one type of product. For each lot, the vendor incurs a setup 

cost and transfers the lot in the equal-sized shipment to the buyer. Also, 

for each shipment, the buyer incurs an ordering cost. The vendor and 

the buyer incur holding cost in their corresponding warehouses. The 

problem is to determine the number of equal-sized shipments to the 

buyer and the size of each shipment, or consequently, the size of the 

produced lot in the vendor’s site and the number of equal-sized 

shipments, so that the total cost is minimized. Three scenarios for the 

transportation costs are considered, including 1) fixed transportation 

cost; 2) all-unit quantity discount, and 3) incremental quantity discount. 

First, an equation related to the total inventory costs of the SC is 

derived. Second, for each scenario, another equation is derived to 

compute the transportation costs of the system. Finally, corresponding 

to each scenario, a procedure is proposed to optimize the total cost of 

the SC, including transportation and inventory costs.  The main novelty 

of this study is the development of a model that takes into account the 

incremental discount in transportation cost in a JELS problem. Also, the 

comparative studies of the three scenarios and sensitivity analyses are 

conducted. It should be noted that discount in transportation costs, 

which is investigated in this paper, is different from the quantity 

discount which is related to the purchasing cost. In the literature of 

inventory models, some studies consider either transportation discount 

or quantity discount while in some others both of them have been 

simultaneously analyzed (Darwish, 2008).  

The rest of the paper is organized as follows. Section 2 presents a 

literature review of the JELS. In Section 3, the structure of the 

problem and the related assumptions are presented. Section 4 

addresses the inventory costs for the considered supply chain. Also, in 

this section, the system is formulated under different transportation 

policies. Section 5 conducts some numerical analyses and comparative 

studies about the system. Finally, Section 6 concludes the paper. 
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Literature review 
The economic order quantity (EOQ) model is one of the well-known 

models in the inventory and operation management. In February 1913, 

Ford Whitman Harris proposed EOQ model under the assumption of 

infinite production rate.  The second major contribution in the field of 

inventory management is the development of economic production 

quantity (EPQ) proposed by Taft (1918). Instead of infinite production 

rate, EPQ model assumes a finite production rate. Although EOQ and 

EPQ models have been widely applied by practitioners in industry, 

these two basic models have some weaknesses. The obvious problem 

arises from the different restrictive assumptions of the models. For 

example, in the classic EOQ/EPQ model, the sole objective function is 

to minimize the total-inventory costs including holding cost and 

ordering costs. To overcome the weaknesses of EOQ/EPQ models, the 

inventory management models have been developed in several 

directions. As stated by (Andriolo et al., 2014), the most notable 

directions of inventory models can be presented as follows:  time 

varying demand, goods deterioration, quantity discount, inflation, 

variable lead time, trade credit, process deterioration, shortage and 

backlogs, imperfect quality items, and environment sustainability. 

Regarding these topics and extensions, a large body of papers exists 

and consequently some literature reviews are conducted 

corresponding to each direction  ( Engebrethsen & StéphaneDauzère-

Pérès, 2018; Seifert, Seifert & Protopappa-sieke, 2013; Khan et al., 

2011; Horenbeek et al., 2013).  

With the growing interest in the concept of supply chain (SC), 

different members of a SC notice that inventories across the chain can 

be more efficiently managed by coordination of the decisions. Thus, 

integrated inventory models that are also known as JELS emerged by 

the seminal work of Goyal (1977). The first model of JELS developed 

by Goyal considers a single-vendor-single-buyer SC while the 

production rate is assumed infinite and a lot-for-lot shipment policy is 

applied. Hill (1999) proposed an improved version of Goyal’s model 

in which no restriction is placed on the shipment policy and the 

production rate is considered finite. Since then, JELS models have 

been developed in several directions, including 1) SC structure; 2) 

stochastic demand and lead time; 3) price and inventory dependent 
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demand; 4) product quality; 5) product deterioration; 6) set up/order 

cost or lead time reduction; and 7) learning effect.  Also, some 

literature review is done on the JELS and its extensions (Soysal et al., 

2019; Glock, 2012; Ben-Daya et al., 2008).  

While the basic models of JELS were about the single-vendor-

single-buyer SC, the researchers of SC and operation managers have 

tried to develop the JELS models by considering more realistic SC 

structures. Thus, the following structures of SC are also investigated: 

single-vendor-multi-buyer (Chen & Sarker, 2017; Rasay & Mehrjerdi, 

2017), multi-vendor-single-buyer (Glock & Kim, 2014), and multi-

vendor-multi-buyer (Sajadieh, Saber & Khosravi, 2013) 

The primary models of JELS consider deterministic demand and 

lead times. To conform with the uncertainty of demand and lead times, 

the assumptions of deterministic demand and lead time are removed by 

many researchers in the future works (Kilic & Tunc, 2019; Abdelsalam 

& Elassal, 2014; Fernandes, Gouveia, & Pinho, 2013). Price and 

inventory dependent demand is another direction of the development of 

JELS models that are studied by Sajadieh, Thorstenson, and Akbari 

(2010). A production system may deteriorate with the increase in age 

and usage, making the production of inferior items inevitable. Thus,  the 

extension of the JELS models to include product quality and process 

deterioration has been emerged as another direction (Wangsa & Wee, 

2019; Kurdhi et al., 2018; Al-Salamah, 2016). Some products such as 

medical items and food decay with the passing of time.  Thus, the 

duration of time when these items are stored in the warehouse is a key 

factor in developing their inventory models. Some researchers have 

studied the JELS problem from this aspect (Lin et al., 2019; Chang, 

2014; Chung, Cárdenas-barrón & Ting, 2014).  

Another important topic in the development of integrated inventory 

models regards the transportation costs. Generally, inventory and 

transportation are two important aspects of a SC. Besides the models 

of JELS that incorporate transportation costs, inventory routing 

problem (IRP) and production routing problem (PRP) are two major 

areas of integrating transportation and inventory decisions.  Wangsa 

and Wee (2017, 2019) developed an integrated inventory model for a 

single-vendor-single-buyer (SVSB) supply chain while truckload and 

less-than-truckload shipment policies were considered for 
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transportation costs. Lee and Fu (2014) studied the joint production 

and delivery policy with transportation cost for a make-to-order 

production facility in a SC. Using actual shipping rate data, 

transportation cost was considered as a fitted power function of the 

delivery quantity. Chen and Sarker (2014) studied a multiple-vendor-

single-buyer (MVSB) system consisting of multiple suppliers and one 

assembler where a JIT was applied to the system. Assembler picked 

up parts from the suppliers based on a milk run mode, and 

transportation cost was considered through the vehicle routing 

problem. Sajadieh et al. (2013) studied a SC that consisted of three 

layers. In each layer, there were multiple actors. Demand rate was 

considered deterministic and lead time was stochastic. Transportation 

cost between each layer was displayed based on the all-unit quantity 

discount. Since the model derived was NP-hard, to optimize the 

model, an ant colony algorithm was applied. Rieksts and Ventura 

(2010) considered two modes of transportation in a SC: truckloads and 

less than truckload. They analyzed two different structures for the SC: 

one-warehouse-one-retailer and one-warehouse-multiple-retailer 

under constant demand rate and an infinite planning horizon. Lee and 

Wang (2010) studied a JELS in a three levels SC consisting of one 

supplier, one manufacturer, and one retailer. They considered the 

scenario of less than track load for transportation cost in which the 

carrier offered all-unit freight discount. Ertogral and Darwish (2007) 

studied a SVSB supply chain under two different scenarios for the 

transportation cost: (1) all-unit quantity discount and (ii2) over 

declaration. Table 1 presents some recent studies on JELS problem 

which are closer to our work.  

Although in a JELS, the all-unit quantity discount of transportation 

cost is considered by Ertogral and Darwish (2007) and some other 

works (Sajadieh et al., 2013; Lee & Wang, 2010), there is no work - to 

the best of authors’ knowledge - that deals with incremental quaintly 

discount in transportation cost. Therefore, in this paper, we analyze 

SVSB system under three different states: (1) system with fixed 

transportation cost; (2) all-unit quantity discount in transportation cost 

and (3) incremental discount in transportation cost. To reach the 

optimal solutions in each state, three procedures are suggested. Also, 

comparative studies are conducted regarding these scenarios.  
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Table 1. Classification of recent JELS models that incorporate transportation cost 

Integrated inventory 

model 

Transportation 

costs 
Supply chain structure 

Demand 

structure 

(Ertogral & Darwish, 2007) 
All-unit quantity 

discount 

Single-vendor-single-

buyer 
deterministic 

(Rieksts & Ventura, 2010) 

Truck-load and less 

that truck-load-

shipment 

Single-vendor-single-

buyer 
deterministic 

(Sajadieh et al., 2013) 
All-unit quantity 

discount 

Multi-vendor-multi-

buyer 
deterministic 

(Lee & Fu, 2014) Fitted power function 
Single-vendor-single-

buyer 
deterministic 

(Wangsa & Wee, 2017) Freight cost 
Single-vendor-single-

buyer 
Stochastic 

(Wangsa & Wee, 2019) 

Truck-load and less 

that truck-load-

shipment 

Single-vendor-single-

buyer 
Stochastic 

Current study 

Incremental quantity 

discount and all-unit 

quantity discount 

Single-vendor-single-

buyer 
Deterministic 

 

Problem statement 
Consider a supply chain consisting of one vendor and one buyer in 

which the vendor is a manufacturer who produces one type of product. 

For each lot, the vendor incurs a setup cost and transfers the lot in the 

equal-sized shipment to the buyer. Also, for each shipment, the buyer 

incurs an ordering cost. The vendor and the buyer incur holding cost 

in their corresponding warehouses. The problem is to determine the 

number of equal-sized shipments to the buyer and the size of each 

shipment, and consequently, the size of the produced lot in the 

vendor’s site and the number of equal-sized shipments, so that the 

total cost is minimized. Figure 1 displays the system.  

Total costs of the system can be classified into (1) the costs of the 

inventory system, which include the set-up/ordering costs and holding 

costs of items in the vendor’ and buyer’s sites, and (2) the cost 

associated with the transportation of the lots between the vendor and 

buyer. Three different states are considered for the transportation costs 

between the buyer and the vendor: 1) transportation cost as a fixed 

part of the total system cost that is independent from shipment 

quantity, 2) all-unit quantity discount in the transportation cost, and 3) 

incremental quantity discount for the transportation cost. 
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To investigate the system, first an equation is derived which 

computes the total costs of the inventory system per time unit. Then, 

transportation costs are analyzed. Three scenarios are assumed for the 

transportation costs, and in each state, a procedure is presented which 

optimally determines the decision variables so that the system total 

cost can be minimized. Decision variables include the number of the 

shipments between the vendor and buyer in each manufactured lot, 

which is denoted by n, and the size of each shipment, which is 

denoted by q. It is obvious that n is an integer value while q is a real 

positive variable. For example, in Figure 1, the value of n is 5.  

Assumptions of the model 

1. Demand rate at the retailer site is constant. 

2. Shortages are not allowed. 

3. Planning horizon is considered infinite. 

4. In order to complete the buyer order, production rate is 

considered greater than demand rate: P>D. 

5. The produced lot, Q, is transferred from the vendor to the buyer 

in n equal-sized shipments.   

6. The shipment policy is none-delayed, which means that 

transferring a lot could take place during production phase. 

7. It is assumed that the buyer holding cost is greater than the 

vendor’s. 

The following notations are used: 

i: index representing the state of the system (i=1,2,3) 

(1 for fixed transportation cost, 2 for all-unit discount in 

transportation cost, and 3 for incremental discount in transportation 

cost); 

P: the production rate of the vendor; 

D: the demand rate of the buyer; 

Av : the production set up cost per cycle; 

Ab: the buyer ordering cost per shipment;  

hv: the inventory holding cost in the vendor site; 

hb: the inventory holding cost in the buyer site; 

Ib,i: the average inventory of the buyer in state i; 

Iv,i: the average inventory of the vendor in state i; 

Is,i: the average inventory of the system in state i. 
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Decision variables: 

ni: the number of equal-sized shipments under state i; 

qi: the shipment size under state I; 

Qi : the production lot size (Qi=niqi)  under state i. 

Equations: 

TICi (qi,ni): the total inventory cost in state i and in unit time that is a 

function of ni and qi; 

TSCi(qi,ni) : the total system cost in state i and in unit time that is a 

function of ni and qi; 

TCi (qi) : the transportation cost under state i that is a function of qi 

in state 2,3. 

 

Fig. 1. Inventory level for the vendor, the buyer and the system  

(Ben-Daya et al., 2008) 

Procedures for the optimization of the system total costs in each 

scenario  
In this section, first, the functions related to the costs of the inventory 

system are derived. Then, the system is formulated under three 

different states of transportation cost. Finally, an example is presented.  



32 (IJMS) Vol. 13, No. 1, Winter 2020 

1. Related costs of the inventory system  

In this subsection, to calculate the inventory costs of the system, an 

equation is presented. In state i, the average inventory of the system 

can be expressed as follows: 

,

( )

2

i i
s i

q D p D nq
I

P P


   (1) 

Average inventory of the buyer is:
,

2

i
b i

q
I  . Also, average inventory 

of the vendor can be expressed as the average inventory of the system 

minuses the average inventory of the buyer. Thus, the total inventory 

cost of the system can be expressed as follows: 

( )
( , ) ( )

( )
( ) 1,2,3

v i b
i i i v s b b b

i

v i b
v s b v b

i

A n A D
TIC q n h I I h I

Q

A n A D
h I h h I i

Q


   


     

 (2) 

With respect to the decision variables, Eq.(2) is convex. We refer to 

Hill (1997) for the proof of convexity. 

2. System formulation under different states of transportation costs 

In the following lines, JELS problem is studied under three different 

states of transportation costs.  These states include 1) fixed 

transportation cost, 2) all-unit quantity discount, and 3) incremental 

quantity discount. 

Fixed transportation cost 
In this state, transportation cost is considered as a fixed part of the 

total cost of the system. Thus, transportation cost is independent from 

shipment quantity between the vendor and buyer. Thus, the following 

equation displays the total costs of the system. 

TSC1 (q1,n1)=TIC1(q1,n1) +TC1 (3) 

With respect to the convexity property of Eq. (2), Eq. (3) is also 

convex, and the optimal values of the variables can be calculated 

based on these two formulas:  
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1

( 2 )
*

( )

v v

v b

A p h h D
n

h A p D

 



 (4) 

1/2

1

1
1

( )
*

( )
[ ]

2 2

v b

v

D A nA
q

P D nD h
n h

P P

 
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 

   
     

 (5) 

Based on the fact that n1 is integer and considering the above two 

formulas, i.e., Eq. (2) and Eq. (3), procedure 1 is proposed to calculate 

n1 and q1 and to determine the optimal costs of the system.  

Procedure 1. 

1. Find the optimal continuous value of n1 according to Eq. (4) 

2. Let *

1 1n n    , substitute n1 in Eq. (5) and find the optimal value 

of q1 and the corresponding value of the total cost from Eq. (3) 

3. Let *

1 1n n    , substitute n1 in Eq. (5) and find the optimal value 

of q1 and the corresponding value of the total cost from Eq. (3) 

4. The optimal solution is the one that corresponds to the minimum 

of the solutions found in Steps 2 and 3. 

System formulation under all-unit quantity discount in the transportation 

cost 

In this subsection, instead of the consideration of transportation cost 

as a fixed part of the system total cost, it is explicitly considered in the 

analyses. The transportation cost is a function of the shipment lot size. 

Figure 2 displays the transportation cost in this state. As the amount of 

the shipment increases, the transportation cost for all units decreases 

based on the following structure: 
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(6) 

 

where u0>u1>u2…um-1>um. For a given shipment lot size as q2, 

transportation cost per unit time is: 

0 2 1

1 1 2 2

2 2

1 1 2

2

0

.
( )

.

m m m

m m

u D q M

u D M q M
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u D M q M
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 
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 
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  




 (7) 

Thus, total system cost in State 2 per time unit is: 

TSC 2(n2,q2)=TIC2(q2,n2)+TC2(q2) (8) 

For each range of q2 in Eq. (6), Eq. (8) is also convex with respect 

to the value of n2 and q2 because TIC2 is convex and TC2 becomes a 

fixed part of the formula. 

The procedure for finding optimal shipment lot size, q2, and the 

number of transferred shipments in each produced lot, n2, is similar to 

the classical inventory model. To find the optimal values of n2 and q2, 

the following propositions are applied in this subsection. We refer to 

Ertogral et al. (2007) for proof.  

Proposition 1. By increasing the value of q1, the value of n1 

decreases in Eq. (5) 

Proposition 2. If 
*

1 mq M then 
* *

2 1q q and 
* *

2 1n n  

Proposition 3. If 
*

1 mq M then 
* *

2 1q q and 
*

2, 2 2,lower uppern n n   

2 1 0

1 2 2 1

2 2 3 2

1 2 1

2

cos

0

.

.

m m m

m m

Range Unit transportation t

q M u

M q M u

M q M u

M q M u

M q u

 

 

 

 

 


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1 *

2, 2, 1

2 ( )
max 1,

( )

v

lower upper

v m

A h P D DP
n and n n

h P D M

   
   

      
Based on these propositions, to determine the optimal values of n2 

and q2, the following procedure can be used in State 2. 

 

Fig. 2. All-unit quantity discount in transportation cost  

Procedure 2.  

1. Apply Procedure 1 to find * *

1 1,n q . 

2. If *

1 mq M then * * * *

2 1 2 1,q q n n  , otherwise go to the next step. 

3. Find the value of n2,lower and n2,upper using Proposition 3. 

4. For each value of n2=n2,lower, n2,lower+1,n2,lower+2,…,n2,up find the 

optimal solution as follows: 

a. Find the optimal value of q2 using Eq. (5) and let r be the 

largest range index in Eq. (7) such that
2rM q . 

b. Calculate the following total system costs per time unit using 

Eq. (8): TSC2(q2,n2), TSC2(Mr+1,n2),TSC2(Mr+2 

,n2),…,TSC2(Mm,n2). Among these solutions, a solution with a 

minimum cost is the optimal solution for the fixed value of n2. 

5. Among the optimal solutions computed for each value of n2 in 

Step 4, find a minimum solution.  It is the final optimal solution, 

and the corresponding values of n2 and q2 are optimal values for 

n2 and q2.  

System formulation under incremental quantity discount in 

transportation cost 

In this subsection, a model is presented for the system under 
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incremental discount in transportation cost. Figure 3 displays 

transportation cost in this state. Consider the following incremental 

discount for the system: 

3 1 0

1 3 2 1

2 3 3 2

1 3 1

3

0 ,

1 ,

1 ,

.

.

1 ,

1 ,

m m m

m m

q M u

M q M u

M q M u

M q M u

M q u

 

 
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  

  

 

 (9) 

If the value of shipment size, q3, lies in the range of Mj-1≤q3<Mj, 

then the transportation cost for each shipment can be calculated from 

the following recursive formula: 

TC 3(q3) =TC3 (Mj-1)+uj(q3-Mj-1) (10) 

Thus, the transportation cost for each unit is: 

3 1 13 3

3 3

( )( ) j j j

j

TC M u MTC q
u

q q

 
   (11) 

Hence, the total transportation cost per time unit is: 

3 3 3 1 1
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D D
TC q TC M u M u D

q q
 

    
 (12) 

Therefore, under the incremental discount, the total transportation 

cost is concluded as follows: 

3 3 3 3
3 3 3
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3 3

( )
( , ) ( )

2 2

( )

b v v

v b
j j j j

q Dq P D n q
TSC q n h h h

P P
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 

 
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 
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(13) 

In Eq. (13), the coefficient of D/q3 can be stated as follows: 

3 3 1 1

3

[ ( ) ]v b j j jA n A TC M u M

n

   
 (14) 
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Let’s define   
  as follwos: 

'

3 1 1( )b b j j jA A TC M u M     (15) 

Substituting Eq. (15) in Eq. (13) leads to the following equation: 

'

3 3 3 3
3 3 3

3 3

( )
( , ) ( )

2 2

v b
b v v j

q Dq P D nq A n AD
TSC q n h h h Du

P P q n

   
       

   

 (16) 

For each range of q3 in Eq. (9), the last term of Eq. (16), Duj, is a 

fixed part. Also, the first three terms of Eq. (16) are similar to Eq. (2). 

Thus, for each range of q3, Eq. (16) can be optimized using Procedure 

1. Therefore, to optimize the system performance under incremental 

quantity discount in transportation cost, the following procedure is 

proposed. 

Procedure 3. 

1. For each range of q3 in Eq. (9), calculate 
'

bA  based on Eq. (15).  

2. Replace each obtained value of
'

bA  in Eq. (16). Based on Procedure 

1, optimize Eq. (16) and calculate the optimal values of n3 and q3. 

3. Based on the corresponding range in Eq. (9), specify which 

values of q3 and n3, which are obtained in Step 2, are acceptable.  

4. For the acceptable values of q3 and n3, calculate Eq. (16)  

5. The minimum values of TSC3 in Step 4 comprise the optimal 

value of the objective function and the corresponding values of n3 and 

q3 are the optimum values of n3, q3. 

 

Fig. 3. Incremental quantity discount in transportation cost  
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3. Numerical example 

In this subsection, to clarify the performance of the models and 

procedures described in the previous subsections, an illustrative 

example is presented. A similar example is also used by Ertogral et al. 

(2007).  The parameters of the models are as follows: 

Av=200; Ab=15; hv=4; hb=5; P=3200; D=1000.  

Range                     Unit transportation cost 

3

3

3

3

0 100, 0.4

100 200, 0.25

200 300, 0.17

300 , 0.14

q

q

q

q

 

 

 



 

(1): System with fixed transportation cost  

Procedure 1. 

1. The continuous optimal value of n1*is 4.119 

2. 1 *n n    =5; q1=79.85; TSC1=1377 

3. 1 *n n    =4; q1=94.68; TSC1=1373 

4. The optimal solution is: n1*=4; q1*=94.68; TSC1*=1373 

(2): System under all-unit quantity discount 

1. n*1=4; q1*= 94.68 

2. since 
*

1 300q  , go to the next step. 

3. n2upper=4; n2lower=1 

4. a1. n2=1; q2=262.30; r=2 

b1. TSC2(262.30,1)=1809; TSC 2(300,1)=1794; Optimal is n2=1; 

q2=300 

a2. n2=2; q2=159.86, r=1 

b2. TSC2(159.86,2)=1688; TSC2(200,2)=1645; TSC2(300,2)=1873; 

optimal is n2=2; q2=200 

a3. n2=3; q2=117.90; r=1 

b3. TSC2 (117.90,3)=1635; TSC2(200,3)=1753; TSC2(300,3)=2174; 

optimal is n2=3, q2=117.90 

a4. n2=4; q2= 94.68; r=0 
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b4. TSC2 (94.68,4)=1773; TSC2(100,4)=1625; TSC2(200,4)=1945; 

TSC2(300,4)=2531; optimal is n2=4; q2=100 

thus the optimal solution is n2*=4; q2*=100; TSC2*(100,4)=1625 
           

 (3): System under incremental quantity discount 

1. ' ' ' '

1 2 3 415; 29.85; 45.77; 54.74b b b bA A A A     

2. n3,1=4; q3,1=94.7; 

   n3,2=3; q3,2=128.2; 

   n3,3=2; q3,3=180; 

   n3,4=2; q3,4=185.4; 

3. thus n3,1=4; q3,1=94.7 and n3,2=3 ;q3,2=128.2; are acceptable 

4. TSC3,1(94.7; 4)=1773; TSC3,2(128.3,3)=1756  

5. The optimal solution is n3*=3; q3*=128.3; TSC3*=1756 

Numerical analysis 

In this section, numerical analyses of the system are carried out. The 

analyses are performed in two subsections. First, for each of the 

aforementioned states, the impact of the transportation cost on the 

performance of the system is analyzed. Second, the impacts of the 

inventory system parameters are analyzed.  

1. Transportation cost 

In this subsection, the impact of the transportation costs is elaborated. 

For this purpose, transportation costs for each unit are increased by a 

factor. Table 1 displays the results of our analyses. The first 

observation obtained from this table is that for all the values of the 

transportation factor, the value of total system cost in State 2 is less 

than the value of total system cost in State 3. Also, the value of total 

system cost in State 3 is less than the value of total system cost in 

State 1. The second result that can be derived from this table is that by 

increasing the value of transportation cost in State 2 and 3, the value 

of n decreases and the value of q increases. This observation is 

intuitive to some extent because increasing the shipment quantity 

enables the system to obtain more saving from discount. The third 

result concluded from Table 1 is related to the value of saving 

obtained using quantity discount. The saving is calculated based on 

the following formula: 
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Saving in state i= 1

1

, 2,3iTSC TSC
i

TSC


  (17) 

As can be seen from Table 2, increasing the value of transportation 

cost leads to an increase in the value of saving in both States, i.e. 2 

and 3. Also, for all the values of the factor, the value of saving 

obtained from all-unit quantity discount is greater than the 

corresponding value from incremental quantity discount.  

Figures 4 and 5 show the impact of the transportation factor on the 

value of total system cost and the value of saving, respectively. As 

discussed above, increasing the value of transportation factor leads to 

an increase in the value of TSC and saving in both States 2 and 3. 

Also, figure 4 displays that by increasing the value of the factor, the 

difference between the obtained saving in States 2 and 3 is widen.  

This means that all-unit quantity discount is more profitable than 

incremental discount and also in the larger values of transportation 

cost, this profitability becomes more significant. Thus, in the greater 

values of transportation costs, it is more important to discern which 

kind of discount should be applied.   

Finally, regarding the differences between the aforementioned 

scenarios of transportation costs, the following points and managerial 

implications can be inferred from the analyses of this section: 

 Either incremental or total discount in transportation cost leads 

to a significant saving in the total costs of a SC. 

 All-unit quantity discount yields more decrease in the total costs 

of the SC in comparison with the incremental quantity discount.  

 For the larger values of transportation costs, the more saving is 

derived from discount.  

 As the transportation cost increases, the difference between the 

performance of the incremental and all-unit quantity discounts 

becomes more noticeable. It means that in the larger values of 

transportation costs, applying discounts strategy, either 

incremental or all-unit, yields more saving in the SC costs.   
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Fig. 4. The effect of transportation factor on the value of total system cost  

Table 2. The impact of transportation factor on the performance of the system 

Factor 

Fixed 

transportation 

cost(Sate1) 

All unit quantity 

discount 

(satete2) 

Incremental quantity 

discount 

(state3) 

n q TSC n q TSC Saving n q TSC Saving 

1 4 94 1773 4 100 1625 8.34 3 128 1756 0.95 

1.5 4 94 1973 2 200 1730 12.31 3 133 1937 1.82 

2 4 94 2173 2 200 1815 16.47 2 179 2114 2.71 

2.5 4 94 2373 3 200 1900 19.93 2 184 2280 3.91 

3 4 94 2573 3 200 1985 22.85 2 214 2441 5.13 

3.5 4 94 2773 3 200 2070 25.35 1 336 2594 6.45 

2. Parameters of the inventory system 

In this subsection, the effects of the parameters of the inventory 

system are analyzed. First, setup costs in the vendor and buyer site are 

changed. The impact of these changes is shown in Table 3. In State 1 

and State 3, by increasing the value of Av/Ab , it can be seen that the 

value of n increases and the value of q decreases, but in State 2, the 

values of n and q remain unchanged. In all three states, an increase in 

the value of Av/Ab leads to a decrease in the value of total system cost.  

Moreover, increasing the value of Av/Ab leads to a decrease in the 

value of saving in States 2 and 3. It can be explained because in the 

greater values of Av/Ab , the cost of inventory system leads to a 

decrease in the value of q and an increase in the value of  n, as Table 2 

displays for State 1. This effect is in an opposite direction of the 
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impact of discount, i.e., the discount leads to an increase in the value 

of q. These two opposite effects lessen the impact of discount and its 

corresponding saving.  

The similar analysis about ordering cost is performed by Ertogral et 

al. (2007) for a JELS problem under all-unit quantity discount. The 

Results of Ertogral et al. (2007) model are comparable with the results 

of present study, but the novelty of this paper is the development of 

Ertogral et al. (2007) model for the incremental state. Also, Figure 5 

shows the effect of ordering costs of the vendor and buyer on the total 

system costs.  

Table 3. The impact of ordering cost on the system performance 

Av/Ab 

Fixed 

transportation 

cos(state1) 

All unit quantity discount 

(state2) 

Incremental quantity 

discount 

(state3) 

n q TSC n q TSC Saving n q TSC Saving 

13 4 94 1773 4 100 1625 8.34 3 128 1756 0.95 

15 4 93 1751 4 100 1605 8.33 3 126 1740 0.62 

18 5 77 1726 4 100 1585 8.16 3 125 1724 0.11 

22 5 75 1700 4 100 1565 7.94 5 75 1700 0 

28 6 63 1670 4 100 1545 7.48 6 63 1670 0 

 

Fig. 5. Effect of ordering costs on the total system costs 
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In the second step, the impact of holding cost in the buyer and 

vendor site is analyzed. The difference between the values of hb and hv 

is increased, and the results obtained are analyzed. As indicated in 

Table 4, this increase leads to an increase in the value of n and a 

decrease in the value of q except for State 2 that the values of q and n 

are almost unchanged. Also, the increase in the value of hb-hv leads to 

an increase in the value of TSC in all three states. Moreover, the value 

of saving obtained in States 2 and 3, compared to State 1, decreases by 

an increase in the value of hb-hv. The justification for this trend is 

similar to the effect of Av/Ab. The effect of holding costs on the total 

system costs is illustrated in Figure 6.  

It is worth noting that the similar analyses about holding cost are 

also performed by Ertogral et al. (2007) in a JELS problem. The 

results obtained in the present study are consistent with the results of 

Ertogral at al. (2007) model.  

Table 4. The impact of holding cost on the performance of the system 

hb-hv 

Fixed 

transportation 

cost (state1) 

All unit quantity discount 

(state2) 

Incremental quantity 

discount 

(state3) 

n q TSC n q TSC Saving n q TSC Saving 

1 4 94 1773 4 100 1624 8.40 3 128 1756 0.95 

2 5 77 1816 4 100 1675 7.76 5 77 1816 0.00 

3 5 75 1855 4 100 1725 7.00 5 75 1855 0.00 

4 6 65 1891 4 100 1775 6.13 6 65 1891 0.00 

5 6 63 1923 4 100 1825 5.09 6 63 1923 0.00 

 

Fig. 6. Effect of holding costs on the total system costs 
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Finally, the effect of production and demand rate is illustrated in 

Table 5. As it is expected, an increase in the value of D/P leads to an 

increase in the TSC for all the three scenarios. This change also leads 

to an increase in the value of n and q which is intuitive to some extent. 

Also, the table shows that for the larger values of demand, applying 

discounts leads to more saving.  

Table 5. The effect of demand and production rates 

D/P 

Fixed 

transportation 

cost (state1) 

All unit quantity 

discount 

(state2) 

Incremental quantity 

discount 

(state3) 

n q TSC n q TSC Saving n q TSC Saving 

0.3125 4 94 1773 4 100 1624 8.4% 3 128 1756 0.095% 

0.5 6 95 2261 6 100 2023 10% 4 140 2222 1.7% 

0.7 9 98 2599 4 200 2248 13.5% 6 143 2536 2.4% 

0.9 17 101 2672 8 200 2056 23% 12 143 2586 3.2% 

 

Finally, the following points can be inferred from the analyses of 

this section:  

 For the larger values of demand rate, applying discounts, either 

incremental or all-unit, leads to more saving in total costs of SC. 

 As the difference between the holding costs of inventory in the 

buyer and vendor sites decreases, more saving is expected from 

the discounts of transportation costs.  

 The saving obtained from discount decreases as the difference 

between vendor’s set-up costs and buyer’s ordering costs 

increases.  

Conclusion 
In this paper, transportation costs in a joint economic lot sizing 

problem (JELS) were investigated where the supply chain consisted of 

one vendor and one buyer. The transportation costs were studied in 

three states, including 1) fixed transportation cost, 2) all-unit quantity 

discount, and 3) incremental quantity discount. First, appropriate 

equations were derived to compute the costs related to the inventory 

systems in the buyer and vendor sites.  Three procedures, each 

corresponding to each state, were proposed to optimize the 

performance of the supply chain. The procedures determined the 
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parameters of the system so that the total system cost per time unit 

could be minimized. Numerical examples were provided to clarify the 

models and procedures performance. In addition, some sensitivity 

analyses were carried out to show the impact of transportation costs 

and inventory parameters on the system performance. From a 

managerial perspective, our analyses showed that all-unit quantity 

discount led to more saving in comparison with the incremental 

discount.  Moreover, for the larger values of transportation costs, all-

unit discount policy yielded more saving.  

The main novelty of this study is the development of a model that 

takes into account the incremental discount in transportation costs in a 

JELS problem. The paper can be extended in several directions, 

including modeling quantity discount of transportation costs in 

inventory routing and production routing problems, and extension of 

the models while demand is price sensitive.  
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