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Abstract 

Extracting the main cyclic fluctuations from sea level changes of the Persian Gulf and Oman Sea is 
vital for understanding the behavior of tides and isolating non-tidal impacts such as those related to 
climate and changes in the ocean-sea circulations. This study compares two spectral analysis 
methods including: Least Squares Spectral Analysis (LSSA) and Least Squares Harmonic 
Estimation (LSHE), to analyze satellite altimetry derived sea surface height changes of the Persian 
Gulf and Oman Sea. SSH data are derived from about 16 years of satellite altimetry observations 
(1992 to 2008), including the Topex/Poseidon and Jason-1 missions. By analyzing the real data, 
we extract significant tidal components in the spectrum of LSSA and LS-HE including those with 
the period of 62.07, 173.3, 58.71, 45.68, 88.86, 364.2 and 117.5 days, which are interpreted as 
Principal Lunar semi-diurnal, Luni-Solar Diurnal, Principal Solar Semi-diurnal, Principal Lunar 
Diurnal, GAM2, annual, Solar Diurnal periods are dominant in the level fluctuations. Moreover, 
some tidal components appear in the spectrum of LSSA and LS-HE, from which the Moon's semi-
diurnal component Mଶ is dominant. Also, to evaluate the efficiency of these two techniques, we 
run three experiments in each extracted frequency from LSSA, LS-HE, and astronomical tide 
tables are separately used to predict the sea level in the Persian Gulf and Oman Sea for three years. 
The results of this prediction indicate that RMSE from LSSA, astronomical table, and LS-HE is 
0.101 m, 0.093 m, and 0. 086 m, respectively. According to the results LS-HE is found a more 
efficient technique to analyze cyclic fluctuations from altimetry measurements. 
 
Keywords: Persian Gulf and Oman Sea, Least Square Spectral Analysis (LSSA), Least Square 

Harmonic Estimation (LS-HE), Satellite Altimetry. 
 
1. Introduction 
The description, understanding and 
quantitative determination of the tides has 
been an important research topic in geodesy 
oceanography. Ocean tides, resulting from 
the gravitational attractions of the moon and 
the sun, causes more than 80% of the total 
variability of the sea surface. Tides have 
strong influence on coastal environment and 
the protection of its ecosystem, and play a 
significant role in climate and also needed for 
the precise treatment of space observations 
(Fok, 2012).  
Advances in satellite radar altimetry 
technology have enabled a globally sampled 
record of sea surface and has become an 
important tool for monitoring global and 
regional sea surface height (SSH) (Fu and 
Cazenave, 2001), measuring level 
fluctuations of inland water bodies (Khaki et 

al., 2015), and even soil moisture (Frappart et 
al., 2015; Papa et al., 2003). Thereby, 
complementing traditional tide gauge (in 
situ) measurements, which despite their 
valuable utility in reflect local sea level 
fluctuations, they have limitations such as 
inhomogeneous spatial distribution, 
inconsistency between reference datum's, and 
a suboptimal reference to the moving coast 
(Chelton et al., 2001). 
Tide data are frequently used for different 
applications such as safe navigation and 
hydrographic surveys. Their identity can be 
expressed by their frequencies and noise 
structure. Tidal analysis, which is focused in 
this paper, tries to condense a long-term 
record of observations into a brief collection 
of time-invariant constants. Due to the 
periodic behaviour of the tide-generating 
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forces (e.g., those resulting from the relative 
[to Earth] motions of the Moon and Sun), 
periodicities contained within a tidal record is 
often extracted in order to describe the tidal 
displacement at a location as a sum of the 
associated harmonics (see, e.g., 
https://tidesandcurrents.noaa.gov/predhist.ht
ml). A reliable tidal analysis and prediction 
requires a reliable knowledge on the (main) 
tidal frequencies and noise structure. So far, 
all the proposed methods for determining 
tidal frequencies have been Theorized based; 
in other words, on these methods applied the 
ephemeris of Moon, Sun and other planets to 
extract tidal frequencies without any use of 
tidal observations, as mentioned by Doodson 
(1954), Tamura (1993), Parvazi et al. (2015), 
Xi and Hou(1987). These methods assume 
that the tidal frequencies are known, but their 
amplitudes are unknown. 
To extract the tidal frequencies, many studies 
have analysed sea level height with different 
methods such as the Fourier and wavelet. 
Historically, Fourier spectral analysis has 
been used to examine the global energy and 
frequency distributions of SSH time series 
(Boashash and Butland, 2003). Its popularity 
is due to the prowess of the method, as well 
as its simplicity of application. As a result, 
the term ’spectrum’ has become almost 
synonymous with the Fourier transform of 
time series (Wu et al., 2009). Fourier 
analysis, however, exhibits some drawbacks 
in analysing time series, which are unequally 
sampled or those with data gaps (Rubin, 
2002). Filling the gaps with inverted data 
might be erroneous when large gaps present 
in the time series, or due to the 
approximation approach used for 
interpolation (Papa et al., 2003).  
In this paper, we focus on time-invariant 
base-functions to detect tidal frequencies 
using tidal observation analysis without 
predefining these frequencies. For this 
purpose, we compare the application of the 
Least Square Spectral Analysis (Vanicek, 
1969, 1971) and the Least Squares Harmonic 
Estimation (LS-HE) developed by Amiri-
Simkooei and Asgari (2014), Amiri-
Simkooei (2014, 2012), and Amiri-Simkooei 
(2007). Our motivation to select these 
techniques is: 1- they are not limited to 
evenly-spaced data nor to integer 
frequencies; 2- they allow us to detect 

common-modes of signals, in a least squares 
sense, and thus are very efficient in detecting 
cyclic patterns; and (3) they can be easily 
used for univariate and multivariate 
examples. 
Therefore, the mathematical objectives 
(MOs) of this study include: (MO1) 
justifying the mathematical (dis-)similarity  
of these two techniques and their relationship 
with the commonly used (discrete) Fourier 
Analysis; (MO2) assessing the accuracy  
of the extracted frequencies, while evaluating 
the effect of the noise that contaminate  
the observations, effect of blunders, impact 
of missing values in time series; and (MO3) 
recognizing the accuracy of extraction  
of nearby frequencies and effect of the  
data length in extracting the nearby 
frequencies. A detailed investigation of these 
objectives has not been provided in previous 
studies, thus, this assessment complements 
the literature by evaluating the skill of LSSA 
and LS-HE techniques for tidal analysis 
studies.  
To assess the ability of LSSA and LS-HE,  
on a real case study, we apply them at  
the SSH time series of the Persian Gulf and 
the Oman Sea derived from  
the Topex/Poseidon mission (1992-2002), 
Jason-1 (2003-2008), and Jason-2 (2009-
2014). The Persian Gulf, located in the 
southwest of the Asian continent is a shallow, 
semi-enclosed basin in a typical arid zone 
and is an arm of the Indian Ocean. It is 
located between the longitude of 48–57° E 
and the latitude of 24–30° N (Figure 9). This 
Gulf is connected to the deep Gulf of Oman 
through the narrow Strait of Hormuz. The 
Persian Gulf covers an area of approximately 
226,000 km2 with a length of 990 km. Its 
width varies from 56 to 338 km, separating 
Iran from the Arabian Peninsula with the 
shortest distance of about 56 km in the Strait 
of Hormuz. This basin has an average depth 
of about 35 m, and the deepest water depth is 
approximately 107 m (Purser and Seibold, 
1973). 
The remaining part of this study is organized 
as follows: in Section 2, the datasets of the 
study are introduced, and the methodology of 
their analysis is explained in Section 3. The 
results are reported in Section 4, and finally, 
the study is summarized and concluded in 
Section 5. 
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2. Data 
The first studies regarding the use of  
the satellite for sea level were raised in 1969 
in the Williamstown Conference of Solid 
Earth and Ocean Physics. Four years later  
in spatial laboratory, the first measures of  
sea level were performed by altimetry radar 
S-193 with accuracy of about one meter. 
Later, various satellites were used for 
different space missions (Aviso and Podaac, 
2008). 
Topex/Poseidon generated SSH 
measurements with RMSE accuracy better 
than 5 cm for a single-pass and better than 2 
cm at global scale. To eliminate atmospheric 
effects, this satellite was placed in an  
orbit with high altitude, 1336 km to perform 
exact orbit modelling. With the progress  
of distance with laser, JGM3 (Joint  
Gravity Model) and non-gravity models 
reduce the radial error of RMS to about  
2 cm. For the first time, seasonal period  
and other time changes of which ocean  
were determined as globally with high 
accuracy. 
Jason-1 and Jason-2 were placed in orbit in 
continuance of the Topex/Poseidon mission 
and the mission of Topex/Poseidon and 
Jason-1, respectively. The altimetry 
measurement accuracy of these two satellites 
is about 2.5 cm. With the investigation in the 
data of Topex/Poseidon, Jason-1 and Jason-2, 
when these satellites were in a similar orbit, 
had equal coverage and by intermission bias 
on data of Jason-1, Jason -2 (in data files of 
these satellites), they were combined with the 
data of Topex/Poseidon and achieved about 
22 years of data on similar passes. The 
satellite data in this study include 
Topex/Poseidon satellite data during 1992-
2002, Jason-1 satellite during 2003-2008 and 
Jason-2 satellite during 2009-2014 in the 
Persian Gulf and the Gulf of Oman. In fact, 
this data is data on which the effect of the 
wet Troposphere error (Δw), dry troposphere 
error (Δd), ionosphere error (ΔI), polar tide 
error (ΔpT), inverse pressure effect bias 
(ΔIB), sea state bias, electromagnetic bias 
(ΔE) and error of centre of gravity changes of 
altimeter antenna (Δc); is applied. All of 
these corrections apply to observations. 
These data are available at 
ftp://avisoftp.cnes.fr/AVISO/pub (Aviso and 
Podaac, 2008). 

3. Methodology 
Consider f  containing sampled SSH 

observations, it can be written as a functional 
model of (Vaníček, 1969, 1971; Amiri-
Simkooei, 2007): ݂ = ݔܣ +  ௝                                              (1)ݔ௝ܣ

where f is vector of observations containing 

both periodic and non-periodic terms;	ݔܣ  
and ܣ௝ݔ௝	refer to non-periodic and periodic 
part of the model, respectively. In a  
similar manner, both LSSA and LS-HE 
methods try to extract the periodical part  
of the model in Equation (1) by using a  
series of sinusoidal base-functions (Vanicek, 
1969). Both LSSA and LS-HE use a  
least square approximation to find  
the amplitudes associated to the base-
functions. 
In order to create a time-dependent 
observation vector, we create a  
vector (݂ = ሼ ଵ݂, … , ௡݂ሽ) where we have  

an observation at any time (ݐ = ሼݐଵ,… ,  .(௡ሽݐ
And finally, we come to a time series.  
Let  be vector space defined by an  
inner product (ߪ൫ܽ௝௜ , ܽ௝௝൯ =< ܽ௝௜ |ܽ௝௝ >=∑ ܽ௜(ݐ௝)ܽ௝(ݐ௝)௧ೖ∈ெ ) and ܽ௝௜  as its base-
functions, i.e.	ܽ௝௜ , i=1,…, m are column-
vectors with the same dimension as ݂. The 

aim of a spectral analysis (LSSA or LS_HE) 
is to look for unknown coefficients 		ݔ௝௜, ݅ =1, …	, ݉, which provide the best 
approximation of ݂  in the vector space M: ݂ = ∑ ௝௜௠௜ୀଵݔ ܽ௝௜ =  ௝௜ݔ  is a vector containing the coefficients	௝ݔ ௝                                   (2)ݔ௝ܣ
and each base-function ܽ௝௜  is i-th column of 
the matrix	ܣ௝. In a matrix form, the optimum ݔ௝௜	follows the minimization criterion of 
(Vaníček, 1969, 1971; Amiri-Simkooei, 
2007): ∥ ݂ − ො௝ݔ௝ܣ ∥=∥ ߥ̂ ∥↣ ݉݅݊                             (3) 

Using the least squares adjustment (LSA) 
with the mean quadratic norm, coefficients ݔ௝௜ 
are therefore determined as: ݔො௝ = ௝்ܣ) ௝்ܣ௝)ିଵܣܹ ܹ݂                                 (4) 

Considering the periodic pattern of model in 


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Equation (1), one should a priory select 
appropriate base-functions to model the 
sampled observations. As mentioned in 
Vanicek (1969), LSSA thus uses general 
trigonometric polynomial of: 

௠ܶ(ݐ) = ∑ )	௝cosݎ ௝߱ݐ − ௝)௠ିଵ௝ୀଵߠ                        (5) 

where	 ௝߱ is Frequency, ݎ௝ is Amplitude, ߠ௝ is 
Phase component of j. 
Equation (5) consists of two main parts of a 
signal, the linear trend and the periodic 
portion. For representing the periodic term. 
Therefore, Equation (5) should be defined by 
considering the minimum quadratic distance 
from the observed vector

 
݂, while detecting 

the major periodic terms with frequencies ௝߱. 
Note that the frequencies are assumed to be 
known beforehand. Therefore, each general 
trigonometric polynomial  expands as 

below:  

௠ܶ(ݐ) = ௝ܽcos	( ௝߱ݐ) + ௝ܾcos	( ௝߱(6)                 (ݐ 

To achieve Equation (6), two equations of ݎ௝ = ට ௝ܽଶ + ௝ܾଶ and ߠ௝ = 2arctan	( ௔ೕ௕ೕା௥ೕ), are 

used.    
For a specific frequency ௝߱, matrix ܣ௝ with 

the base-functions ܽ௝௜ , can be written as: 

௝ܣ =
ێێۏ
ۍێێ
)ݏ݋ܿ ௝߱ݐଵ) )݊݅ݏ ௝߱ݐଵ)ܿݏ݋( ௝߱ݐଶ) )݊݅ݏ ௝߱ݐଶ). .. .. )ݏ݋ܿ. ௝߱ݐ௡) )݊݅ݏ ௝߱ݐ௡)ۑۑے

 (7)                       ېۑۑ

Each spectral value, corresponding to the 
frequency j , is defined as the ratio of the 

length of f  projected on the orthogonal 

base-functions i
ja  and scaled by the length 

of observations as (Vaníček, 1969, 1971; 
Amiri-Simkooei, 2007): ݏ൫ ௝߱൯ = ௙೅ௐ஺ೕ(஺ೕ೅ௐ஺ೕ)షభ஺ೕ೅ௐ௙௙೅ௐ௙                          (8) 

Choosing ܹ =  ௡×௡; least square spectrumܫ
simplifies as: ݏ൫ ௝߱൯ = ௙೅஺ೕ(஺ೕ೅஺ೕ)షభ஺ೕ೅௙௙೅௙                                  (9) 

Equations (8) and (9) are related to the LSSA 
technique, while Equation (8) is the weighted 

case and Equation (9) is a simple equally-
weighted case. 
The univariate harmonic estimation spectrum 
is defined as below (Vaníček, 1969, 1971; 
Amiri-Simkooei, 2007): 
The univariate harmonic estimation power 
spectrum shown as below: ܵ൫ ௝߱൯ = ݁̂଴்ܹܣ௝(ܣ௝் ܹ ஺ܲୄ ௝்ܣ௝)ିଵܣ ܹ݁̂଴         (10) 

where ݁̂଴ = ஺ܲୄ ݂                                                    (11) 

Represents least square residuals (Amiri-
Simkooei, 2007) 

஺ܲୄ = ܫ −  (12)                         ்ܹܣଵି(ܣ்ܹܣ)ܣ

Substituting Equations (11) and (12) into 
Equation (10), at first, the problem of non-
inevitability is solved, and then the final 
formula is presented as follows: 
 ܵ൫ ௝߱൯ =൬(ܫ − ൰்݂(்ܹܣଵି(ܣ்ܹܣ)ܣ ௝்ܣ))௝ܣܹ ܫ)ܹ ௝்ܣ(௝)ିଵܣ(்ܹܣଵି(ܣ்ܹܣ)ܣ− ܫ)ܹ  (13)                                    ݂(்ܹܣଵି(ܣ்ܹܣ)ܣ−

Is the orthogonal projector of the univariate 
model that projects along range space of A, 
i.e. ܴ(ܣ), onto orthogonal component of 
range space of A, i.e. ܴ(ܣ). For zero mean 
stationary random process containing only 
white noise, linear part of model vanishes 
ܣ) = 0) and the weight matrix of	ܹ =  , ௡×௡ܫ
the univariate LS-HE estimated spectrum 
simplifies as (Amiri-Simkooei and Asgari, 
2012; Amiri-Simkooei, 2007): ܵ൫ ௝߱൯ = ௝்ܣ)௝ܣ்݂ ௝்ܣ௝)ିଵܣ ݂                         (14) 

To obtain S(ωj) using several approaches are 
possible. One of these methods, using 
analytical relations for the matrix Aj, which is 
obtained for a maximum value of S(ωj). 
However, this method due to the presence of 
large local amounts is very cumbersome and 
complicated. Therefore, numerical methods 
are used to solve the problem. For this 
purpose, a discrete relationship between ωj  
and S(ωj) is established and we can obtain 
the graph of the spectral values of S(ωj) in 
terms of the discrete values of ωj. In this  
way, ω which has the maximum value of the 
spectral value S(ωj) it is chosen as the 
frequency of interest. 

 tTj
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The difference between the LSSA-derived 
spectrum Equation (9) and the univariate 
LS_HE derived spectrum Equation (14) is the 
scaling (normalization) factor of ்݂݂	 . 
In case of existing several time series, the 
model is referred to as a multivariate linear 
model which uses all the time series 
simultaneously with  as the cross-
correlation matrix of observations. 
Multivariate power spectrum obtained as 
(Vaníček, 1969, 1971; Amiri-Simkooei, 
2007): 
൫ݏ  ௝߱൯ ௝்ܣ)௝ܣ෠்ܹିଵܧ)ݎݐ= ܹିଵ ஺ܲୄ ௝்ܣ(௝)ିଵܣ ܹିଵܧ෠Σ்  (15) 

where ܧ෠்	is least squares residual of 
observation matrix ܨ with time series stored 
in its columns.  ܧ෠ = ஺ܲୄ  (16)                                                    ܨ

For zero-mean uncorrelated series choosing Σ = ,ଵଵߪ)݃ܽ݅݀ ,ଶଶߪ . . . ,  ௥௥), spectrumߪ
simplifies as (Vaníček, 1969, 1971): ݏ൫ ௝߱൯ = ∑ ෠்௥௜ୀଵܧ ௝்ܣ)௝ܣ ௝்ܣ௝)ିଵܣ  ௜௜           (17)ߪ/෠ܧ

Spectrums in the Equations (8), (9), (14), 
(15) and (17) are functions of frequency ௝߱. 
These functions may include several  
local maximums. More significant 
frequencies will show up with greater 
spectral values and maximize the spectrum 
(Amiri-Simkooei and Asgari, 2012; Amiri-
Simkooei, 2007; Vanicek, 1969, 1971). 
Analytical methods for extracting the local 
maximums might be complicated. Spectral 
values, therefore, can be computed for a set 
of primary frequencies to find the significant 
ones that appear with maximum spectral 
values in the spectrums. Equations (8) and 
(9) can respectively be used to compute 
spectrums for a weighted and equally-
weighted LSSA; Equation (14) corresponds 
to the univariate LS-HE; and finally 
Equations (15) and (17) refer to the weighted 
and equally-weighted multivariate LS-HE 
approach, respectively. 
 

3-1. Least square harmonic estimation for 
frequency extraction 
Harmonic estimation method is used to 
introduce periodic patterns in functional 
model. For a time series, the simplest 
periodic behavior that can be added to 

improve a functional model is to include: 

y(t) = a cos ω t+ b sin ω tj j j j                      (18) 

This relationship is in fact a sinusoidal wave 
with a primary phase, a j  and jb  signal 

amplitude and ω j  frequency. Therefore, the 

functional model changes as follows: 

E(y) = Ax + A xj j                                   (19) 

After merging Equations 18 and 19, we will 
have Equation (20): 
 

1 1

2 2

m m

cosω t sinω t

acosω t sinω t
A = , x =

b

cosω t sinω t

j j

jj j
j j

j

j j

 
 

  
      

  

 

   (20) 

Since in this model, in addition to a j  and jb , 

the frequency ω j is also unknown; therefore, 

the least squares harmonic estimation method 
should be used to solve the problem. For this 
purpose, the assumptions of zero 0H  and the 

opposite of aH are defined as follows: 
 

0H : E(y) = Ax  

aH : E(y) = Ax + A xj j                           (21) 

An important issue here is whether the theory 
or assumptions used in the model is correct 
or not. For this purpose, two assumptions are 
assumed to be zero and the assumption is 
opposite to. For example, an assumption is 
that the data are unmistakable. To examine 
whether these assumptions are valid or not, 
we oppose the zero hypothesis and consider 
the opposite hypothesis, so that the variables 
become clearer for us. In a model that is 
assumed to have error and error effects 
absent ( 0H ), 0H test against aH  informs us 

that indicates whether additional variable 
should be added to the calculation or not. The  
main goal is to solve the problem of finding 
frequencies that can maximize the following. 
In fact, the goal is to find the frequencies that 
can be obtained for these frequencies by 
maximizing the amount of power spectrum. 
Then, based on this maximum power 
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spectrum, it is possible to analyze the 
frequency extraction of important tidal 
components. 
The goal is to find the frequency ω j  by 

solving the following minimization problem: 

j
jω

ω = argmax P(ω )j                                (22) 

௝߱ = 	||݊݅݉݃ݎܽ [ܲ஺	஺ണതതതതതത]ୄ ொ೤షభଶ||ݕ = argmin ||	݁̂௔||ொ೤షభଶ  ௝߱ = ||ܲ஺̅ೕݕ||ொ೤షభଶ ௝ܣ̅			.		 = ஺ܲ	ୄܣ௝ ܲ஺̅ೕ = ௝்ܳ௬ିܣ̅)௝ܣ̅ ଵ̅ܣ௝)ିଵ̅ܣ௝்ܳ௬ି ଵ 	 ௝߱= argmax݁̂଴ܳ௬ି ଵܣ௝(ܣ௝்ܳ௬ି ଵ ஺̅ୄܲ ௝்ܳ௬ିܣ௝)ିଵܣ ଵ݁̂଴= argmax	P(ω୨) ݁̂଴ = ஺̅ୄܲ  ݕ
T -1 T -1 -1 T -1

j 0 0y j j y A j j yˆ ˆP(ω ) = e Q A (A Q P A ) A Q e      

(23) 

0 Aê P y  

                    (24) 

In the above relationship, 	̅ܣ = ଵܣ	ܣ] .			[௞ିଵܣ… ||	. ||ொ೤షభస	(.)೅ೂ೤షభ(.)ଶ  and ݁̂௔ 

the remainder of the least squares is subject 
to the opposite. A j  is obtained using 

Equation (20). The first two columns of this 
matrix include a linear behavior of time 
series and the following columns for finding 
periodic behavior in time series is used. 0ê  

The least squares residue vector and AP  is 

the orthogonal projector. These parameters 
are obtained under the assumption 0H .  

In order to find the matrix A j  in (23), for 

different jω  bands, different matrices are 

tested to find the maximum value of jP(ω )

The matrixes A j  have the same matrix 

structure as in (20). The matrix A j , the 

maximum value of jP(ω ) , obtained by it, and 

is chosen as the matrix A j . 

To obtain P(ωj) using several approaches are 
possible. One of these methods, using 
analytical relations for the matrix Aj, which is 
obtained for a maximum value of P(ωj). 
However, this method due to the presence of 
large local amounts is very cumbersome and 
complicated. Therefore, numerical methods 
are used to solve the problem. For this 

purpose, a discrete relationship between ωj 
and P(ωj) is established, and we can obtain 
the graph of the spectral values of P(ωj) in 
terms of the discrete values of ωj. In this 
way, ω which has the maximum value of the 
spectral value P(ωj) is chosen as the 
frequency of interest. 

The choice of different jω  is done by 

Equation (25): 
 

j+1 j jT =T (1+αT /T), α=0.1, j=1,2,...    

j jω = 2π/T                                                  (25) 

where ଵܶ is the Nyquist period and T is the 
total length of the time series. The value of ଵܶ	in Equation (25) is equivalent to 1 hour. 
Considering the value of 0.1 for alpha is 
because, first, this coefficient must be chosen 
so that the algorithm can extract all the 
different frequencies. Second, this factor 
should be such that the volume of 
calculations does not last long. Therefore, for 
the above two goals, the appropriate value for 
this coefficient is 0.1. 
After finding ωj and also the maximum  
value of P(ωj), it is necessary to test the 
selected frequencies with statistical 
assumptions. The statistics used for this test 
are as follows: 

T -1 T -1 -1 T -1
2 0 0y k k y A k k yˆ ˆT = e Q A (A Q P A ) A Q e   

(26) 

The statistics ଶܶ	under the assumption ܪ଴, 
has a Chi Squared distribution function with 
two degrees of freedom. 
 
4. Simulation 
The JASON-1 and missions are T/P’s follow-
on that overfly almost the same reference T/P 
ground tracks from 2002 to 2008 (continued 
on the Topex satellite mission), respectively 
(Picot et al., 2003). The two satellites fly 254 
ground tracks (passes) in 9.9156-day repeat 
cycle to measure topography changes of the 
sea surface (measure the height of the sea 
surface). The time series of observations are 
constructed according to satellite 
measurements when crossing a point  
(Sharifi et al., 2013). In fact, there are 
missing values, high amplitude noise, 
outliers, and blunders in the SSH time series 
caused by altimeter failures due to, e.g. a 

T 1 -1 T 1
AP I-A(A Q A) A Q  
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raining weather, ice and land coverage etc. 
The mentioned conditions are considered 
within the simulation stage, when LSSA and 
LS-HE are applied to analyse the SSH time 
series.  
In order to simulate the time series, we used a 
periodic signal with a constant trend which 
was simulated using Equation (27): 
(ݐ)ܪܵܵ  ଴ݕ= + ݐݎ + ∑ [	ܽ௝ )ݏ݋ܿ ௝߱ݐ)+ ௝ܾ )݊݅ݏ ௝߱ݐ)]	௄௝ୀଵ    

(27) 

where SSH(t) is the water altitude at time 
moment of t, ݕ଴	is the mean time series 
(water level), j=1,2,3,…,k of the components 
number, K is determined based on the 
number of applied components. and finally,	ݎ 
is the rate of change. 
Here, we assumed that the simulated  
time series contain a superposition of  
seven different sinusoidal signals with  
the frequencies of 62.07-1; 173.3-1; 58.71-1; 
45.68-1; 88.86-1; 364.2 -1 and 117.5-1 
cycle/day with different amplitudes  
and phases. Sampling rate equals to that  
of TOPEX/POSIDON (T/P) and Jason-1 
missions, i.e. 9.9156 days. The simulation 
was done by MATLAB software using 
Equation (27). Considering the seven main 
tidal components that play the most role in 
producing a periodic signal. White noise is 
also used to consider and add noise to the 
time series. 
 
4-1. Effect of noise 
Similar to the most of spectral analysis 
methods, LSSA and LS-HE are also sensitive 
to noise.  Therefore, when the time series  
are noisy, some undesirable effects would 
appear (consider the effect of noise on  
the desired time series), for instance, the peak 
behavior of the estimated spectrum.  

To investigate a vast possibility of  
noisy behavior, temporally random noise 
with a standard normal distribution were 
added to the simulated time series with 16-
year length. The simulated noise amplitudes 
differ from 1 to 30 mm. The results show that 	∆ఠఠ  ratio, in which ∆߱ is the difference of the 

estimated frequency and its actual simulated 
value and ߱ is the simulated frequencies, 
corresponding to the annual frequency 
became more than 5 times greater when  
the noise amplitude increased from 1 to  
30 mm. This is also combined with 
decreasing the amplitude of the significant 
peaks in the spectrum. For instance, the 
effect of noise on the accuracy of the 
extracted annual cycle and its spectrum is 
illustrated in Figure (1). Figure (1-a) 
indicates that when the amplitude of the 
noise is greater than 14 mm, a bias of 9 hours 
appears in the estimation of the annual cycle. 
Figure (1-b) shows that the power of the 
simulated significant frequency, decreased 
when the noise presented. For those 
simulations containing noise amplitude 
greater than 15 mm, the power of the annual 
frequency reduced to 0.3, which might even 
fail a statistical significant test. The graph in 
Figure (1-b) indicates that the relationship 
between the noise amplitude and the 
estimated power of the peak is not linear. 
Note that the significance of the peaks, 
estimated by LSSA and LS-HE, can be tested 
statistically (Sharifi et al., 2013; Farzaneh 
and Parvazi, 2018). When a high magnitude 
noise is present in the time series, 
subsequently, the probability of the rejection 
of statistical test increases. Discussing a 
reliable testing method or a proper significant 
threshold is behind the scope of the current 
study. 
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The corresponding power spectrums of all 
the cases in Figure 4 are displayed in Figure 
(6-a) to (6-e). In case 1, 2 and 3 spectrums, 
one can easily find six dominant frequencies, 
and therefore, the missing values do not 
cause a considerable impact on the 
estimation. In cases 4 and 5, only four 
dominant frequencies were detectable. 
Figure 6 shows an overview of the estimated 
spectrums, corresponding to the time series 
of Figure 4.  In each graph, the x-axis refers 
to the period of change in (days), and the y-
axis refers to the spectral value.  
Next simulation shows the effect of gap  
in the time series. We assumed five years  
of gap (i.e. 25% of the data missed) in  
the time series of case 1 to 5, shown in 
Figure 4.  

The 


  ratio of frequencies is recomputed 

for the new time series with a prolonged gap. 
The results are summarized in Figure 7. 
Comparing Figure 7 with Figure 5, it can be 
seen that a single gap, which is 5 years in our 
case, makes slight changes in the accuracy of 
the simulation in case 1, 2, and 3. In case 4 
and case 5, moderated length changes are 
estimated less accurate in comparison with 
the results in Figure (5). The estimated 
spectrum of the time series with gaps were 
similar to those of Figure 6, therefore, they 
are not shown here. When the missing values 
occur with a periodic occurrence, the results 
of spectral analysis might completely change. 
To cover this aspect, we simulated a time 
series that exhibits 70 days of a year without 
any observation. Therefore, the mentioned 
gaps were considered for the time series of 
Figure 4. The results of spectral analysis 
indicated that the long periods can be 
extracted almost with the same accuracy of 
Figure 6. In the case 5 (with 85% missing 
values), however, the results of the LSSA 
became significantly biased. Moreover, there 
were several artificial frequencies emerging 
in the spectrum with high spectral values, 
making detection of the real periodic  
 

component more difficult. For brevity, the 
results are not shown here. 
 
4-4. Detection of nearby frequencies 
Detection of the nearby frequencies  
is important for analyzing SSH time series 
since there are other different physical 
movements of water level at sea, which 
might be represented by close spectral 
structure, e.g. the annual tidal frequency  
and annual fluctuations caused by river 
flows. Our simulation results show  
that detecting the nearby frequencies depends 
strongly on both the frequency of interest  
as well as the length of time series. For 
instance, with a 16-year SSH time series, the 
two low frequency fluctuations of 
0.00273786 and 0.00281690 cycle/day were 
not separable, however, one can separate 
them when the length of observation was 30 
years. Detected numerical values of the 
frequencies were 0.002717 and 0.002838, 
respectively. For the nearby semi-annual and 
monthly frequencies, the situation was 
different. Using time series with the length of 
16 years, the nearby semi-annual frequencies 
of 182.6-1 and 188-1 cycle/day, as well as 
those of monthly "32-1 and 31.82-1  " cycle/day 
were successfully separated in the power 
spectrum. Estimated frequencies 
corresponding to the nearby semi-annual 
frequencies were 181-1 and 188.5-1 cycle/day, 
and corresponding to the nearby monthly 
frequencies, they were "32-1 and 31.81-1 
"cycle/day. 
 
5. Implementation of LSSA and LS-HE on 
the observed SSH time series over the 
Persian Gulf and Oman Sea  
5-1. Building the SSH Time series 
Considering the temporal coverage of the two 
satellite altimetry missions Topex/poseidon 
and Jason-1, SSH time series with the length 
of ~16 years (1992-2008) can be built. From 
254 satellite passes, twelve ground tracks 
over the Persian Gulf and Oman Sea were 
selected in this study (see Figure 9). 
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Table 2. Main tidal components and their aliased frequencies. The first column indicates the sign of tidal frequencies, the 
third column lists the real value of the tidal frequencies derived from astronomical studies (c.f. [5]), the fourth 
column shows the corresponding real period, fifth column lists the computed frequencies with respect to 
9.915625 days sampling rate, and the sixth column lists their corresponding aliased periods. 

 

Sign Description 
Frequency 
(cycle/day) 

Period (day) 
Aliased 

Frequency 
(cycle/day) 

Aliased Period 
(day) 

SA Annual Solar Tide 0.0027378 365.2599774 0.0027378 365.2599774 
SSA Semi-annual Solar Tide 0.0054758 182.6211838 0.0054758 182.6211838 

MSM Solar monthly 0.0314347 31.8119340 0.0314347 31.8119340 
MM Lunar Monthly 0.0362916 27.5545492 0.0362916 27.5545492 

MSF 
Luni-solar Synodic 

Fortnightly 
0.0677264 14.7652927 0.0331245 30.1891006 

MF Lunar Fortnightly 0.0732022 13.6607901 0.0276487 36.1680374 
Q1 Larger Lunar Elliptic Diurnal 0.8932441 1.1195148 0.0144143 69.3755724 
O1 Principal Lunar Diurnal 0.9295357 1.0758059 0.0218773 45.7094201 
P1 Principal Sonar Diurnal 0.9972621 1.0027454 0.0112472 88.9109452 
S1 Solar Diurnal 1.0000001 0.9999999 0.0085092 117.5202863 
K1 Luni-Solar Diurnal 1.0027379 0.9972696 0.0057714 173.2683888 
O2 Side, half-Daily Sun 1.8590714 0.5379030 0.0437547 22.8546975 

N2 
Larger Lunar Elliptic Semi-

diurnal 
1.8959820 0.5274312 0.0201857 49.5400487 

M2 Principal Lunar semi-diurnal 1.9322736 0.5175250 0.0161060 62.0888194 
S2 Principal Solar Semi-diurnal 2.0000000 0.5000000 0.0170186 58.7592316 
K2 Luni-Solar Semi-diurnal 2.0054758 0.4986348 0.0115428 86.6341944 
M3 Lunar ter-diurnal 2.8984104 0.3450167 0.0262665 38.0712527 

M4 
Shallow water over tides of 

principal lunar 
3.8645472 0.2587625 0.0322119 31.0444328 

S4 
Shallow water over tides of 

principal solar 
4.0000000 0.2500000 0.0340372 29.3796365 

M6 
Shallow water over tides of 

principal lunar 
5.7968208 0.1725084 0.0483179 20.6962834 

S6 
Shallow water over tides of 

principal solar 
6.0000000 0.1666667 0.0497951 20.0822785 

M8 Shallow water eighth diurnal 7.7290945 0.1293813 0.0364271 27.4520769 
 

Table 3. Extracted tidal frequencies from sample points of Figure 10. Frequencies are reported in (cycle/day). 

Sign Point-1 Point-2 Point-3 Point-4 Sign Point-1 Point-2 Point-3 Point-4 

SA 0.0027459 0.0027289 0.0027968 0.0027798 O2 0.0436363 0.0436363 0.0436533 0.0436363 

SSA 0.0055495 0.0055325 0.0055325 0.0055155 N2 0.0201347 0.0201518 0.0201688 0.0201859 

MSM 0.0312703 0.0313385 0.0314067 0.0314920 M2 0.0161113 0.0160943 0.0161113 0.0161113 

MM 0.0363017 0.0360971 0.0363590 0.0363700 S2 0.0170318 0.0169636 0.0170489 0.0170318 

MSF 0.0332487 0.0332487 0.0330099 0.0330781 K2 0.0115948 0.0114756 0.0115437 0.0115608 

MF 0.0277059 0.0275012 0.0275865 0.0276377 M3 0.0261540 0.0258641 0.0261199 0.0263245 

Q1 0.0144068 0.0144238 0.0143727 0.0143897 M4 0.0324130 0.0320719 0.0322083 0.0322083 

O1 0.0218909 0.0218909 0.0218909 0.0218909 S4 0.0340503 0.0340674 0.0340674 0.0340844 

P1 0.0112541 0.0112370 0.0112541 0.0112370 M6 0.0482761 0.0483443 0.0482931 0.0483443 

S1 0.0085115 0.0085625 0.0086136 0.0085966 S6 0.0497261 0.0497772 0.0498796 0.0497431 

K1 0.0057707 0.0057707 0.0057707 0.0057707 M8 0.0359342 0.0364723 0.0363529 0.0362368 
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6. Conclusion 
In this contribution, first simulated data is 
used to investigate the effect of different 
phenomena on time series. However, actual 
observations have been used to extract 
frequencies and predict data. The total time 
interval of observation of sea surface in this 
research is from 1992 to 2008. In order to 
predict, predicted sea surface for the period 
2006 to 2008. The prediction for sea surface 
observations in the two-year period, using 
three frequency list mentioned above was 
conducted. Accordingly, the height of the sea 
surface is calculated and compared with 
actual data. Particularly, we found that both 
the LS-HE and LSSA methods perform 
equivalently for analyzing the SSH time 
series of the Persian Gulf and Oman Sea. 
Generally, the longer time series of 
observations give the guarantee of more 
accurate results when time series contain 
noise. In the light of our results from the 
simulation, the methods were used to extract 
the main frequencies of SSH changes over 
the Persian Gulf and Oman Sea. Our main 
outcomes are summarized as follows: 
- Impact of noise: for a 16-years length SSH 
time series: the impact of noise with the 
amplitude less than 10 mm is negligible and 
the accuracy of the extracted frequencies 
remains better than 0.003 cycles per day. Our 
LSSA results also indicated that for the time 
series that contain noise with an amplitude of 
greater than 50 mm, the extracted frequencies 
would be inaccurate. In this case, longer time 
series cannot compensate the noise effect.   
- Impact of outliers: outliers of medium 
scales (i.e. the amplitude of outlier value is 
smaller than 3σ, where σ is the standard 
deviation of SSH time series) presents a little 
influence on the extracted frequencies and 
the accuracy remains better than 0.004 cycle 
per day. When the number of outliers 
increases, e.g. more than 10% of the 
observations was contaminated with outliers, 
the estimated spectrums will be affected 
similar to that of noisy time series.   
- Impact of missing values: for the case of 
randomly missing values and the length of 
time series being 16-years, we found that one 
needs at least half of the possible 
observations for an accurate estimation of the 
simulated frequencies. In case of sparse SSH 
time series, the accuracy of the spectral 

analysis methods significantly decreased, 
specifically, those moderate length cycles 
were evaluated inaccurate. Existing up to 5-
year concentrated missing values (or a gap) 
in a 16-year time series of SSH did not affect 
the accuracy of the extracted Principal Lunar 
Diurnal, Principal Solar Semi-diurnal and 
seasonal frequencies. In case of missing 
values with periodic pattern, methods were 
found highly vulnerable. 
- Recognizing nearby frequencies: we found 
that the ability of recognizing nearby 
frequencies strongly depends on the 
magnitude of the frequencies themselves and 
how close they are; length of the time series; 
and the accuracy of observations. Our results 
showed that when an accurate 30-year SSH 
time series exists, the nearby low frequencies 
(with a difference of greater than 0.001 cycle 
per day) were detectable. Note that the closer 
frequencies, need longer time series to be 
separated. We also found that the existence 
of noise and missing values make the 
separation of the nearby frequencies more 
difficult.  
In the light of the simulated results, both 
LSSA and LS-HE methods were applied to 
analyze 626 satellite altimetry-derived SSH 
time series over the Persian Gulf and Oman 
Sea. Particularly, we found that: 
- In spite of missing values and noise that 
affects the performance of spectral analysis, 
LSSA and LS-HE successfully extracted 
dominant frequencies of the Persian Gulf and 
Oman Sea level changes. Nearby aliased 
frequencies of tidal components (e.g. Mଶ and Sଶ, Mସ and Sସ, M଺	and S଺) were detected 
with suitable accuracy. Using the 
multivariate LS-HE, we detected 60 
frequencies using all 626 available time 
series over the Persian Gulf and Oman Sea. 
Long term fluctuations, (e.g. 0.2086, 0.2877, 
0.3488, 0.5393, 0.6751, 0.7430 cycle/year 
respectively correspond to 4.8, 3.5, 2.9, 1.9, 
1.5, and 1.3 years for one cycle of changes), 
moderate length frequencies (e.g. seasonal 
and monthly changes) and tidal components 
(e.g.Mଶ, Sଶ, Nଶ, Kଶ, Kଵ)  were detected. 
These frequencies can be generalized to the 
whole Persian Gulf and Oman Sea. 
- In the following, to check the effectiveness 
of three samples extracted frequency 
(Astronomical-LSSA-Multivariate LSHE), 
the tide is predicted for a period of time. The 
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results of predicted tides is presented, the 
amount of RMSE based on extracted 
frequency of LSSA method 0.101 m, 
astronomical tables 0.093 m and frequency of 
Multivariate LSHE method 0.086 m, 
according to the results conclusion was that 
to obtain the frequency of multivariate LSHE 
methods the accuracy and reliability are 
higher. 
As the future work, the impact of external 
variability on level fluctuations of the Persian 
Gulf and Oman Sea and the derived 
significant frequencies. This can be done by 
considering the rainfall data, river discharges, 
measurements of the surface evaporation 
rate, temperature, and pressure data sets, 
which enhance the interpretation of the 
results. 
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