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Abstract

Extracting the main cyclic fluctuations from sea level changes of the Persian Gulf and Oman Sea is
vital for understanding the behavior of tides and isolating non-tidal impacts such as those related to
climate and changes in the ocean-sea circulations. This study compares two spectral analysis
methods including: Least Squares Spectral Analysis (LSSA) and Least Squares Harmonic
Estimation (LSHE), to analyze satellite altimetry derived sea surface height changes of the Persian
Gulf and Oman Sea. SSH data are derived from about 16 years of satellite altimetry observations
(1992 to 2008), including the Topex/Poseidon and Jason-1 missions. By analyzing the real data,
we extract significant tidal components in the spectrum of LSSA and LS-HE including those with
the period of 62.07, 173.3, 58.71, 45.68, 88.86, 364.2 and 117.5 days, which are interpreted as
Principal Lunar semi-diurnal, Luni-Solar Diurnal, Principal Solar Semi-diurnal, Principal Lunar
Diurnal, GAM2, annual, Solar Diurnal periods are dominant in the level fluctuations. Moreover,
some tidal components appear in the spectrum of LSSA and LS-HE, from which the Moon's semi-
diurnal component M, is dominant. Also, to evaluate the efficiency of these two techniques, we
run three experiments in each extracted frequency from LSSA, LS-HE, and astronomical tide
tables are separately used to predict the sea level in the Persian Gulf and Oman Sea for three years.
The results of this prediction indicate that RMSE from LSSA, astronomical table, and LS-HE is
0.101 m, 0.093 m, and 0. 086 m, respectively. According to the results LS-HE is found a more
efficient technique to analyze cyclic fluctuations from altimetry measurements.

Keywords: Persian Gulf and Oman Sea, Least Square Spectral Analysis (LSSA), Least Square
Harmonic Estimation (LS-HE), Satellite Altimetry.

1. Introduction

The  description, understanding  and
quantitative determination of the tides has
been an important research topic in geodesy
oceanography. Ocean tides, resulting from
the gravitational attractions of the moon and
the sun, causes more than 80% of the total
variability of the sea surface. Tides have
strong influence on coastal environment and
the protection of its ecosystem, and play a
significant role in climate and also needed for
the precise treatment of space observations
(Fok, 2012).

Advances in satellite radar altimetry
technology have enabled a globally sampled
record of sea surface and has become an
important tool for monitoring global and
regional sea surface height (SSH) (Fu and
Cazenave, 2001), measuring level
fluctuations of inland water bodies (Khaki et

al., 2015), and even soil moisture (Frappart et
al., 2015; Papa et al., 2003). Thereby,
complementing traditional tide gauge (in
situ) measurements, which despite their
valuable utility in reflect local sea level
fluctuations, they have limitations such as
inhomogeneous spatial distribution,
inconsistency between reference datum's, and
a suboptimal reference to the moving coast
(Chelton et al., 2001).

Tide data are frequently used for different
applications such as safe navigation and
hydrographic surveys. Their identity can be
expressed by their frequencies and noise
structure. Tidal analysis, which is focused in
this paper, tries to condense a long-term
record of observations into a brief collection
of time-invariant constants. Due to the
periodic behaviour of the tide-generating
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forces (e.g., those resulting from the relative
[to Earth] motions of the Moon and Sun),
periodicities contained within a tidal record is
often extracted in order to describe the tidal
displacement at a location as a sum of the
associated harmonics (see, e.g.,
https://tidesandcurrents.noaa.gov/predhist.ht
ml). A reliable tidal analysis and prediction
requires a reliable knowledge on the (main)
tidal frequencies and noise structure. So far,
all the proposed methods for determining
tidal frequencies have been Theorized based;
in other words, on these methods applied the
ephemeris of Moon, Sun and other planets to
extract tidal frequencies without any use of
tidal observations, as mentioned by Doodson
(1954), Tamura (1993), Parvazi et al. (2015),
Xi and Hou(1987). These methods assume
that the tidal frequencies are known, but their
amplitudes are unknown.

To extract the tidal frequencies, many studies
have analysed sea level height with different
methods such as the Fourier and wavelet.
Historically, Fourier spectral analysis has
been used to examine the global energy and
frequency distributions of SSH time series
(Boashash and Butland, 2003). Its popularity
is due to the prowess of the method, as well
as its simplicity of application. As a result,
the term ’spectrum’ has become almost
synonymous with the Fourier transform of
time series (Wu et al, 2009). Fourier
analysis, however, exhibits some drawbacks
in analysing time series, which are unequally
sampled or those with data gaps (Rubin,
2002). Filling the gaps with inverted data
might be erroneous when large gaps present
in the time series, or due to the
approximation approach used for
interpolation (Papa et al., 2003).

In this paper, we focus on time-invariant
base-functions to detect tidal frequencies
using tidal observation analysis without
predefining these frequencies. For this
purpose, we compare the application of the
Least Square Spectral Analysis (Vanicek,
1969, 1971) and the Least Squares Harmonic
Estimation (LS-HE) developed by Amiri-
Simkooei and Asgari (2014), Amiri-
Simkooei (2014, 2012), and Amiri-Simkooei
(2007). Our motivation to select these
techniques is: 1- they are not limited to
evenly-spaced data nor to integer
frequencies; 2- they allow us to detect

common-modes of signals, in a least squares
sense, and thus are very efficient in detecting
cyclic patterns; and (3) they can be easily
used for wunivariate and multivariate
examples.

Therefore, the mathematical objectives
(MOs) of this study include: (MO1)
justifying the mathematical (dis-)similarity
of these two techniques and their relationship
with the commonly used (discrete) Fourier
Analysis; (MO2) assessing the accuracy
of the extracted frequencies, while evaluating
the effect of the noise that contaminate
the observations, effect of blunders, impact
of missing values in time series; and (MO3)
recognizing the accuracy of extraction
of nearby frequencies and effect of the
data length in extracting the nearby
frequencies. A detailed investigation of these
objectives has not been provided in previous
studies, thus, this assessment complements
the literature by evaluating the skill of LSSA
and LS-HE techniques for tidal analysis
studies.

To assess the ability of LSSA and LS-HE,
on a real case study, we apply them at
the SSH time series of the Persian Gulf and
the Oman Sea derived from
the Topex/Poseidon mission (1992-2002),
Jason-1 (2003-2008), and Jason-2 (2009-
2014). The Persian Gulf, located in the
southwest of the Asian continent is a shallow,
semi-enclosed basin in a typical arid zone
and is an arm of the Indian Ocean. It is
located between the longitude of 48-57° E
and the latitude of 24-30° N (Figure 9). This
Gulf is connected to the deep Gulf of Oman
through the narrow Strait of Hormuz. The
Persian Gulf covers an area of approximately
226,000 km® with a length of 990 km. Its
width varies from 56 to 338 km, separating
Iran from the Arabian Peninsula with the
shortest distance of about 56 km in the Strait
of Hormuz. This basin has an average depth
of about 35 m, and the deepest water depth is
approximately 107 m (Purser and Seibold,
1973).

The remaining part of this study is organized
as follows: in Section 2, the datasets of the
study are introduced, and the methodology of
their analysis is explained in Section 3. The
results are reported in Section 4, and finally,
the study is summarized and concluded in
Section 5.
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2. Data

The first studies regarding the use of
the satellite for sea level were raised in 1969
in the Williamstown Conference of Solid
Earth and Ocean Physics. Four years later
in spatial laboratory, the first measures of
sea level were performed by altimetry radar
S-193 with accuracy of about one meter.
Later, various satellites were used for
different space missions (Aviso and Podaac,
2008).

Topex/Poseidon generated SSH
measurements with RMSE accuracy better
than 5 cm for a single-pass and better than 2
cm at global scale. To eliminate atmospheric
effects, this satellite was placed in an
orbit with high altitude, 1336 km to perform
exact orbit modelling. With the progress
of distance with laser, JGM3 (Joint
Gravity Model) and non-gravity models
reduce the radial error of RMS to about
2 cm. For the first time, seasonal period
and other time changes of which ocean
were determined as globally with high
accuracy.

Jason-1 and Jason-2 were placed in orbit in
continuance of the Topex/Poseidon mission
and the mission of Topex/Poseidon and
Jason-1,  respectively. The  altimetry
measurement accuracy of these two satellites
is about 2.5 cm. With the investigation in the
data of Topex/Poseidon, Jason-1 and Jason-2,
when these satellites were in a similar orbit,
had equal coverage and by intermission bias
on data of Jason-1, Jason -2 (in data files of
these satellites), they were combined with the
data of Topex/Poseidon and achieved about
22 years of data on similar passes. The
satellite data in this study include
Topex/Poseidon satellite data during 1992-
2002, Jason-1 satellite during 2003-2008 and
Jason-2 satellite during 2009-2014 in the
Persian Gulf and the Gulf of Oman. In fact,
this data is data on which the effect of the
wet Troposphere error (Aw), dry troposphere
error (Ad), ionosphere error (Al), polar tide
error (ApT), inverse pressure effect bias
(AIB), sea state bias, electromagnetic bias
(AE) and error of centre of gravity changes of
altimeter antenna (Ac); is applied. All of
these corrections apply to observations.
These data are available at
ftp://avisoftp.cnes.fi/AVISO/pub (Aviso and
Podaac, 2008).

3. Methodology
Consider f  containing sampled SSH
observations, it can be written as a functional

model of (Vanicek, 1969, 1971; Amiri-
Simkooei, 2007):

where f'is vector of observations containing

both periodic and non-periodic terms; Ax
and A;x; refer to non-periodic and periodic
part of the model, respectively. In a
similar manner, both LSSA and LS-HE
methods try to extract the periodical part
of the model in Equation (1) by using a
series of sinusoidal base-functions (Vanicek,
1969). Both LSSA and LS-HE use a
least square approximation to find
the amplitudes associated to the base-
functions.

In order to create a time-dependent
observation vector, we create a
vector (f ={f1,...,fn}) Wwhere we have
an observation at any time (t = {ty, ..., t,}).
And finally, we come to a time series.
Let M be vector space defined by an
inner  product  (o(al,a]) =<dlla] >=
Yo em@'(t)al(t;)) and al as its base-
functions, i.e. g}, i=1,..., m are column-
vectors with the same dimension as f. The
aim of a spectral analysis (LSSA or LS HE)
is to look for unknown coefficients x/,i =
1,..,m, which provide the best
approximation of f in the vector space M:

f=2" xfab = Ajx; 2

Xj is a vector containing the coefficients x}
and each base-function gj- is i-th column of
the matrix A;. In a matrix form, the optimum
x} follows the minimization criterion of
(Vanicek, 1969, 1971; Amiri-Simkooeli,
2007):

Il i — A;%; I=11 ¥ I> min 3)

Using the least squares adjustment (LSA)
with the mean quadratic norm, coefficients x}
are therefore determined as:

Considering the periodic pattern of model in
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Equation (1), one should a priory select
appropriate base-functions to model the
sampled observations. As mentioned in
Vanicek (1969), LSSA thus uses general
trigonometric polynomial of:

T (1) = X5  rjcos(w;t — 6)) %)

where w; is Frequency, 1; is Amplitude, 6; is
Phase component of ;.

Equation (5) consists of two main parts of a
signal, the linear trend and the periodic
portion. For representing the periodic term.
Therefore, Equation (5) should be defined by
considering the minimum quadratic distance
from the observed vector f, while detecting
the major periodic terms with frequencies wj.
Note that the frequencies are assumed to be
known beforehand. Therefore, each general

trigonometric polynomial Tj(t) expands as

below:
T, (t) = ajcos(w;t) + bjcos(w;t) (6)

To achieve Equation (6), two equations of

@
L), are
b]'+T'

_ ’ 24 p2 _
1= |af +bf and 6; = 2arctan( ’

used.
For a specific frequ'ency w;, matrix A; with
the base-functions aj, can be written as:
cos(wjt;) sin(wjt;)
cos(wjty)  sin(wjt,)

4= j (7)

cos(c.ojtn) sin((.u]-tn)
Each spectral value, corresponding to the
frequency @, , is defined as the ratio of the
length of ]_" projected on the orthogonal
base-functions c_zij and scaled by the length

of observations as (Vanicek, 1969, 1971,
Amiri-Simkooei, 2007):

Twa;aTwan=1aTwr
s(wy) = A ®)

Choosing W = [,,«,; least square spectrum
simplifies as:
fTajajap~ AT

s{oy) = LA ©

Equations (8) and (9) are related to the LSSA
technique, while Equation (8) is the weighted

case and Equation (9) is a simple equally-
weighted case.

The univariate harmonic estimation spectrum
is defined as below (Vanicek, 1969, 1971,
Amiri-Simkooei, 2007):

The univariate harmonic estimation power
spectrum shown as below:

S(w;) = eSWA;(ATWPLA) T ATWe, (10)
where
& = PAJ_£ (11)

Represents least square residuals (Amiri-
Simkooei, 2007)

P =1—AATWA)TATW (12)

Substituting Equations (11) and (12) into
Equation (10), at first, the problem of non-
inevitability is solved, and then the final
formula is presented as follows:

S(wy) = .

((1 - A(ATWA)‘lATW)]_‘) WA;((ATW (I —
AATWA)TTATW)ANTHATW (I —
AATWA)TTATW)f (13)

Is the orthogonal projector of the univariate
model that projects along range space of 4,
i.e. R(A), onto orthogonal component of
range space of 4, i.e. R(A). For zero mean
stationary random process containing only
white noise, linear part of model vanishes
(A =0) and the weight matrix of W = [,,,, ,
the univariate LS-HE estimated spectrum
simplifies as (Amiri-Simkooei and Asgari,
2012; Amiri-Simkooei, 2007):

S(w) = £TAJ-(A]-TA]-)‘1A]-T£ (14)

To obtain S(wj) using several approaches are
possible. One of these methods, using
analytical relations for the matrix 4j, which is
obtained for a maximum value of S(wj).
However, this method due to the presence of
large local amounts is very cumbersome and
complicated. Therefore, numerical methods
are used to solve the problem. For this
purpose, a discrete relationship between wyj
and S(wj) is established and we can obtain
the graph of the spectral values of S(wj) in
terms of the discrete values of wj. In this
way, o which has the maximum value of the
spectral value S(wj) it is chosen as the
frequency of interest.
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The difference between the LSSA-derived
spectrum Equation (9) and the univariate
LS HE derived spectrum Equation (14) is the
scaling (normalization) factor of fTf .

In case of existing several time series, the
model is referred to as a multivariate linear
model which uses all the time series
simultaneously with X as the cross-
correlation  matrix of  observations.
Multivariate power spectrum obtained as
(VaniCek, 1969, 1971; Amiri-Simkooei,
2007):

S(wj) =

tr(ETW L A;(ATW AP A) T HATW LEST (15)

where ETis least squares residual of
observation matrix F with time series stored
in its columns.

E=PiF (16)

For zero-mean uncorrelated series choosing
Y =diag(011,022, -+, 0rr), spectrum
simplifies as (Vanicek, 1969, 1971):

s(w;) = X1, ET A;(ATA) T ATE [0y (17)

Spectrums in the Equations (8), (9), (14),
(15) and (17) are functions of frequency w;.
These functions may include several
local maximums. More significant
frequencies will show wup with greater
spectral values and maximize the spectrum
(Amiri-Simkooei and Asgari, 2012; Amiri-
Simkooei, 2007; Vanicek, 1969, 1971).
Analytical methods for extracting the local
maximums might be complicated. Spectral
values, therefore, can be computed for a set
of primary frequencies to find the significant
ones that appear with maximum spectral
values in the spectrums. Equations (8) and
(9) can respectively be used to compute
spectrums for a weighted and equally-
weighted LSSA; Equation (14) corresponds
to the wunivariate LS-HE; and finally
Equations (15) and (17) refer to the weighted
and equally-weighted multivariate LS-HE
approach, respectively.

3-1. Least square harmonic estimation for
frequency extraction

Harmonic estimation method is used to
introduce periodic patterns in functional
model. For a time series, the simplest
periodic behavior that can be added to

improve a functional model is to include:

y(t)=a cos o t+ bjsin ot (18)
This relationship is in fact a sinusoidal wave
with a primary phase,a; and bj signal

amplitude and ®; frequency. Therefore, the

functional model changes as follows:
E(y)=Ax+Aij (19)

After merging Equations 18 and 19, we will
have Equation (20):

cosm 1, SIno ;t,
cosm 1, s ;t, a;
A = ,  X,=
J : : J b
. . _/
cosm,t, smo,t,
(20)

Since in this model, in addition to a j and bj ,
the frequency w, is also unknown; therefore,

the least squares harmonic estimation method
should be used to solve the problem. For this

purpose, the assumptions of zero H,; and the

opposite of F, are defined as follows:
H,: E(y)=Ax
H,:E(y)=Ax+A x, 21

An important issue here is whether the theory
or assumptions used in the model is correct
or not. For this purpose, two assumptions are
assumed to be zero and the assumption is
opposite to. For example, an assumption is
that the data are unmistakable. To examine
whether these assumptions are valid or not,
we oppose the zero hypothesis and consider
the opposite hypothesis, so that the variables
become clearer for us. In a model that is
assumed to have error and error effects

absent (H,), H,test against /A, informs us

that indicates whether additional variable
should be added to the calculation or not. The
main goal is to solve the problem of finding
frequencies that can maximize the following.
In fact, the goal is to find the frequencies that
can be obtained for these frequencies by
maximizing the amount of power spectrum.
Then, based on this maximum power
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spectrum, it is possible to analyze the
frequency extraction of important tidal
components.

The goal is to find the frequency ; by

solving the following minimization problem:

o, = argmax P(o,) (22)
@
w; = argmin|| P[fﬁ]]ylléy = argmin || éallé;1
X /2
- =T 14 =<1 ~T ~_
Pz, = A;(4; Q31 A)THA; @y
w.
j
= argmaxé, Q5 A;(4;" Q5 PL AT AT Q516
= argmax P(wj)

é = P/ily

AT TAIpL A VIATA 1A
P(@j)_gonAJ(AJ‘ QyPAAj) A;Q ¢,

(23)

A €L
Co=TAY
Py =I-A(ATQ'A)'ATQ" (24)
In the above relationship,
A=[AA .. Av4] .| ||Z_1=OTQ;1(.) and &,

y
the remainder of the least squares is subject

to the opposite. A ; s obtained using
Equation (20). The first two columns of this
matrix include a linear behavior of time
series and the following columns for finding
periodic behavior in time series is used. ¢,
The least squares residue vector and P; is
the orthogonal projector. These parameters
are obtained under the assumption H,, .

In order to find the matrix A, in (23), for

different ©; bands, different matrices are
tested to find the maximum value of P(w;)
The matrixes A, have the same matrix
structure as in (20). The matrix A, the
maximum value of P(,) , obtained by it, and
is chosen as the matrix A

To obtain P(wj) using several approaches are
possible. One of these methods, using
analytical relations for the matrix 4/, which is
obtained for a maximum value of P(wj).
However, this method due to the presence of
large local amounts is very cumbersome and
complicated. Therefore, numerical methods
are used to solve the problem. For this

purpose, a discrete relationship between wj
and P(wj) is established, and we can obtain
the graph of the spectral values of P(wj) in
terms of the discrete values of wj. In this
way, @ which has the maximum value of the
spectral value P(wj) is chosen as the
frequency of interest.

The choice of different ®; is done by
Equation (25):

T, =T;,(1+aT,/T), a=0.1, j=1,2,...
©;=2n/T; (25)

where T; is the Nyquist period and T is the
total length of the time series. The value of
T, in Equation (25) is equivalent to 1 hour.
Considering the value of 0.1 for alpha is
because, first, this coefficient must be chosen
so that the algorithm can extract all the
different frequencies. Second, this factor
should be such that the volume of
calculations does not last long. Therefore, for
the above two goals, the appropriate value for
this coefficient is 0.1.

After finding wj and also the maximum
value of P(wj), it is necessary to test the
selected  frequencies  with  statistical
assumptions. The statistics used for this test
are as follows:

T,=8 QA (A1QPrA,)'AQ}¢,
(26)

The statistics T, under the assumption Hy,
has a Chi Squared distribution function with
two degrees of freedom.

4. Simulation

The JASON-1 and missions are T/P’s follow-
on that overfly almost the same reference T/P
ground tracks from 2002 to 2008 (continued
on the Topex satellite mission), respectively
(Picot et al., 2003). The two satellites fly 254
ground tracks (passes) in 9.9156-day repeat
cycle to measure topography changes of the
sea surface (measure the height of the sea
surface). The time series of observations are
constructed according to satellite
measurements when crossing a point
(Sharifi et al., 2013). In fact, there are
missing values, high amplitude noise,
outliers, and blunders in the SSH time series
caused by altimeter failures due to, e.g. a
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raining weather, ice and land coverage etc.
The mentioned conditions are considered
within the simulation stage, when LSSA and
LS-HE are applied to analyse the SSH time
series.

In order to simulate the time series, we used a
periodic signal with a constant trend which
was simulated using Equation (27):

SSH(t) =
Yo + 1t + X5, [ a; cos(w;t) +b; sin(w;t)]
(27)

where SSH(t) is the water altitude at time
moment of # y,is the mean time series
(water level), j=1,2,3,...,k of the components
number, K is determined based on the
number of applied components. and finally, r
is the rate of change.

Here, we assumed that the simulated
time series contain a superposition of
seven different sinusoidal signals with
the frequencies of 62.07"; 173.3"; 58.71°;
45.68"; 88.86"; 3642 ' and 117.5"
cycle/day  with  different  amplitudes
and phases. Sampling rate equals to that
of TOPEX/POSIDON (T/P) and Jason-1
missions, i.e. 9.9156 days. The simulation
was done by MATLAB software using
Equation (27). Considering the seven main
tidal components that play the most role in
producing a periodic signal. White noise is
also used to consider and add noise to the
time series.

4-1. Effect of noise

Similar to the most of spectral analysis
methods, LSSA and LS-HE are also sensitive
to noise. Therefore, when the time series
are noisy, some undesirable effects would
appear (consider the effect of noise on
the desired time series), for instance, the peak
behavior of the estimated spectrum.

To investigate a vast possibility of
noisy behavior, temporally random noise
with a standard normal distribution were
added to the simulated time series with 16-
year length. The simulated noise amplitudes
differ from 1 to 30 mm. The results show that

A .. . . .
:w ratio, in which Aw is the difference of the

estimated frequency and its actual simulated
value and w is the simulated frequencies,
corresponding to the annual frequency
became more than 5 times greater when
the noise amplitude increased from 1 to
30 mm. This is also combined with
decreasing the amplitude of the significant
peaks in the spectrum. For instance, the
effect of noise on the accuracy of the
extracted annual cycle and its spectrum is
illustrated in Figure (1). Figure (1-a)
indicates that when the amplitude of the
noise is greater than 14 mm, a bias of 9 hours
appears in the estimation of the annual cycle.
Figure (1-b) shows that the power of the
simulated significant frequency, decreased
when the noise presented. For those
simulations containing noise amplitude
greater than 15 mm, the power of the annual
frequency reduced to 0.3, which might even
fail a statistical significant test. The graph in
Figure (1-b) indicates that the relationship
between the noise amplitude and the
estimated power of the peak is not linear.
Note that the significance of the peaks,
estimated by LSSA and LS-HE, can be tested
statistically (Sharifi et al., 2013; Farzaneh
and Parvazi, 2018). When a high magnitude
noise 1is present in the time series,
subsequently, the probability of the rejection
of statistical test increases. Discussing a
reliable testing method or a proper significant
threshold is behind the scope of the current
study.
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Figure 1. Impact of noise amplitude on estimation of the annual frequency. (a) shows the difference of an estimated
annual frequency and its simulated value against the amplitude of noise. When the noise amplitude increases,
the difference is also increased. (b) shows the power of the estimated annual cycle against the amplitude of
noise. The graph indicates that the relation is non-linear.

It should be mentioned here that for time
series with a high level of noise, e.g.
containing a random noise with the standard
deviation close to that of data,
the performance of the LSSA and LS-HE is
worsened significantly. Figure (2-a) shows
a time series of SSH changes contaminated
with a random noise of 50 mm amplitude.
We applied LSSA on the data in Figure (2-a),
when windows with the length of 3 years
to 16 years were selected from the data.
Figure (2-b) shows the accuracy of
the estimated cycles with respect to the
length of time series. The results show the
reliable accuracy of the estimations derived
from the time series that are longer than 14
years.

4-2. Effect of blunders

Blunders are wusually referred to the
observations that are inconsistent with the
other sampled values. Blunders, therefore,

should be removed and/or, if it is necessary,
be replaced by corrected values (Kern et al.,

2005). However, the detection and
replacement of these values might be
ambiguous. Although, different methods

have been developed to detect blunders, e.g.
thresholding, Mahalanobis distance
(Mahalanobis, 1936), Grubbs’ test, Dixon
test, Wavelet outlier detection algorithm etc.
(see in details in Kern et al., 2005), there is
no guarantee to find and replace all of them
in a correct way. Therefore, some of them
may remain in the final time series and as a
result would affect the final results of
spectrum estimation. To show how blunders
affect the result of LSSA and LS-HE, we
simulated a time series with blunders. For
this purpose, we replace the value of a time
series with an out-of-range number in some
observation epochs. Number of blunders and
their positions and values were selected
randomly. Note that, very large outliers can
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be detected before applying LSSA and LS-
HE, e.g. simple threshholding method with
30 test. Figure (3-a) shows a simulated time
series with and without blunders. Both time
series of Figure (3-a) were sampled with the

length of 15 years and contain frequencies
mentioned in section (3-1). Figure (3-b)
indicates that all the introduced frequencies
are extracted with an accuracy better than
0.004 cycle/day.

25 - v ' ' ' . v
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Figure 2. a) A simulated time series with a random noise of 50 mm amplitude. The blue bold line refers to the simulated
series, containing seven frequencies mentioned in section (3-1) without noise. The red line refers to the
superposition of the simulated data and a random noise with amplitude of 50 mm, b) Accuracy of Annual and
Semi-annual terms, shown with respect to the length of time series. Generally, when the length of time series
increases, more than 14 years in this case, the accuracy of estimation improves.
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Time series with outliers
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Figure 3. a) A simulated time series containing blunders; the red-line represents the simulation without blunders and the
blue-lines are derived after adding blunders. There are 62 values replaced in primary time series that is
equivalent to 11.48% of all time series values. b) Power of spectrum of the simulated time series in Figure (3-
a). Four frequencies are separated in spectrum. All these frequencies are estimated with an accuracy better than

0.004 cycle/day.

4-3. Effect of missing value

As mentioned before, one advantage of
LSSA and LS-HE is that time series with
unequally spaced data can be analyzed. To
assess this property, we simulated time series
in five cases with different number of
missing value. Number of missing values
increase until time series become sparse. In
this case, sparse time series differs to one that
missed more than 50% of possible
observations. The positions of the missing
values were selected randomly. Therefore, in
the time series that are sampled with the rate
of 9.9156 days for 16 years, there should
exist 588 epochs of observations. For our

investigations, we assumed unequally spaced
time series containing 529, 471, 353, 177 and
89 SSH values, which correspond to 10%,
20%, 40%, 70%, and 85% of missing
samples, respectively. The mentioned five
time series are shown in Figure 4.

Computing the spectrum using LSSA to the
sparse time series, those moderate (365.259™";
88.910"; and 117.520™") became considerably
lower for the time series with 177 and 89
samples. The 04, K;, M, and S, frequencies
were, however, extracted with sufficient

. . Aw
accuracy in all cases. Figure 5 shows the -
ratio of frequencies in each case.

2 .
o 2 haflab o il \ sl e '
'1§9i92 19:94 19:96 1998 2000 2002 2004 2006 2008
o A Ml il Wl A W
'1“;992 1994 1996 1998 2000 2002 2004 2006 2008
fo2 19'9»: 1996 1998 2000 2002 2004 2006 2008
0 l[:' M B ,'_-:,_ ) .'_'.:' i) -"-I:_ Vil ,'.’i: Mot b _I,';'_',If-_ ' I I\I.I M
12992 19@4 19.:'93 1993 2000 2002 20?14 2006 2008
or’.' M bl A Mot b o
1299'2 1994 1996 1998 2000 2002 2004 _ 2006 2008

Primary time series

Tlme(year) tir?'_rf seres Mth_g'li;_i__ng valueg_

Figure 4. simulated time series with missing values. Graphs that are shown from top to the bottom of the figure represent
the time series that contain 529, 471, 353, 177 and 89 samples, respectively.
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Figure5. An overview of the LSSA results when it is applied to five simulated time series with missing values, shown in
Figure 6. The cases 1, 2, 3, 4 and 5 correspond to 10%, 20%, 40%, 70%, and 85% missing values. For those
time series that are not sparse (case 1, 2, and 3), the desired frequencies were estimated accurately. For those
with considerable number of missing values (case 4 and 5,) the estimated frequencies were less accurate.
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Figure 6. a) Power spectrum of a time series with 529 observations (corresponding to case 1), b) time series with 471
observations (corresponding to case 2), ¢) Power spectrum of a time series with 353 observations (corresponding to case
3), d) Power spectrum of a time series with 177 observations (corresponding to case 4), ¢) Power spectrum of a time
series with 89 observations (corresponding to case 5).
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The corresponding power spectrums of all
the cases in Figure 4 are displayed in Figure
(6-a) to (6-e). In case 1, 2 and 3 spectrums,
one can easily find six dominant frequencies,
and therefore, the missing values do not
cause a considerable impact on the
estimation. In cases 4 and 5, only four
dominant frequencies were detectable.

Figure 6 shows an overview of the estimated
spectrums, corresponding to the time series
of Figure 4. In each graph, the x-axis refers
to the period of change in (days), and the y-
axis refers to the spectral value.

Next simulation shows the effect of gap
in the time series. We assumed five years
of gap (i.e. 25% of the data missed) in
the time series of case 1 to 5, shown in
Figure 4.

The A%) ratio of frequencies is recomputed

for the new time series with a prolonged gap.
The results are summarized in Figure 7.

Comparing Figure 7 with Figure 5, it can be
seen that a single gap, which is 5 years in our
case, makes slight changes in the accuracy of
the simulation in case 1, 2, and 3. In case 4
and case 5, moderated length changes are
estimated less accurate in comparison with
the results in Figure (5). The estimated
spectrum of the time series with gaps were
similar to those of Figure 6, therefore, they
are not shown here. When the missing values
occur with a periodic occurrence, the results
of spectral analysis might completely change.
To cover this aspect, we simulated a time
series that exhibits 70 days of a year without
any observation. Therefore, the mentioned
gaps were considered for the time series of
Figure 4. The results of spectral analysis
indicated that the long periods can be
extracted almost with the same accuracy of
Figure 6. In the case 5 (with 85% missing
values), however, the results of the LSSA
became significantly biased. Moreover, there
were several artificial frequencies emerging
in the spectrum with high spectral values,
making detection of the real periodic

component more difficult. For brevity, the
results are not shown here.

4-4, Detection of nearby frequencies
Detection of the nearby frequencies
is important for analyzing SSH time series
since there are other different physical
movements of water level at sea, which
might be represented by close spectral
structure, e.g. the annual tidal frequency
and annual fluctuations caused by river
flows. Our simulation results show
that detecting the nearby frequencies depends
strongly on both the frequency of interest
as well as the length of time series. For
instance, with a 16-year SSH time series, the
two low frequency fluctuations of
0.00273786 and 0.00281690 cycle/day were
not separable, however, one can separate
them when the length of observation was 30
years. Detected numerical values of the
frequencies were 0.002717 and 0.002838,
respectively. For the nearby semi-annual and
monthly frequencies, the situation was
different. Using time series with the length of
16 years, the nearby semi-annual frequencies
of 182.6" and 188" cycle/day, as well as
those of monthly "32™ and 31.827"" cycle/day
were successfully separated in the power
spectrum. Estimated frequencies
corresponding to the nearby semi-annual
frequencies were 181" and 188.5™ cycle/day,
and corresponding to the nearby monthly
frequencies, they were "32"' and 31.81"
"cycle/day.

5. Implementation of LSSA and LS-HE on
the observed SSH time series over the
Persian Gulf and Oman Sea

5-1. Building the SSH Time series
Considering the temporal coverage of the two
satellite altimetry missions Topex/poseidon
and Jason-1, SSH time series with the length
of ~16 years (1992-2008) can be built. From
254 satellite passes, twelve ground tracks
over the Persian Gulf and Oman Sea were
selected in this study (see Figure 9).
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Figure 7. an overview of the LSSA results when it is applied to five simulated time series with missing values and gap.
The time series of case 1 to case 5 are similar to those of Figure 7; however, they also contain a prolonged gap

of 5 years.
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Figure 8. Topex/poseidon and Jason-1ground tracks over the Persian Gulf and Oman Sea. 626 time series with reliable

SSH measurements are built.

SSH time series are computed similar to that
of (Sharifi et al., 2013), with also considering
Jason-1 observations. The bias between
different missions was removed by adjusting
them as a simple shift function. Therefore, an
ideal SSH time series, in our case, should
contain more than 576 observations covering
1992 to 2008. However, due to the noise,
outliers, blunders and missing values, shorter
time series were derived. In this
implementation, 626-time series with the
sample points of more than 530 were built
over the Persian Gulf and Oman Sea.

5-2. Spectral Analysis based on L SSA

From the available time series, four time
series are selected to be presented in this
paper (More than 600-time series were
generated using observations of satellites
altimetry in the Persian Gulf and Oman Sea.
For example, four time series are selected at

several points in the Persian Gulf and the
Oman Sea and are presented in the text of the
article). The positions of the selected time
series are shown in Figure 9 and summarized
in Table 1. Figure 11 shows the selected
time series ordered with respect to the
positions of Table 1. In this section, we only
focus on the LSSA-extracted tidal
frequencies and their amplitude from the
Persian Gulf and Oman Sea. This aim is
motivated by the fact that there are fewer
attempts that have been undertaken to
estimate tidal amplitudes from satellite
observations over the Persian Gulf and Oman
Sea. The results corresponding to the tidal
frequencies are reported in Tables 2 to 4.

Table 2 summarizes the theoretical values of
the main celestial tidal frequencies derived
from astronomical studies (Cartwright,
1993). The aliased values of the frequencies
in Table 2 are computed following the
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empirical formula in (Sharifi et al., 2013)
while considering the sampling rate of
9.915625 days. The main tidal frequencies
and their amplitudes over the Persian Gulf
and Oman Sea, computed from the time
series of Figure 9, are summarized in Tables
3 and 4, reports the amplitude of tidal
frequencies corresponding to the selected
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components) and k; (luni-solar diurnal
component) were greater than 1 cm, thus they
should be considered as the main tidal
frequencies of the Persian Gulf and Oman
Sea.

Table 1. Positions of four selected time series in Figure
9, subjected to spectral analysis.

time series of Figure 11. Among 22 detected Station. no | Point-1 | Point-2 | Point-3 | Point-4
tidal components, mean amplitude of the Latitude | 29.808 | 25.502 | 24.515 | 26.645
annual, ~semiannual ~ solar tides, ~along Longitude | 49.651 | 53.203 | 58.416 | 56.580
with M,, S, (solar and Iunar semi-diurnal
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Figure9. Locations of the four selected sample time series, selected for spectral analysis.
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Figure 10. Time series of the four selected sample points. Position of the time series are accordingly shown in Figure 8.
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Table 2. Main tidal components and their aliased frequencies. The first column indicates the sign of tidal frequencies, the
third column lists the real value of the tidal frequencies derived from astronomical studies (c.f. [5]), the fourth
column shows the corresponding real period, fifth column lists the computed frequencies with respect to
9.915625 days sampling rate, and the sixth column lists their corresponding aliased periods.

Aliased . .
Sign Description (Fcre(gljél:y) Period (day) Frequency Ahas(zc; P)GI'lOd
y Y (cycle/day) Y
SA Annual Solar Tide 0.0027378 365.2599774 0.0027378 365.2599774
SSA Semi-annual Solar Tide 0.0054758 182.6211838 0.0054758 182.6211838
MSM Solar monthly 0.0314347 31.8119340 0.0314347 31.8119340
MM Lunar Monthly 0.0362916 27.5545492 0.0362916 27.5545492
MSF Luni-solar Synodic 0.0677264 14.7652927 0.0331245 30.1891006
Fortnightly
MF Lunar Fortnightly 0.0732022 13.6607901 0.0276487 36.1680374
Q1 Larger Lunar Elliptic Diurnal 0.8932441 1.1195148 0.0144143 69.3755724
01 Principal Lunar Diurnal 0.9295357 1.0758059 0.0218773 45.7094201
Pl Principal Sonar Diurnal 0.9972621 1.0027454 0.0112472 88.9109452
S1 Solar Diurnal 1.0000001 0.9999999 0.0085092 117.5202863
K1 Luni-Solar Diurnal 1.0027379 0.9972696 0.0057714 173.2683888
02 Side, half-Daily Sun 1.8590714 0.5379030 0.0437547 22.8546975
N2 Larger L“ré?fligip“" Semi- 1.8959820 0.5274312 0.0201857 49.5400487
M2 Principal Lunar semi-diurnal 1.9322736 0.5175250 0.0161060 62.0888194
S2 Principal Solar Semi-diurnal 2.0000000 0.5000000 0.0170186 58.7592316
K2 Luni-Solar Semi-diurnal 2.0054758 0.4986348 0.0115428 86.6341944
M3 Lunar ter-diurnal 2.8984104 0.3450167 0.0262665 38.0712527
M4 Shallow water over tides of 3.8645472 0.2587625 0.0322119 31.0444328
principal lunar
sS4 Shallow water over tides of 4.0000000 0.2500000 0.0340372 29.3796365
principal solar
M6 Shallow water over tides of 5.7968208 0.1725084 0.0483179 20.6962834
principal lunar
S6 Shallow water over tides of 6.0000000 0.1666667 0.0497951 20.0822785
principal solar
MS Shallow water eighth diurnal 7.7290945 0.1293813 0.0364271 27.4520769
Table 3. Extracted tidal frequencies from sample points of Figure 10. Frequencies are reported in (cycle/day).
Sign Point-1 Point-2 Point-3 Point-4 Sign | Point-1 Point-2 Point-3 Point-4
SA | 0.0027459 | 0.0027289 | 0.0027968 | 0.0027798 | 02 | 0.0436363 | 0.0436363 | 0.0436533 | 0.0436363
SSA | 0.0055495 | 0.0055325 | 0.0055325 | 0.0055155 | N2 | 0.0201347 | 0.0201518 | 0.0201688 | 0.0201859
MSM | 0.0312703 | 0.0313385 | 0.0314067 | 0.0314920 | M2 | 0.0161113 | 0.0160943 | 0.0161113 | 0.0161113
MM | 0.0363017 | 0.0360971 | 0.0363590 | 0.0363700 | S2 | 0.0170318 | 0.0169636 | 0.0170489 | 0.0170318
MSF | 0.0332487 | 0.0332487 | 0.0330099 | 0.0330781 | K2 | 0.0115948 | 0.0114756 | 0.0115437 | 0.0115608
MF | 0.0277059 | 0.0275012 | 0.0275865 | 0.0276377 | M3 | 0.0261540 | 0.0258641 | 0.0261199 | 0.0263245
Q1 0.0144068 | 0.0144238 | 0.0143727 | 0.0143897 | M4 | 0.0324130 | 0.0320719 | 0.0322083 | 0.0322083
o1 0.0218909 | 0.0218909 | 0.0218909 | 0.0218909 | S4 | 0.0340503 | 0.0340674 | 0.0340674 | 0.0340844
Pl 0.0112541 | 0.0112370 | 0.0112541 | 0.0112370 | M6 | 0.0482761 | 0.0483443 | 0.0482931 | 0.0483443
S1 0.0085115 | 0.0085625 | 0.0086136 | 0.0085966 | S6 | 0.0497261 | 0.0497772 | 0.0498796 | 0.0497431
K1 0.0057707 | 0.0057707 | 0.0057707 | 0.0057707 | M8 | 0.0359342 | 0.0364723 | 0.0363529 | 0.0362368
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5-3. Spectral Analysisbased on LS-HE
Before discussing the results of LS-HE, we
should note that, since the LSSA and
univariate LS-HE are equivalent. Our
investigation of multivariate LS-HE in this
section considers all the 626 virtual time
series of SSH (Meaning Pseudo-Tide Gauge:
This means that the Altimeter time series is a
pseudo-tide. With the difference, we have
observations similar to the Tide-Gauge
observations in offshore.). Existing of those
low frequency variations might cause a
leakage to the LS-HE extracted frequencies.
The magnitude of the leakage is however
negligible for tidal frequencies as well as
annual, semi-annual and seasonal frequencies
(the effect of leakage phenomenon on the
annual and semi-annual period is negligible.
However, this phenomenon has a significant
effect on  small periods). Before
implementing the multivariate LS-HE, the
time series were temporally centered, i.e.
temporal mean value was reduced from time
series. The centered time series were then
scaled by the standard deviation of time
series to be standardized and unit-less. Under
these circumstances, multivariate LS-HE
spectrum would simplify as Equation 16,
which is a linear combination of the
univariate LS-HE spectrums. The result of
the multivariate LS-HE and univariate LS-
HE is displayed in Figures (11-a) and (11-b).
For a better comparison between the two
signals, a magnification signal daily-half,
daily, annual and annual-half is displayed in
Figure 12.

10° |

Comparing frequency extraction using two
univariate and multivariate methods can only
use one time series to extract the frequency.
However, sometimes the number of
frequencies may be too high or the
frequencies may be small enough that only a
series of times can be detected. Thus, by
combining several series when the
corresponding frequency occurs in the same
epochs, one can increase the power of
frequency detection. Therefore, the main
purpose of this research is frequency
extraction using univariate and multivariate
analysis.

In the LSSA and the univariate LS-HE,
results refer to the single observation point.
In fact, all of time series demonstrate SSH
changes, which have originated from
common  sources. The  fundamental
assumption in the multivariate LS-HE
method is that in several time series, the
same frequencies present with different
amplitudes and phases. Therefore, the results
can be generalized to the whole Persian Gulf
and Oman Sea. Results are also statistically
tested in the multivariate case. For
implementing the statistical tests for both
univariate and multivariate LS-HE, see
Amiri-Simkooei and Asgari (2012), Amiri-
Simkooei (2007), Amiri-Simkooei et al.
(2017).

The main tidal frequencies, based on the 626
Time Series in the Persian Gulf and Oman
Sea are presented the derived spectrum
indicated 60 significant frequencies, which
are summarized in Table 5.
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Figure 11. a) Spectrum of frequencies of multivariate LS-HE applied on SSH time series and tested statistically. b)
Spectrum of frequencies of univariate LS-HE applied on SSH time series and tested statistically.
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Figure 12. magnification signal of spectrum of frequencies of LS-HE applied on SSH time series and tested statistically.

Table 4. Extracted tidal frequencies of multivariate LS-HE applied on SSH time series and tested statistically.
Frequencies are reported in (cycle/day).

Aliased Aliased Aliased Aliased

Sign Frequency Sign Frequency Sign Frequency Sign Frequency

(cycle/day) (cycle/day) (cycle/day) (cycle/day)

SA 0.0027459 02 0.0443698 Ql 0.0143897 M4 0.0322424

SSA 0.0055325 N2 0.0201688 01 0.0218909 S4 0.0340844

MSM 0.0313555 M2 0.0161113 Pl 0.0112541 M6 0.0484296

MM 0.0362506 S2 0.0170318 S1 0.0085115 S6 0.0497261

MSF 0.0332316 K2 0.0115608
MF 0.0274160 M3 0.0264268 Kl 0.0057707 M8 0.0363032
Table 5. 60 significant frequencies extracted of multivariate LS-HE for 626 time series in Persian Gulf and Oman Sea.
period of changes Frequency of period of changes Frequency of period of changes Frequency of
[day] changes [day] changes [day] changes

[cycle/day] [cycle/day] [cycle/day]
1750.8065641 0.0005712 88.8568160 0.0112540 39.1019403 0.0255741
1269.6996009 0.0007876 86.4994894 0.0115608 36.4978205 0.0273988
1047.1476005 0.0009550 77.1718132 0.0129581 35.3748777 0.0282686
677.2367535 0.0014766 74.2425116 0.0134693 32.7289862 0.0305539
601.5809809 0.0016623 69.4940375 0.0143897 31.0150451 0.0322425
541.0684803 0.0018482 65.1710508 0.0153442 29.3536008 0.0340669
491.5759325 0.0020343 64.3842958 0.0155318 27.5857826 0.0362503
446.9415718 0.0022374 63.6853601 0.0157023 26.2400202 0.0381098
409.7146016 0.0024407 63.0014284 0.0158728 25.8466994 0.0386892
364.1820676 0.0027459 62.0682245 0.0161114 23.8005614 0.0420150
262.0998441 0.0038153 61.1622492 0.0163500 23.4483384 0.0426476
239.6834004 0.0041722 60.5311415 0.0165205 22.5378643 0.0443695
192.5925023 0.0051923 58.7135803 0.0170317 21.6154456 0.0462642
186.4834825 0.0053624 51.9991749 0.0192311 21.4415156 0.0466374
180.7495450 0.0055325 50.1753457 0.0199302 21.2626469 0.0470301
173.2891677 0.0057707 49.5815178 0.0201686 20.9885916 0.0476449
166.4194269 0.0060089 48.9606698 0.0204244 20.8097787 0.0480538
117.4887903 0.0085114 46.5882494 0.0214648 20.6557978 0.0484121
112.7509923 0.0088691 45.6810504 0.0218909 20.3333910 0.0491811
96.9274052 0.0103170 45.1882794 0.0221298 20.1101790 0.0497265
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5-4. Predictions based on three samples
extracted frequency

In the following, to check the effectiveness of
three samples extracted  frequency
(Astronomical-LSSA-Multivariate ~ LSHE),
the tide is predicted for a period of time. In
this research, two methods of LSSA and
LSHE have been used to extract the
frequencies in the time series of satellite
altimetry observations. After extracting the
frequencies through the above two methods,
a list of important frequencies is considered
based on each method. On the other hand,
principal frequencies are also provided
through astronomical methods. Therefore,
based on the output frequencies of the two
above-mentioned = methods and  the
frequencies of the astronomical method, there
are three frequency lists available.

The total time interval of observation of sea
surface in this research is from 1992 to 2008.

-16.5

-17

-16 . .
Known data
Predictive data

In order to predict the sea surface for the
period 2006 to 2008, the prediction for sea
surface observations in the two-year period,
using three frequency list mentioned above
was conducted. Accordingly, the height of
the sea surface is calculated and compared
with actual data (Amiri-Simkooei et al.,
2017).

The results of predicted tides based on three
samples of extracted frequency are presented
in Figure 13. Two frequency samples listed
were extracted from both methods LSSA and
multivariate LSHE. Astronomical Frequency
List is also used. Based on the prediction
taken for these three frequency samples, the
first method has RMSE 0.101 m, the second
method has RMSE 0.086 m and use
astronomical frequencies has RMSE 0.093
m. the results showed that to obtain the
frequency of multivariate LSHE methods, the
accuracy and reliability are higher.
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Figure 13. a) A comparison between the data known and predicted data for the point-1, based on samples of extracted

frequency of LSSA. b) A comparison between the data known and predicted data for the point-1, based on
samples of extracted frequency of astronomical, based on samples of extracted frequency of LSHE.



L east Squares Techniquesfor Extracting Water Level Fluctuationsin the.... 117

6. Conclusion

In this contribution, first simulated data is
used to investigate the effect of different
phenomena on time series. However, actual
observations have been used to extract
frequencies and predict data. The total time
interval of observation of sea surface in this
research is from 1992 to 2008. In order to
predict, predicted sea surface for the period
2006 to 2008. The prediction for sea surface
observations in the two-year period, using
three frequency list mentioned above was
conducted. Accordingly, the height of the sea
surface is calculated and compared with
actual data. Particularly, we found that both
the LS-HE and LSSA methods perform
equivalently for analyzing the SSH time
series of the Persian Gulf and Oman Sea.
Generally, the longer time series of
observations give the guarantee of more
accurate results when time series contain
noise. In the light of our results from the
simulation, the methods were used to extract
the main frequencies of SSH changes over
the Persian Gulf and Oman Sea. Our main
outcomes are summarized as follows:

- Impact of noise: for a 16-years length SSH
time series: the impact of noise with the
amplitude less than 10 mm is negligible and
the accuracy of the extracted frequencies
remains better than 0.003 cycles per day. Our
LSSA results also indicated that for the time
series that contain noise with an amplitude of
greater than 50 mm, the extracted frequencies
would be inaccurate. In this case, longer time
series cannot compensate the noise effect.

- Impact of outliers: outliers of medium
scales (i.e. the amplitude of outlier value is
smaller than 30, where o is the standard
deviation of SSH time series) presents a little
influence on the extracted frequencies and
the accuracy remains better than 0.004 cycle
per day. When the number of outliers
increases, e.g. more than 10% of the
observations was contaminated with outliers,
the estimated spectrums will be affected
similar to that of noisy time series.

- Impact of missing values: for the case of
randomly missing values and the length of
time series being 16-years, we found that one
needs at least half of the possible
observations for an accurate estimation of the
simulated frequencies. In case of sparse SSH
time series, the accuracy of the spectral

analysis methods significantly decreased,
specifically, those moderate length cycles
were evaluated inaccurate. Existing up to 5-
year concentrated missing values (or a gap)
in a 16-year time series of SSH did not affect
the accuracy of the extracted Principal Lunar
Diurnal, Principal Solar Semi-diurnal and
seasonal frequencies. In case of missing
values with periodic pattern, methods were
found highly vulnerable.

- Recognizing nearby frequencies: we found
that the ability of recognizing nearby
frequencies  strongly depends on the
magnitude of the frequencies themselves and
how close they are; length of the time series;
and the accuracy of observations. Our results
showed that when an accurate 30-year SSH
time series exists, the nearby low frequencies
(with a difference of greater than 0.001 cycle
per day) were detectable. Note that the closer
frequencies, need longer time series to be
separated. We also found that the existence
of noise and missing values make the
separation of the nearby frequencies more
difficult.

In the light of the simulated results, both
LSSA and LS-HE methods were applied to
analyze 626 satellite altimetry-derived SSH
time series over the Persian Gulf and Oman
Sea. Particularly, we found that:

- In spite of missing values and noise that
affects the performance of spectral analysis,
LSSA and LS-HE successfully extracted
dominant frequencies of the Persian Gulf and
Oman Sea level changes. Nearby aliased
frequencies of tidal components (e.g. M, and
S,, M, and S,;, Mgand Sg) were detected
with  suitable accuracy. Using the
multivariate LS-HE, we detected 60
frequencies using all 626 available time
series over the Persian Gulf and Oman Sea.
Long term fluctuations, (e.g. 0.2086, 0.2877,
0.3488, 0.5393, 0.6751, 0.7430 cycle/year
respectively correspond to 4.8, 3.5, 2.9, 1.9,
1.5, and 1.3 years for one cycle of changes),
moderate length frequencies (e.g. seasonal
and monthly changes) and tidal components
(e.g.M,, S,, Ny, K,, K;) were detected.
These frequencies can be generalized to the
whole Persian Gulf and Oman Sea.

- In the following, to check the effectiveness
of three samples extracted frequency
(Astronomical-LSSA-Multivariate ~ LSHE),
the tide is predicted for a period of time. The
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results of predicted tides is presented, the
amount of RMSE based on extracted
frequency of LSSA method 0.101 m,
astronomical tables 0.093 m and frequency of
Multivariate LSHE method 0.086 m,
according to the results conclusion was that
to obtain the frequency of multivariate LSHE
methods the accuracy and reliability are
higher.

As the future work, the impact of external
variability on level fluctuations of the Persian
Gulf and Oman Sea and the derived
significant frequencies. This can be done by
considering the rainfall data, river discharges,
measurements of the surface evaporation
rate, temperature, and pressure data sets,
which enhance the interpretation of the
results.
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