تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,115,543 |
تعداد دریافت فایل اصل مقاله | 97,219,734 |
بررسی آزمایشگاهی استهلاک انرژی در شیبشکنهای قائم مجهز به صفحات مشبک افقی با جریان فوق بحرانی | ||
تحقیقات آب و خاک ایران | ||
مقاله 11، دوره 50، شماره 6، آبان 1398، صفحه 1421-1436 اصل مقاله (569.89 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2019.269301.668053 | ||
نویسندگان | ||
رسول دانشفراز* 1؛ سینا صادق فام2؛ ودود حسن نیا3 | ||
1دانشیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه مراغه، مراغه، ایران. | ||
2استادیار گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه مراغه، مراغه، ایران | ||
3دانشجوی کارشناسی ارشد، گروه مهندسی عمران، دانشگاه مراغه، مراغه، ایران | ||
چکیده | ||
در این مطالعه با هدف افزایش استهلاک انرژی در شیبشکنهای قائم با جریان فوق بحرانی در بالادست، از صفحات مشبک به صورت افقی در لبه شیبشکن قائم به عنوان مستهلککننده انرژی اضافی جریان استفاده گردید. آزمایشها برای یک شیبشکن قائم ساده و شیبشکن مجهز به صفحات مشبک با دو نسبت تخلخل و سه بازشدگی دریچه تنظیم گردید. در طی آزمایشها مشاهده شد که صفحه مشبک افقی بعد از شیبشکن، با تقسیم جت در حال سقوط به تعداد بسیار زیادی از جتهای کوچک عمودی باعث افزایش تداخل هوا و تلاطم در داخل استخر گردید. مقایسه نتایج نشان داد که استفاده از این صفحات در شیبشکنهای قائم باعث افزایش عمق نسبی پاییندست، عمق نسبی استخر و استهلاک انرژی نسبی نسبت به شیبشکن قائم ساده میگردد. همچنین با بررسی نتایج مشخص گردید که با افزایش عدد فرود بالادست و کاهش عمق بحرانی نسبی، استهلاک انرژی نسبی افزایش مییابد. این درحالی است که تخلخل صفحات مشبک تأثیری بر روی این پارامتر ندارد. بررسی و مقایسه نتایج مربوط به شیبشکنهای قائم ساده و مجهز به صفحه مشبک نشان داد که استفاده از صفحات مشبک افقی در این سازهها باعث کاهش طول حوضچه آرامش و حذف سازه حوضچه آرامش میگردد. | ||
کلیدواژهها | ||
شیبشکن قائم؛ مستهلک کننده؛ عدد فرود؛ عمق پاییندست | ||
مراجع | ||
Aslankara, V. (2007). Experimental investigation of tailwater effect on the energy dissipation through screens (Doctoral dissertation, MS thesis, Middle East Technical Univ. Ankara, Turkey). Balkiş, G. (2004). Experimental Investigation of Energy Dissipation through Inclined Screens (Doctoral dissertation, Middle East Technical Univercity, Ankara, Turkey). Bozkuş, Z., Balkiş, G., & Ger, M. (2005). Effect of inclination of screens on energy dissipation downstream of small hydraulic structures. In Proceedings of the 17th Canadian Hydrotechnical Conference, Edmonton, Alberta, Canada (pp. 881-890). Bradley, J. N., & Peterka, A. J. (1957). The hydraulic design of stilling basins: hydraulic jumps on a horizontal apron (basin i). Journal of the Hydraulics Division, 83(5), 1-24. Çakir, P. (2003). Experimental investigation of energy dissipation through screens (Doctoral dissertation, M. Sc. thesis, Department of Civil Engineering, Middle East Technical University, Ankara, Turkey). Chamani, M., & Beirami, M. K. (2002). Flow characteristics at drops. Journal of hydraulic engineering, 128(8),788-791. Chamani, M. R., Rajaratnam, N., & Beirami, M. K. (2008). Turbulent jet energy dissipation at vertical drops. Journal of hydraulic engineering, 134(10), 1532-1535. Daneshfaraz, R., Sadeghfam, S., & Hasannia, V. (2019a). Experimental investigating effect of Froude number on hydraulic parameters of vertical drop with supercritical flow upstream. AUT Journal of Civil Engineering. Doi: 10.22060/CEEJ.2019.15655.5985 (in Faersi) Daneshfaraz, R., Chabokpour, J., & Nezafat, H. (2019b). Experimental Investigation of the Scouring due to Hydraulic Jump in Screens. Iranian Journal of Soil and Water Research. 50(5), 1039-1051. (in Faersi) Daneshfaraz, R., MajediAsl, M., Mirzaee& Nezafat, H. (2019c). The S-jump's Characteristics in the Rough Sudden Expanding Stilling Basin. Iranian AUT Journal of Civil Engineering. Doi: 10.22060/AJCE.2019.16427.5586 (in Faersi) Daneshfaraz, R., Sadeghfam, S., & Mirzaeereza, R. (2019d). Experimental Study of Expanding Effect and Sand-Roughened Bed on Hydraulic Jump Characteristics. Iranian Journal of Soil and Water Research. 50(4), 885-896. (in Faersi) Daneshfaraz, R., Sadeghfam, S., & Tahni, A. (2019e). Experimental Investigation of Screen as Energy Dissipators in the Movable-Bed Channel. Iranian Journal of Science and Technology, Transactions of Civil Engineering. Doi: 10.1007/s40996-019-00306-7. Daneshfaraz, R., Sadeghfam, S., & Ghahramanzadeh, A. (2017). Three-dimensional numerical investigation of flow through screens as energy dissipators. Canadian Journal of Civil Engineering, 44(10), 850-859. Daneshfaraz, R., Sadeghfam, S., & Rezazadeh-Joudi, A. (2016). Laboratory Investigation on the Effect of Screen’s Location on the Flow Energy Dissipation. Irrigation and drainage structures engineering research, 17(68), 47-62. (in Faersi) Esen, I. I., Alhumoud, J. M., & Hannan, K. A. (2004). Energy Loss at a Drop Structure with a Step at the Base. Water international, 29(4), 523-529. Gill, M.A. (1979). Hydraulics of rectangular vertical drop structures. Journal of Hydraulic Research, 17(4), 289-302. Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. Hasannia, V., Daneshfaraz, R., & Sadeghfam, S. (2019). Experimental investigating on hydraulic parameters of vertical drop equipped with combined screens. AUT Journal of Civil Engineering. Doi: 10.22060/CEEJ.2019.16431. 6223 (in Faersi) Hong, Y. M., Huang, H. S., & Wan, S. (2010). Drop characteristics of free-falling nappe for aerated straight-drop spillway. Journal of Hydraulic Research, 48(1), 125-129. Kabiri-Samani, A. R., Bakhshian, E., & Chamani, M. R. (2017). Flow characteristics of grid drop-type dissipators. Flow Measurement and Instrumentation, 54, 298-306. Liu, S. I., Chen, J. Y., Hong, Y. M., Huang, H. S., & Raikar, R. V. (2014). Impact Characteristics of Free Over-Fall in Pool Zone with Upstream Bed Slope. Journal of Marine Science and Technology, 22(4), 476-486. Moore, W. L. (1943). Energy loss at the base of a free overfall. Transactions of the American Society of Civil Engineers, 108(1), 1343-1360. Nayebzadeh, B., Lotfollahi-yaghin, M. A. & Daneshfaraz, R. (2019). Experimental study of Energy Dissipation at a Vertical Drop Equipped with Vertical Screen with Gradually Expanding at the Downstream. AUT Journal of Civil Engineering. Doi: 10.22060/CEEJ.2019.16493. 6265(in Faersi) Norouzi Sarkarabad, R., Daneshfaraz, R., & Bazyar, A. (2019). The Study of Energy Depreciation due to the use of Vertical Screen in the Downstream of Inclined Drops by Adaptive Neuro-Fuzzy Inference System (ANFIS). AUT Journal of Civil Engineering. Doi: 10.22060/CEEJ.2019.16694. 6305(in Faersi) Rajaratnam, N. (1976). Turbulent jets (Vol. 5). Elsevier. Rajaratnam, N., & Chamani, M. R. (1995). Energy loss at drops. Journal of Hydraulic Research, 33(3), 373-384. Rajaratnam, N., & Hurtig, K. I. (2000). Screen-type energy dissipator for hydraulic structures. Journal of Hydraulic Engineering, 126(4), 310-312. Rand, W. (1955). Flow geometry at straight drop spillways. In Proceedings of the American Society of Civil Engineers,81(9), 1-13. Sadeghfam, S., Akhtari, A. A., Daneshfaraz, R., & Tayfur, G. (2015). Experimental investigation of screens as energy dissipaters in submerged hydraulic jump. Turkish Journal of Engineering and Environmental Sciences, 38(2), 126-138. Sadeghfam, S., Daneshfaraz, R., & Minaei, o. (2019). Experimental studies on scour of supercritical flow jets in upstream of screens and modelling scouring dimensions using artificial intelligence to combine multiple models (AIMM). Journal of Hydroinformatics, 21 (5): 893-907. Sharif, M., & Kabiri-Samani, A. (2018). Flow regimes at grid drop-type dissipators caused by changes in tail-water depth. Journal of Hydraulic Research, 1-12. Tokyay, N. D., & Yildiz, D. (2007). Characteristics of free overfall for supercritical flows. Canadian Journal of Civil Engineering, 34(2), 162-169. White, M.P. (1943). Discussion of Moore (1943), ASCE, 108, 1361-1364. | ||
آمار تعداد مشاهده مقاله: 419 تعداد دریافت فایل اصل مقاله: 417 |