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Abstract  
In this work, an artificial neural network (ANN) model along with a combination 

of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization 

(PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the 

propylene/propane adsorption under various conditions. Using these computational 

intelligence (CI) approaches, the input parameters such as adsorbent shape (SA), 

temperature (T), and pressure (P) were related to the output parameter which is 

propylene or propane adsorption. A thorough comparison between the 

experimental, artificial neural network and particle swarm optimization-adaptive 

neuro-fuzzy inference system models was carried out to prove its efficiency in 

accurate prediction and computation time. The obtained results show that both 

investigated methods have good agreements in comparison with the experimental 

data, but the proposed artificial neural network structure is more precise than our 

proposed PSO-ANFIS structure. Mean absolute error (MAE) for ANN and ANFIS 

models were 0.111 and 0.421, respectively. 
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Introduction 

Olefins are one of the most important feeds in the petrochemical industries which are used for 

the production of various commodities. Light olefins such as ethylene and propylene are usually 

obtained by steam cracking or fluid catalytic cracking of heavy petroleum fractions and are 

mainly produced in mixtures with their paraffin homologs. The separation of these paraffin and 

olefin mixture is energy-intensive and also a costly process due to the very close relative 

volatility of components. Propylene as an important intermediate in the petrochemical industry 

is obtained by traditional separation process such as cryogenic distillation, which operates at 

low temperatures or high pressures, and needs a large number of distillation stages and very 

large reflux ratio due to the similarity of propylene and propane boiling points [1,2].  

For example, the process for separation of propane/propylene was carried out at about 30 ℃ 

and 30 bar [3] and more than 150 theoretical stages are required to achieve high purity 

propylene (99.5%) [4]. So, the alternative propane/propylene separation processes to reduce the 

energy costs are required. For example, the separation techniques such as membrane, 

absorption, hydrogenation, and physical adsorption have been considered and adsorptive 

separation seems to be a more energy-efficient process for propane/propylene separation [5-

10]. 
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Pressure swing adsorption (PSA), temperature swing adsorption (TSA) and also vacuum 

swing adsorption (VSA) techniques, based on solid molecular sieves, have been applied as an 

appropriate process. These processes have been considered for more than one decade [11-14] 

showing a satisfactory product recovery (87%) and very high purity (99%) [4]. In these 

processes, the separation is obtained in ambient temperature and no additional power was 

required to cool the gas mixture. Both commercial [4,11,13,15-17] and tailor-made adsorbents 

[18-21] have been used for separation of a propane-propylene mixture. Also, the use of 

activated carbon [22,23], carbon molecular sieves [24-26] and metal-doped adsorbents [27-30] 

for separation of olefin/paraffin mixture has been reported in the literature. The double bond of 

olefins can forms π-complexes with some transition metals which leads to making a difference 

in adsorption affinity between olefin and paraffin [18,31]. 13X and 4A zeolites were widely 

evaluated among the commercial adsorbents and have been demonstrated to be effective 

adsorbents for VSA process in order to produce high purity of propylene [13,14,32]. Da Silva 

and Rodrigues [33] studied adsorption isotherms of propylene and propane and investigated 

single component adsorption on commercial 13X and 4A zeolites at temperature between 273 

and 473 K. It was shown that 13X zeolite shows a lower mass transfer resistance and higher 

adsorption capacity than 4A zeolite, while higher selectivity for propylene in mixture of 

propylene/propane has been reported for 4A zeolite relative to 13X. Also, in the other study, 

Grande and Rodrigues [34] reported that high purity propylene can be achieved using 4A 

zeolite. Commercial zeolite 4A presented excellent performance to be applied in vacuum 

pressure swing adsorption (VPSA) process; the propane diffusion within micro-pores is 

extremely slow which leads to reduce adsorbed propane. It was concluded that micro-pore 

diffusion strongly limits the adsorption rate of propane and thus, its adsorption can be controlled 

by the size of zeolite crystals [35,36]. Padin et al. [19] reported that the modification of 

commercial 4A zeolite with Li+ cations (NaLiA zeolite) improve the uptake rate of propane. In 

a same study, the selective adsorption of propylene from the mixture with propane by Li-

exchange zeolite 13X was studied. The results indicated that propylene is adsorbed 

preferentially over propane at low pressures and adsorption equilibrium can be described with 

Virial and multi-site Langmuir models [17]. Hanaa et al. [36] investigated the adsorption of 

propane/propylene onto the binary (introduction of Ni2+ or Cr3+ instead of Na+) and ternary 

(introduction of Ni2+ and Cr3+ instead of Na+) zeolites. They found that change in Henry’s low 

slope indicates strong and weak interactions with propylene and propane, respectively. Iglesias 

et al. [37] verified 4A commercial zeolite for separation of C3H6/C3H8 mixture at a temperature 

below and above the critical temperature of propylene. They found that a certain amount of 

propylene was adsorbed irreversibly below the critical temperature. But at above the critical 

temperature, 4A zeolite could be excellent adsorbent for separation of propylene/propane 

mixtures in the temperature range of 150-180 °C. 

Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS ) have 

been used in many studies to determine and also anticipate the physical and chemical properties 

in various industrial processes [38-54]. Reviewing the related studies showed that, 

propylene/propane adsorption has not been investigated using ANN and PSO-ANFIS methods.  

In this study, the effects of temperature, pressure and Cu-BTC adsorbent structures on the 

adsorption of propylene/propane were investigated and modeling of PSO-ANFIS and ANN for 

this process were performed and the model with the best matching of the experimental data was 

determined. 

Experimental Methods 

Various factors have an effect on the adsorption of propylene and propane. Among them, the 

materials used as adsorbent and its shape have a great impact on the adsorption. In addition, the 



Journal of Chemical and Petroleum Engineering 2019, 53(2): 191-201 193 

 

operating pressure and temperature have important roles in adsorption efficiency. In this study, 

with emphasis on the metal-organic framework (MOF) adsorbent and the Cu-BTC molecular 

structure, the adsorption rates of propylene and propane were studied. A set of 271 experimental 

data points of propylene and propane adsorption on Cu-BTC adsorbent were collected from 

previous studies [55-57]. The difference in the data was in the shape of Cu-BTC adsorbent 

which was in extrudate [55], sphere [56], tablet [56], and powder [57] shapes. Temperature and 

pressure were applied in the range of 423-323 K and 0-520 kPa, respectively. Statistical analysis 

of the input and output data are shown in Table 1. 

Table 1. Statistical analysis of the input and output variables of the proposed models 

SD Average Median Maximum Minimum Unit Symbol Factors 

Input 

1.29 2.50 2.50 4.00 1.00 - 𝑆𝐴 Adsorbent shape*  

118.28 89.23 45.57 520.00 0.00 kPa 𝑃 Pressure  

29.19 358.52 348.00 423.00 323.00 K 𝑇 Temperature  

Output (Adsorption) 

2.43 3.76 3.07 8.02 0.00 mol/kg 𝑛𝐶3= Adsorbed propylene  

2.13 2.86 2.37 7.14 0.00 mol/kg 𝑛𝐶3 Adsorbed propane  

* For adsorbent shape: (1)=extrudate, (2)=sphere, (3)=tablet, and (4)=powder 

Description of Proposed Models 

In this paper, precise PSO-ANFIS and ANN models are introduced for the modeling and 

prediction of propylene/propane adsorption under several conditions. In these computational 

intelligence (CI) structures, the inputs are an adsorbent shape (SA), temperature (T), and pressure 

(P). 

Artificial Neural Network 

ANN structures [58,59] basically consist of interconnected neurons. A neuron is the basic 

processing part of ANN. The weights in ANNs are equivalent to the synapses of biological 

neurons. the weights are adjusted Using an error-minimization technique i.e. back-propagation 

method. Between the ANN models, the multi-layer perceptron (MLP) network is the most 

commonly used ANN which consists of a number of neurons [58,59].  

The MLP is a feed-forward network, which has three or more layers: one input layer, one or 

more hidden layers and one output layer [58,59]. In Fig. 1a, x1, x2,…, xN are the inputs, y1, y2, 

…, yM are the outputs and k is the number of hidden layer neurons. Also, N and M are the 

number of inputs and outputs, respectively. The output of tth neuron in the hidden layer is 

described as below: 

𝑧𝑗 = 𝑓 (∑(𝑥𝑝𝑤𝑝𝑡)

𝑁

𝑝=1

+ 𝑏𝑗)  , 𝑡 = 1, 2, … , 𝑘   (1) 

where f is the hidden layer activation function, x is the input, w is the weighting factor and b is 

the bias term. The output of the jth neuron in the output layer is given by: 

Adaptive Neuro-fuzzy Inference System/PSO Algorithm 

ANFIS is a combination of ANN and fuzzy inference system (FIS), which has both ANN and 

FIS advantages [60,61]. An ANFIS structure has five layers. Each ANFIS layer contains some 

𝑦𝑚 = ∑(𝜃𝑝𝑊𝑝𝑚)

𝑘

𝑝=1

+ 𝑏𝑚 , 𝑚 = 1, 2, … , 𝑀 (2) 
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nodes, which have their node functions. If a FIS has one output (f) and two inputs (x, y), the 

following equation describes a single fuzzy if-then rule: 

Rule1: if 𝑥 is 𝐴1 and 𝑦 is 𝐵1, then 𝑓1 =  𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

Rule2: if 𝑥 is 𝐴2 and 𝑦 is 𝐵2, then 𝑓2 =  𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

where, pi, qi, and ri are called consequent parameters (linear output parameters) and i=1,2. A 

sample of an ANFIS structure is shown in Fig. 1b. Each node in layer 1 has the following node 

function: 

𝑂1,𝑖 = 𝜇𝐴𝑖
(𝑥),             𝑖 = 1, 2 (3) 

𝑂1,𝑖 = 𝜇𝐵𝑖−2
(𝑦),         𝑖 = 3, 4 (4) 

i is the membership grade of A1, A2, B1, and B2 and O1,i is the node i output. As an example, 

the Gaussian function is given by: 

𝜇𝐴(𝑥) = exp(−
(𝑥 − 𝑐)2

2𝜎2
) (5) 

where c and σ are called premise parameters. Each node in layer 2 denotes the firing strength 

of a rule and multiplies all incoming signals with the following output: 

𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖
(𝑥)𝜇𝐵𝑖

(𝑦)  ,      𝑖 = 1, 2 (6) 

The nodes in layer 3 are called normalized firing strengths with the following node functions: 

𝑂3,𝑖 = 𝑤𝑖̅̅ ̅ =
𝑤𝑖

𝑤1 + 𝑤2
   ,    𝑖 = 1, 2 (7) 

Each node in layer 4 has the node functions given by: 

𝑂4,𝑖 = 𝑤𝑖̅̅ ̅𝑓𝑖 = 𝑤𝑖̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖),   𝑖 = 1, 2 (8) 

where, 𝑤𝑖̅̅ ̅ is a normalized firing strength from layer 3 and {𝑝𝑖, 𝑞𝑖, 𝑟𝑖} are named consequent 

parameters. Finally, layer 5 computes the only output with the following equation: 

𝑂5,𝑖 = ∑ 𝑤𝑖̅̅ ̅

𝑖

𝑓𝑖      ,    𝑖 = 1, 2 (9) 

 

Fig. 1. (a) MLP structure (b) ANFIS structure 
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Modeling Approach 

In this work, ANN and PSO-ANFIS approaches were used to predict the effect of several 

parameters influencing on propylene/propane adsorption. In Table 1, the input and output 

variables of the presented PSO-ANFIS and ANN models are shown. An ANFIS model has two 

sets of parameters (premise and consequent parameters). During the training process, these 

parameters are adjusted. Some existing training approaches for ANFIS structure may cause the 

local minimum problem. To solve this problem and for updating the premise and consequent 

parameters of ANFIS, PSO technique can be applied. PSO, first proposed by Kennedy et al. 

[62], is an evolutionary computational method which is widely used in many optimization 

applications [63]. PSO is a population-based search technique. In PSO, each possible solution 

is represented as the swarm, which is a particle in a population. In the presented PSO-ANFIS 

technique, we used PSO method for adjusting the parameters of membership functions. This 

method is more flexible and less expensive in hardware implementation in comparison with the 

conventional ANFIS methods. In this method, at first, the ANFIS structure is trained by the 

hybrid learning algorithm, which is based on the least-squares and gradient descent techniques. 

After that, the number of ANFIS membership functions (MFs) and their parameters are adjusted 

by the PSO method. For this step, mean absolute error (MAE) as the fitness function is used. 

The training and testing data sets required for the presented PSO-ANFIS and ANN models are 

obtained from the previous studies [55-57]. For this study, 271 experimental data were used, 

about 70% of them are applied for training the presented models. MATLAB 7.1 software was 

used to develop PSO-ANFIS and ANN structures. For obtaining the best ANN model, different 

configurations were tested with a different number of hidden layers. Also, epochs and the 

hidden layer neurons were changed from 50 to 500 and 1 to 10, respectively. To obtain the best 

PSO-ANFIS structures, epochs, the number and the types of input MFs were changed. Then, 

the PSO parameters such as the number of epochs and the number of particles for each 

population were determined. Tables 2 and 3 show the best ANN and PSO-ANFIS models 

obtained. 

To compare the developed models with the experimental data, we used the MAE,  correlation 

factor (R), and root mean square error (RMSE) whose equations are given as follow: 

MAE =
1

𝑁
∑ |𝑥𝑖𝑒𝑥𝑝

− 𝑥𝑖𝑝𝑟𝑒𝑑
|

𝑁

𝑖=1

 (10) 

RMSE = [
∑ (𝑥𝑖𝑒𝑥𝑝

− 𝑥𝑖𝑝𝑟𝑒𝑑
)𝑁

𝑖=1

2

𝑁
]

0.5

 (11) 

R = 1 − [
∑ (𝑥𝑖𝑒𝑥𝑝

− 𝑥𝑖𝑝𝑟𝑒𝑑
)𝑁

𝑖=1

2

∑ (𝑥𝑖𝑒𝑥𝑝
)𝑁

𝑖=1

2 ] (12) 

where, ‘𝑥𝑖𝑒𝑥𝑝
’ and ‘𝑥𝑖𝑝𝑟𝑒𝑑

’ are the experimental and predicted values (ANN and PSO-ANFIS), 

respectively, and N is the total number of data. 

Results and Discussions 

The proposed models will be outstanding if MAE=0, RMSE=0, and R=1. The obtained errors 

for our proposed models are presented in Table 4. From this table, it can be observed that the 

ANN model is capable of predicting the adsorption of propylene/propane values better than 

PSO-ANFIS model. Also, Figs. 2 and 3 show the comparison between the experimental results 
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and the predicted values for testing and training data. As can be seen in these figures, PSO-

ANFIS structure is less precise than our ANN structure. A membership function in a fuzzy 

system is more complicated than a neuron in an ANN structure, thus if we assume that a neuron 

in ANN model is equivalent to a membership function in ANFIS model, an ANN model will 

have a simpler structure than PSO-ANFIS model. Therefore, in the hardware implementation, 

the presented ANN model is faster, cheaper, and more flexible. 

Table 2. Properties of the best ANN structure 

Type of ANN MLP 

No. of the hidden layers  2 

The input layer neurons  3 

The first hidden layer neurons  4 

The second hidden layer neurons  4 

The output layer neurons  1 

Learning rate  0.5 

Epochs  250 

Adaption learning function  Trainlm 

Activation function Tansig 

 
Fig. 2. The results of ANN model 

In Fig. 4, a better evaluation between the presented ANN model and the experimental data 

for the testing and training propylene/propane adsorption is demonstrated. It can be obviously 

observed from Fig. 4 that in all of the adsorbent shapes, the amount of propylene/propane 

adsorption increases by increasing the pressure and also, decreasing the temperature. Fig. 4 also 

indicates that a greater amount of propylene is adsorbed on Cu-BTC surface in comparison with 

propane. This difference in the amount of adsorption is the basis for the separation of these two 

components which this pattern is repeated in the various temperatures and pressures and for all 

shapes of the adsorbents. Accoring to Fig. 4, it is clear that the results obtained using the ANN 

model is more compatible with the experimental data in all adsorbent shapes and operating 

conditions. 
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Fig. 3. The results of PSO-ANFIS model 

Table 3. Properties of the best PSO-ANFIS structure 

Type Sugeno 

Number of  the inputs 3 

Number of the outputs 1 

Number of membership functions for each input 3 

Number of membership functions for the output 3 

Type of the input membership function  Gaussian 

Type of the output membership function Linear 

Total number of fuzzy rules 3 

Total number of nonlinear parameters 36 

Total number of linear parameters 15 

Epochs (for each population) 420 

Number of particles (for each population) 84 

w1 (inertia weight)  1 

w2 (inertia weight damping ratio)  0.99 

C1 (personal learning coefficient)  1 

C2 (global learning coefficient)  2 

Table 4. The obtained standard errors for the introduced models 

Network Data MAE RMSE R 

ANN 
Training 0.09 0.12 0.9986 

Testing 0.12 0.17 0.9966 

PSO-ANFIS 
Training 0.40 0.58 0.9679 

Testing 0.43 0.57 0.9699 
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Fig. 4. Comparison results of the presented ANN structure, and adsorbent shapes (a) sphere, (b) extrudate, (c) 

tablet, and (d) powder 

Conclusions 

In this work, ANN structure along with a novel and effective hybrid approach are proposed for 

prediction of propylene/propane separation by Cu-BTC adsorbent. The proposed hybrid method 

is based on the combination of PSO and ANFIS structures. We compared the predictions of the 

proposed ANN and PSO-ANFIS models with the experimental data. The results showed that 

the PSO-ANFIS and ANN approaches have high accuracies. Also, the ANN model with less 

complicated structure was found to be more accurate than the PSO-ANFIS model. The MAE 

for ANN model had an average value of 0.111, outperforming PSO-ANFIS approach. 

Therefore, the proposed models could be used to solve more complex scientific problems. 
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