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A B S T R A C T 

 

Identification of geochemical anomalies is a crucial step in regional geochemical explorations. In this regard, new techniques have been 
developed based on deep learning networks. These simple-structure-networks act as human brains in processing the data by simulating deep 
layers of thinking. In this paper, a hybrid compositional-deep learning technique was applied to identify anomalous zones in the Dehsalm 
area located in 90 km of SW-Nehbandan, a town in South Khorasan province, Iran. The compositional robust factor analysis (CRFA) was 
applied as a tool to select a meaningful subset as an input to Continuous Restricted Boltzmann Machine (CRBM). The dataset consists of 635 
stream sediment geochemical samples analyzed for 21 elements. Using CRFA, the 3rd factor (i.e. Pb, Zn, Cu, Ag, Sb, Sr, Ba, Hg, and W), which 
indicates the occurrence of epithermal mineralization in the area, was considered as an input set to CRBM. The best-performed CRBM with 
80 hidden units and stabilized parameters at 150 iterations was finalized and trained on all the geochemical samples of the study area. The 
average square contribution (ASC) and average square error (ASE) values were determined as anomaly identifiers on the reconstructed error 
of the trained CRBM. A statistical threshold was applied to the values of the criteria (ASC & ASE), and the resulting outputs were mapped to 
delineate the anomalous samples. The maps indicated that ASC and ASE had the same performance in multivariate geochemical anomaly 
recognition. The anomalies were confirmed spatially using mineral prospects of Pb, Zn, Cu, and Sb, as well as several active lead and copper 
mines in the study area. 
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1. Introduction 

One of the essential steps in mineral exploration is distinguishing 
prospective areas within the region of interest [1]. The main goal of 
geochemical explorations is to present a program to distinguish as much 
hidden mineralization as possible while taking economic and physical 
restrictions into consideration. In the past decades, numerous methods 
have been used to identify promising areas ranging from traditional 
parametric statistical methods to non-parametric techniques [2, 3, 4, 5, 
6]. Many researchers have applied univariate statistical and graphical 
methods (such as probability graphs, fractal geometry, spatial U-
statistic, and box plot) and multivariate techniques, particularly factor 
analysis, in geochemical anomaly recognition [7, 8, 9, 10, 11, 12]. 
Multivariate methods commonly involve the multivariate geochemical 
background of a sample population to gratify an acknowledged 
statistical distribution, such as multivariate normal distribution, so that 
the general properties of the multivariate geochemical background can 
be easily designated by a predefined simple function. However, complex 
geological settings often result in mysterious complex multivariate 
probabilities [13]. Mineral occurrence data are used chiefly to 
understand and validate mapped geochemical anomalies. [6] Believe 
that each method has advantages and disadvantages, and each method 
may be suitable for a specific geological environment or a regional 
exploration scenario. Previous investigations [3, 4, 5, 6] have revealed 
that due to geochemically complex nature of arid areas, conventional 
statistical approaches are not appropriate for the detection of 

geochemical anomalies. Additionally, the compositional nature of 
stream sediment geochemical data should be considered for 
geochemical anomaly discrimination. After Aitchison presented the idea 
of compositional data analysis (CoDa) to discover the relationships 
among closed system datasets [14], the idea was used in some researches 
to identify multivariate geochemical anomalies [2, 15, 16, 17, 18]. 
Thereafter, it has become an interesting topic in the field of multivariate 
statistics [19, 20]. In past years, the use of data-mining techniques and 
metaheuristic algorithms has become common. Several tasks, formerly 
done at the expense of significant amounts of time and money, can be 
performed more efficiently utilizing these techniques and algorithms 
[21, 22].  

Machine learning algorithms improve approaches that can 
automatically recognize patterns in data and then use the revealed 
patterns to predict future data or other outcomes of interest [23]. 
Pattern recognition is troubled with automatic discovery of regularities 
in data through the use of computer algorithms and these regularities to 
take actions [24]. Many typical machine learning techniques abuse 
narrow architectures. The most mention of these methods includes 
kernel regression, random forest (RF), conventional hidden Markov 
models, maximum entropy models, support vector machines, and 
multilayer perceptron with a single invisible layer. The shared property 
in these light learning models is the simple architecture that comprises 
only one layer responsible for transforming the raw input signals or 
structures into a problem-specific structure [11, 25]. Artificial neural 
networks can be used as advantageous methods to investigate mineral 
resources [26]. Neural networks are highly complex, nonlinear systems 
with high degrees of freedom that employ various principles of 
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information processing from nonlinear computing systems [6]. In the 
past decades, deep learning models have been used broadly in computer 
vision and image processing. It has been proven that deep learning 
neural networks outperform traditional classification schemes in many 
usage cases [27]. The main characteristics of deep learning models are 
(1) the generative nature of the model, which generally requires an 
additional top layer to perform the discriminative task; (2) An 
unsupervised pre-training stage that creates an effective use of large 
amounts of unlabeled training data for extracting structures and 
regularities in the input signals [11]. In other words, deep learning is a 
multi-algorithm technique on learning multiple levels of presentation of 
the data. Deep belief models (DBM) are known as the most 
implemented deep learning networks. A restricted Boltzmann machine 
(RBMs) as a greedy algorithm is known as the core of deep belief 
networks. The structure of RBM network involves two layers: the visible 
and hidden layers. It is necessary to modify the model’s variables so that 
the generated vector is as close to the input vector as possible. The 
generated vector is the vector obtained from probabilistic inference 
from the hidden layer, the values of which are in turn gained by the 
probabilistic inference from the visible layer, i.e. from the original vector 
[2, 11, 28, 29]. Therefore, selecting a suitable method or algorithm is 
essential in producing an accurate mineral potential map. It depends, 
mainly, on the capacity of the algorithm to learn complex relationships 
between the input evidential features and the occurrence of mineral 
deposits. However, interpretability and transparency must also be 
considered [25]. In this paper developing a hybrid model 
(compositional robust factor analysis before applying a deep learning 
network) was studied to recognize the anomalous areas from stream 
sediment geochemistry data in Dehsalm 1:100,000 geological map 
located near the Nehbandan city in the East of Iran. The resulting maps 
were confirmed with several mineral prospects of the area. 

2. Geological Setting of the Study Area 

The Dehsalm area (31˚-31.5˚ N, 59˚-59.5˚ E) is located in 90 km of SW-
Nehbandan City, South Khorasan Province, Iran. It is a part of the Lut 
block and is divided into two parts: one part contains tertiary volcanic 
rocks, and the other part is composed of metamorphic rocks. The 
Cretaceous units are dominant in the Northeastern and Eastern parts of 
the study area, which form the highest elevation point in the region. The 
lowest point (740m high) is located in the basin (playa). The Dehsalm 
area is an arid region with highly variable temperature, with a maximum 
temperature of 50^∘C in summers, and average annual precipitation of 
about 80mm. Fig. 1 shows the modified 1:100,000 geological map of the 
study area. 

 
Fig. 1. The modified 1:100,000 geological map of the study area with the locations 

of taken stream sediment samples. 

This area has a high mineral potential. Several porphyroblast 
minerals, including garnet and andalusite, have occurred in 
metamorphic rocks. Due to their specific features such as hardness and 
high melting point, each porphyroblast is minerally remarkable. Of 

these potentials, it can be referred to the Northeastern Andalusite, Ltd. 
Also, a considerable volume of Garnet crystals has occurred in the east 
and south of the area. Another mineral prospect has occurred within the 
skarns of NW-Dehsalm. The intrusion of the granitoid suites as well as 
tectonic activities have caused copper mineralization in the boundary of 
the faults. Some Ag-bearing Galena prospects in the north and east of 
Dehsalm are currently being extracted by local miners. 

3. Approaches and Materials  

3.1. Data Collection and Preparation 

A regional geochemical survey was carried out by the Industry, Mine 
and Trade Organization (IMTO) of South Khorasan province over the 
1:100,000 geological map of Dehsalm. Totally, 635 stream sediment 
samples (Fig. 1) were analyzed for 21 elements (Au in ppb and other 
elements in ppm). 

The overall study procedure is divided into three parts: 1) 
compositional robust principal factor analysis to select a proper input 
set; 2) applying continuous restricted Boltzmann machine on raw 
(untransformed) data of the input set; 3) checking the resulting maps 
with field evidence. 

3.2. The Hybrid Method 

3.2.1. Compositional Robust Factor Analysis 

Compositional data (CoDa) such as stream sediment data are the 
observations present parts of a whole. The true information of 
compositional data is included in the ratios between the components of 
each observation whether the whole composition is analyzed or not. In 
geochemistry, all analytical results are thus intrinsically compositional 
[18, 30]. The first step was exploratory data analysis. The best visual tool 
for this task is CoDa-biplot. It is used to investigate the codependence 
between parts of the observations and principal components [31]. 

After imputation of the missing data using the ilr-EM method [32], 
the robust factor analysis (RFA) is applied to the compositional data. 
The centered log-ratio (clr) transformation; y=clr(x) is used to open the 
matrix x of compositional observations (with D dimensions or 
variables) [20]. Then, the factor analysis model is applied to y as below: 

y=Λf+e       (1) 

In Eq. 1; f, e, and Λ are factors (less than D dimensions), error and 
loadings matrices, respectively. After rewriting Eq. 1 based on 
covariance, Eq. 2 is resulted [20]: 

Cov(y)=ΛΛT+Cov(e)      (2) 

In Eq. 2, Cov(e) is a diagonal matrix with elements called unique 
variances that include the variance of the model’s components that is 
not explained by the factors [20]. In order to solve the singularity 
problem of Cov(y) due to clr properties, [20] suggested that the 
diagonal matrix of Cov(e) should be replaced by Ψ*=HCov(e)H in Eq. 2 
[20]. 

1
( )D DH I J

D
= -       (3) 

Where, I and J are known as the identity and one matrices, 
respectively. The problem then turns into estimating the parameters Λ 
and Ψ* in a multi-step algorithm proposed in [20]. It continues until the 
elements in Ψ* stabilize. In order to make a better interpretation, the 
loadings matrix Λ is then rotated orthogonally. 

Both loadings values and the classical factor analysis have the same 
interpretation; the high amounts of loadings will address the high 
influence of corresponding clr variables on the factor. However, if a 
factor has similar loadings, it will not change the ratio xi/xj, i.e. this factor 
is not related to any relative enrichment or depletion of xi with respect 
to xj [14]. Finally, the regression techniques are applied for factor scores 
estimating. 

In order to minimize the role of outliers on the estimation of the 
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parameters, it is suggested that a robust covariance matrix should be 
used instead of the sample covariance matrix (Cov(y) in Eq. 2). A 
popular choice is the minimum covariance determinant (MCD) 
regressor, for which a rapid algorithm is stated by [33].  

The MCD regressor searches a subset h out of n observations with the 
minimum determinant of their sample covariance matrix. The values are 
univariately ilr-transformed and then used in the MCD estimator (i.e. 
z=ilr(x)). In the following, the covariance matrix of the new variable (z) 
is back-transformed into the clr-domain. This robust version of Cov(y) 
can be used for the mentioned algorithm of the parameter estimation in 
the factor analysis [20]. All mentioned CRFA operations can be directly 
carried out using the ‘robCompositions’ package in R software [34]. 

3.2.2. Continuous Restricted Boltzmann Machine  

Nowadays, the theory and practice of artificial neural networks have 
been developed through successful deep learning methods. The term 
refers to multi-layer neural networks similar to those used in the past 
except that now it is possible to use more hidden layers than before. 
Deep learning is a multi-algorithm based on learning multiple steps of 
data production. Before training the net, the data must be normalized to 
fit in the range (-1, +1) or (0,1). Mostly, Eq. 4 is used that in this study 
was applied too as below: 

-
= •

-

min

max min

i
i

x x
x i

x x
ϵ [observations]    (4) 

Restricted Boltzmann Machines (RBMs) have been widely used for 
multivariate distribution modeling, high-dimensional temporal 
sequence modeling, and geochemical anomaly recognition [13, 28, 35, 
36, 37]. Typically, RBMs work properly based on binary or Gaussian 
variables, but their applications for other kinds of variables such as 
continuous-value non-Gaussian inputs have been limited [35, 36, 37]. 
Continuous restricted Boltzmann machine (CRBM) is a well-known 
deep learning net with a stochastic network of units where each unit has 
some random behaviors when activated. It comprises one visible layer 
and one hidden layer with only interlayer connections. The probability 
of creating a visible vector is in agreement with the product of the 
probabilities that the visible vector would be generated by each of the 
hidden units acting alone. Therefore, the model is an output of experts 
with one expert per hidden unit [13]. Fig. 2 illustrates the structure of 
CRBM with six visible units, three hidden units, and two permanently-
on bias units. 

 
Fig. 2. Restricted Boltzmann machine structure with six visible units and three 

hidden units (modified after [29]). 

The visible and hidden units have continuous states generated by 
adding a zero-mean Gaussian noise to the input of a sampled sigmoid-
activated unit. They are connected by a weight matrix. In each training 
repeat, a contrastive divergence is updated between the situation of the 
visible and hidden units. In practice, the model identifies and 
reconstructs the training samples population that is sequentially 
presented to it while the interlayer connection weights are modified. 
CRBM can be taken as an associative memory that is powerful to encode 
a complex non-linear non-Gaussian training data distribution [13]. 
Therefore, CRBM is appropriate for modeling the complex multivariate 

probability distribution of a geochemical sample population taken from 
a complex geological setting. Careful training of CRBMs is essential in 
obtaining successful practical results [11]. The resulting difference 
between the final model after training and the input model is called 
“reconstructed error”. 

Based on the reconstructed error, two essential indicators are defined 
to detect multivariate geochemical anomalies from the background; 
average square contribution (ASC) and average square error (ASE) [13]. 
In Eq. 5 & 6, p and q are the number of visible (except bias) and hidden 
(except bias) units respectively [13].  

𝐴𝑆𝐶 =
1

𝑝𝑞
∑𝑖𝑗 (𝑣𝑖ℎ𝑗 − �̂�𝑖ℎ̂𝑗)

2     (5) 

𝐴𝑆𝐸 =
1

𝑝
∑𝑝
𝑖=1 (𝑣𝑖 − �̂�𝑗)

2     (6)  

In a stabilized model, they can be calculated for every observation. 
The threshold values of the indicators (ASC and ASE) are the 90th 
percentile. Some parameters can be set to manage the efficiency of 
CRBM and its stability. They include the number of hidden units and 
iterations, noise control coefficients for visible and hidden units, 
learning momentum, learning cost, and learning rates. A practical way 
is to train the network on the whole data with high iteration and then 
to decide about the change of parameters to reach stability [13]. 

4. Results and Discussion  

The stream sediment samples were analyzed primarily for 
compositional statistics of the simplex (Table 1). The total variance is 
5.2834. The statistics show a relatively high clr-variance of W (4.339), 
which might be due to hydrothermal genesis of the dominant 
mineralization in the region of the study. 

Then, the robust factor analysis (CRFA) was applied to the 
compositionally scaled data to reduce the dimension and choose an 
input set to the CRBM network. Six factors were extracted as the most 
meaningful ones according to the geology of the region and the lowest 
uniqueness values. They explained about 92% of the variation. 

 

 
Fig. 3. Loadings plot of the robust factor analysis. 

 
Fig. 4. MSE plot of CRBM after 150 epochs. 
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Table 1. Compositional statistics summary 

 Zn Pb Ag Cr Ni Bi Sc Cu As Sb Cd Co Sn Y Ba V Sr Hg W Mo Au 

Center 0.068 0.024 0.001 0.147 0.068 0.000 0.006 0.043 0.010 0.001 0.000 0.020 0.005 0.023 0.341 0.073 0.158 0.000 0.008 0.001 0.001 

Median 0.066 0.023 0.001 0.144 0.066 0.000 0.006 0.042 0.010 0.001 0.000 0.019 0.005 0.022 0.328 0.073 0.151 0.000 0.019 0.001 0.001 

clr-Var 0.020 0.022 0.040 0.084 0.117 0.034 0.044 0.021 0.060 0.047 0.026 0.046 0.018 0.021 0.015 0.096 0.015 0.070 4.339 0.072 0.077 

As it can be seen from the loadings plot in Fig. 3, the 3rd factor with 
Pb, Zn, Cu, Ag, Sb, Sr, Ba, Hg, and W, represents the low-sulfide 
epithermal mineralization in the area which is a part of the polymetallic 
belt. 

A new dataset was formed from the raw data by removing all elements 
except for factor 3. It was then normalized as the input of the CRBM 
network. The net parameters were set experimentally with trial and 
error in different iterations until the best performance was obtained and, 
at the least error level of about 0.01 was stable. The performance shows 
that the net has been stable with 80 hidden units, the standard deviation 
of 0.2 for normal noise, coefficient of 0.5 for noise controls of both 
hidden and visible units, learning momentum of 0.9, learning cost of 
0.00001 for 150 iterations (Fig. 4). 

After applying ASE and ASC criteria, anomalous samples were 
determined by putting thresholds on the values (Fig. 5). The horizontal 
axis represents the samples indexes, and the red lines are the 90th 
percentiles (0.0127 for ASC and 0.0549 for ASE). The values above the 

lines are related to anomalous samples. The results were mapped using 
binary classification based on the thresholds and also stretched along 
the color map to give a better view of anomalous halos (Fig. 6). The low 
and high values are colored blue and red, respectively.  

By comparing the anomalies and field mineral prospects in Fig. 6, it is 
confirmed that CRBM has favorably detected the anomalous samples 
associated with hydrothermal mineralization in skarns. This is a 
remarkable advantage of CRBM that can reconstruct any statistical 
distribution of input samples and then detect its anomalies. 

However, CRBM has drawbacks; for instance, various parameters 
have to be set and CPU dependency in case of big data. Some parameters 
are more important than the others; increasing the iteration can give a 
more stable model as well as the sufficient number of hidden units that 
can prevent overgeneralization and spurious results. 

 

 
Fig. 5. Anomaly indicators of the stable network (ASC (a) and ASE (b)) 

 
Fig. 6. Anomaly maps of ASC and ASE indicators in the study area. The mineral prospects and occurrences are marked on the maps.
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5. Conclusion  

The critical challenge during regional geochemical exploration is to 
detect geochemical anomalies from the background. Many algorithms 
have been presented, from statistical thresholds to advanced data 
mining methods, to deal with this challenge. One of the most effective 
and recent techniques is machine learning through deep belief networks. 
It has been widely used in many scientific fields and has provided 
successful results in anomaly recognition. Concerning the 
compositional nature of geochemical data, a hybrid compositional-deep 
learning approach was constructed and applied on 635 stream sediment 
samples taken over the Dehsalm 1:100,000 geological map in South 
Khorasan province of Iran for the identification of geochemical 
anomalies. 

After implementing the compositional robust factor analysis (CRFA) 
on the study area, a subset of raw data with the elements detected in the 
3rd factor (Pb, Zn, Cu, Ag, Sb, Sr, Ba, Hg, and W) was specified as input 
variables to the CRBM. Consequently, after normalizing the data, the 
CRBM with the best performance (least error level of about 0.01) was 
confirmed. Furthermore, the number of visible and hidden units, noise-
control coefficients for both hidden and visible units, the standard 
deviation of normal noise, learning rates, learning cost, and learning 
momentum were predetermined. In geochemical prospecting, generally, 
anomalous samples happen much less than the background samples. 
Same as the small probability samples, the geochemical anomaly 
samples can be recognized using the trained CRBM from the training 
geochemical sample population. The ASC and ASE techniques were 
applied to detect multivariate anomalous samples from the training 
geochemical sample population. The threshold values of ASC and ASE 
were estimated using the 90th percentile equal to 0.0127 and 0.0549, 
respectively. The higher values were considered as anomalous samples. 
The obtained anomaly halos through this method were checked with 
mineral prospects on the field. The indications of hydrothermal 
minerals such as Flourite (as an active mine in the area), Galena (various 
occurrences), Calcite, Malachite and Sphalerite (as numerous copper 
prospects in the central and southern parts of the area) are evident in 
most of the high-valued halos marked in the ASE and ASC maps. This 
indicates that CRBM has performed favorably in detecting the 
anomalous samples which is considered as a notable advantage of 
CRBM. It can rebuild any statistical distribution of the input samples 
and then identify its anomalies. The identified geochemical anomaly 
samples represented the low-sulfide epithermal mineralization in the 
area which is a part of the polymetallic belt. The presence of active lead 
and copper mines confirms the mineralization in the study area. 
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