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Abstract 

 

     Cation exchange capacity (CEC) is one of the most important soil attributes which control some basic properties 

of soil such as acidity, water and nutrient retaining capacity. However, the measurement of cation exchange capacity 

in large areas is time consuming and requires high expenses. One way to save time and expenses is to use simple soil 

covariates and geostatistical methods in mapping CEC. Therefore, the aim of the present research was to investigate 

the role of soil covariates in the improvement of spatial variability of CEC. The study area is located in southwest 

Iran on the Aghili plain, Gotvand, Khuzestan province. In this study, ordinary kriging and cokriging methods were 

used to predict CEC. 107 soil samples were gathered on a random grid of 200-700 m. 74 samples were used for 

training and 33 samples for testing the results. A principle component analysis was performed for covariate selection. 

Clay was selected as a covariate in cokriging due to high correlation between clay and CEC in the first principle 

component analysis. Based on the cross validation result of predicted dataset, RMSE and ME for cokriging were 2.16 

and 0.03 cmol (+)/kg respectively, and 3.36 and 0.09 cmol (+)/kg for kriging, respectively. Based on these results, 

cokriging performed better than kriging for predition of cation exchange capacity since it used a covariate such as 

clay, for the improvement of CEC spatial prediction.  
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1. Introduction 
 

     An accurate knowledge on soil cation-

exchange-capacity (CEC) is very important in 

land drainage and reclamation, groundwater 

pollution studies, and modelling chemical 

characteristics of soils (Shiri et al., 2017). 

cation-exchange-capacity CEC is considered as 

one of the key factors in soil fertility and 

productivity management (Manrique et al., 

1991). Therefore, a detailed and accurate spatial 

information on soil CEC is necessary. Thus, an 

alternative way to cope with this problem is to 

numerically map CEC with a digital soil 

mapping (DSM) framework proposed by 

(McBratney et al., 2003). In DSM, spatial  
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distribution of soil properties and classes are 

obtained using expensive field and laboratory  

observation methods. In oder to save costs,  

auxiliary data can be used through quantitative 

relationships. 

     Geostatistical methods have been 

successfully applied to spatial interpolation of 

soil properties for nearly 30 years (Stein and 

Corsten 1991; Yanai et al., 2003; Shi et al., 

2009).  Kriging is a basic geostatistical 

technique that provides the best linear 

unbiased estimation (BLUE) for spatially 

dependent variables. Cokriging is another 

geostatistical method which based on the 

correlation of the primary variable, extends the 

kriging of a primary variable to secondary 

variables. Such variables are also said to be co-

regionalized and are spatially dependent. It has 

been extensively demonstrated that cokriging is 

superior to kriging in minimizing the estimation 
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variance when auxiliary variables are in high 

correlatation with primary variables (Istok et 

al., 1993; Wu et al., 2009).  Auxiliary variables 

used in previous researches for cokriging of 

soil CEC were single soil properties such as 

content of organic matter (OM) (Paz-

González et al., 2000) and electrical 

conductivity (EC) (Jung et al., 2006). It has long 

been known that soil CEC is mainly determined 

by the amount of clay and OM. In general, clay 

and OM have a positive impact on CEC. The 

best-fitting linear CEC function (R2, 68%) was 

attained with fine sand, clay, and OM with 

relative contributions of 26, 38, and 36%, 

respectively (Obalum et al., 2013). Moreover, 

significant correlations between CEC and 

other soil properties, such as sand, silt, pH, bulk 

density, and EC, have also been observed (Horn 

et al., 2005; Jung et al,. 2006; Igwe and 

Nkemakosi 2007).  Therefore, in order to 

show a better spatial variability of soil CEC, 

numerous soil factors should be considered. A 

principal component analysis (PCA) is a 

method that reduces multidimensional data to a 

smaller number of orthogonal linear 

combinations, while preserving the most 

important information during the process 

(Wander and Bollero 1999; Mouser et al., 

2005). The main purpose of the current study 

was to compare soil CEC predictions by kriging 

and cokriging using the principal components. 

 

2. Materials and Methods 

 

     The study area was located in southwest Iran 

on the Aghili plain, Gotvand, Khuzestan 

province, 32 07and 32 10 northern latitude 

and 48 52 and 48 56 eastern longitude, and 

with a surface area of about 3500 hectares. The 

climate type of the area is semi-arid with a 

maximum daily temperature of 46.6°C in July, a 

minimum temperature of 8.1°C in January, and 

a mean annual temperature of 26.1°C. The mean 

annual precipitation, from October to May, is 

324 mm. The physiographic units of the study 

area consisted of undulating and 

plain landforms. The samples however, were 

taken from the Aghili plain in which irrigated 

wheat was a major cultivating crop. Soil 

samples were taken from 51 soil profiles and 59 

soil augers of a depth of 0 to 150cm. 4 to 5 

samples were taken in each location based on 

observed diagnosis horizons. These samplings 

were taken by a random sampling method with 

a varying distance between 200 to 700 meters 

(Figure 1). Soil texture was determined by the 

hydrometer method (Gee and Bauder, 1986), the 

soil pH and ECe were determined by the 

saturated paste extract (Rhodes, 1996), calcium 

carbonate equivalent was measured by 

neutralization of the carbonate with acid and 

back titration of the excess acid (Loeppert and 

Suarez, 1996), The CEC of soil samples were 

measured using acetate sodium 1N (Chapman, 

H. D., 1965). Soil organic carbon was also 

measured based on the Walkley-Black chromic 

acid wet oxidation method (Nelson, D. W., and 

L. Sommers. 1982). According to the USDA 

Soil Taxonomy (2010), soils in this study area 

were classified as subgroups of Typic 

Haplustepts, Typic Haplusterts, and Typic 

Calciusterts. Later, some physicochemical 

analysis was done on soil samples. 

     Due to the limited sample quantity, the 

database of soil samples were randomly 

subdivided into two datasets using the create 

subset tool in ArcGIS Geostatistical Analyst. 

The prediction dataset consisted of 74 soil 

samples that were used for soil CEC 

prediction and the test dataset consisted of 33 

soil samples which were used to compare the 

performance of the two interpolation methods.  

 

2.1. Multivariate Data Analysis 

 

     PCA is a multivariate statistical technique 

used to transform a set of interrelated 

variables into principal components. When 

variables are correlated, PCA is useful in 

reducing the multidimensional data into a 

smaller number of orthogonal linear 

combinations by summarizing the principal 

sources of variability in the data. 

     Only those principal components whose 

Eigen values are greater than 1 are retained 

during the PCA process because they preserve 

the data’s variability information (Khattree and 

Naik 2000). Principal components with an 

Eigen value of less than 1 are excluded in 

accordance to this criterion.  Theoretically, the 

first principal Component (PC1) explains most 

of the total variation in the original variables 

and each succeeding PCA accounts for the 

remaining variability as possible (Li et al. 

2007). With the aim of using the physical-

chemical properties of soil’s PC1, as the 

auxiliary variable for cokriging of soil CEC, 

PCA was performed on the prediction dataset. 

First, it is necessary to check the probability 

distribution of each original variable because 

Pearson correlation coefficients used in the 

PCA input matrix are sensitive to non-normality 

(White et al., 1991). In this study, among soil 

physical-chemical properties, only EC did not 

pass the Kolmogorov-Smirnov (K-S) test for 

normality (P>0.05). T herefo re ,  a natural 
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i 

logarithmic transformation was applied to 

improve the normality of EC before statistical 

analysis. 

 

2.2. Cokriging Technique 

 

     Cokriging is an important basic geostatistical 

method that extends kriging of a primary 

variable to secondary variables based on their 

correlation with the primary variable. Such 

variables are not only are spatially dependent 

but are also called co-regionalized.  The cross 

semi-variogram functions used in cokriging 

describe the spatial variability of the attributes 

(Cahn et al., 1994). With the addition of one 

secondary variable, the traditional cross-semi-

variogram is defined as: 

                    (1) 

(1), γ12 is the cross-semi-variogram, which is 

a function of separation distance h, and n is the 

number of pairs of z1 (xi) and z2(x2)   in  given 

lagged distance intervals (h+dh) (Yates and 

Warrick 1987). The formula of cokriging 

estimation of attribute Z1 at location x0 is given 

by: 

    (2) 

λ1i is the weight associated with z1 (xi); and, λ2j is 

the weight associated with z2(xj), and n1 and n2 

are neighbourhood of z1 and z2 used in the 

estimation, respectively (Wu et al., 2003). The 

following criteria should be met in order to 

provide the best linear unbiased estimation 

(BLUE) for spatially distributed data: 

 

                                                    (3) 

     (4)

 
Fig. 1. The location of soil test and validation points 

 

2.3. Evaluation criteria 

 

     For testing and the predictions, the 

performance of kriging and cokriging methods 

were evaluated using mean error (ME) and root 

mean square error (RMSE) between the 

measured soil CEC of 33 soil samples. ME is a 

measurement of estimation errors and RMSE 

provides a measurement of accuracy.  They are 

defined as follows: 

                                     (5) 

                           (6) 

z(ui) is the measured value of z at location ui, 

and z*(ui) is the predicted value at the same 

location. Cross-validation is also used as 

(1) 
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another way to assess the predictive 

capabilities of interpolators (Myers 1997). 

     All statistical calculations were performed 

using Microsoft Excel (2007) and SPSS 17.0 

(SPSS Inc., USA).  Geostatistical analyses and 

generation of prediction maps of soil CEC were 

carried out with ArcGIS 10.1 software (ESRI, 

Redlands, CA, USA). 

 

3. Results 

 

     The soil samples collected in such a way 

that included a relatively wide range of soil 

texture classes, and according to the results of 

coefficient of variation (CV%), for soil salinity 

LN(EC) was 42.7%, Organic Carbon(37.9%) 

and sand(35.6%) exhibited weak variation, 

these results are due to to natural variation in the 

soil samples and also different landforms, while 

other variables such as CEC ( 25.2%), sand 

(35.6%), clay (27%) showed moderate variation 

due to low variability of these parameters of 

soils in the study areas. CV of silt (8.2%) 

showed lowest coefficient of variation because 

the variation of silt size in the study area is low 

due to silty soil textures (Table 1). 

 

         Table 1. Descriptive statistics of soil CEC and physico-chemical properties in Gotvand, Khuzestan, Iran 

Variable Min Max Mean St.Dev. CV (%) Skew Kurt 

Number of samples for prediction (n=74)        

EC(ds.m-1) 1.48 30.60 3.80 3.70 97.40 5.50 37.7 

ln(EC) 0.39 3.42 1.17 0.50 42.70 1.72 4.75 
OC (%) 0.11 1.30 0.66 0.25 37.90 -0.14 -0.18 

CEC (cmol.kg-1) 5.80 20.90 12.30 4.02 32.50 0.56 -0.69 

Clay (%) 16.60 47.50 30.70 8.30 27.00 0.22 -1.14 
Silt (%) 40.70 56.90 48.70 4.00 8.20 -0.03 -0.79 

Sand (%) 6.60 39.90 21.60 7.70 35.60 0.40 -0.44 

Test samples (n=33)        

CEC (cmol.kg-1)) 7.00 18.90 12.06 3.04 25.20 0.49 2.65 

 

CEC: cation exchange capacity; OC: Organic 

Carbon; EC: electrical conductivity; Ln (EC): 

Logarithm of Ec; SD: standard deviation; CV: 

coefficient of variation; Skew: skewness; Kurt: 

kurtosis.   

 

3.1. Principal Component Analysis 

 

     Loading plots for the first and second 

components are shown in Figure 2. In this 

loading plot, CEC, clay, and OC had large 

positive loadings on component 1, which means 

that this component primarily measures CEC 

stability. EC and silt had large negative loadings 

on component 2. 

     Positive loading indicates that the 

contribution of the variables increase with 

increased dimensional loading, and negative 

loading indicates a decreased dimensional 

loading (Kumar et al., 2009).  For PC1, the 

strongest positive loading was clay, followed by 

CEC and organic carbon.  The strongest 

negative loading for clay was sand, followed by 

sand and EC. PC2 was mainly dominated by silt 

and and EC with high negative loadings values. 

The remaining variables had both small positive 

and negative loadings on PC2 (Table 2).  
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Fig. 2. Loading plots for the first and second components 
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                        Table 2.  PC loadings for each variable 

Components PC1 PC2 PC3 PC4 PC5 

log EC(ds.m-1) -0.22 -0.59 -0.70 0.34 -0.02 

OC (%) 0.40 -0.082 -0.44 -0.80 -0.019 
CEC (cmol.kg-1) 0.50 -0.14 0.05 0.23 0.82 

Clay (%) 0.53 0.03 -0.03 0.30 -0.40 

Sand (%) -0.48 0.35 -0.23 -0.16 0.40 
Silt (%) -0.18 -0.71 0.51 -0.30 0.04 

 

     As it is observed  (Table 3), Loading values 

of PC1 and PC2 had  Eigen values greater than 

1, which means the percent of variance 

explained in PC1 and PC2 were relatively high 

(PC1=56% and PC2=77%).  This indicates that 

more than 78% of the information is contained 

within PC1 and PC2. 

 

             Table 3.  Results of principal component analysis for soil physical- chemical properties in Gotvand, Khuzestan, Iran 

Table 2: Loading values of The PCA 

Component PC1 PC2 PC3 PC4 PC5 
Eigenvalue 3.3 1.25 0.77 0.49 0.15 

Proportion 0.56 0.21 0.13 0.08 0.025 

Accumulated 0.56 0.77 0.89 0.98 1.00 

 

     Pearson correlation analysis indicated that 

there was a strong positive correlation between 

CEC and clay (r=0.85, P<0.01), CEC and 

organic carbon (r =0.62, P<0.01) , a strong 

negative correlation between CEC and sand (r= 

-0.88, P<0.01), and no significant correlation 

between CEC and other variables. 

 

3.2. Geostatistical Analysis 

 

     The regression graph between CEC and clay 

(%) showed R square (adj) equal to 75 % 

(Figure 3). This showed that clay had a strong 

correlation with CEC and therefore could be 

used as an auxiliary variable in improving the 

accuracy of soil CEC predictions. The 

regression graph between CEC and OC (%) 

showed R-sq (adj) equal 35 % (Figure 4). This 

showed that organic carbon had a moderate 

correlation with CEC and could be used as 

second auxiliary variable in cokriging to 

improve the accuracy of soil CEC predictions.  

     A normality test was done to insure that 

Kriging’s data was normal. The results 

showed that clay content of soil samples 

followed a normal distribution with a mean of 

30.7% and a standard deviation of 8.3 

(skewness=0.22, kurtosis=1.1). Soil CEC also 

followed a normal distribution, with a mean of 

12.3 cmol. Kg-1 and a standard deviation of 

4.02 cmol. Kg-1 (skewness=0.56 kurtosis = -

0.69) (Table 1). In our study, both CEC and 

clay passed the Kolmogorov-Smirnov (K-S) 

normality test (P>0.05). 
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Fig. 3. The relationship between CEC and Clay percentage 
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Fig. 4. The relationship between CEC and Organic Carbon percentage 

 

     The semi-variogram of soil CEC provides a 

description of its spatial dependency and some 

insight into possible processes affecting its 

spatial distribution. As depicted in Figure 5a, 

the best fitted semi-variogram model for CEC 

was an exponential model with a coefficient of 

determination (R2=0.32), nugget/ sill ratio 

[C/(C+C)] of 0.24, and an effec tive range 

of 1 .2  km. The best fitted semi-variogram model 

on clay data was a Gaussian model (Figure 5b), 

with a coefficient of determination (R2= 0.46), 

nugget/ sill ratio [C/(C+C)] of 0.30, and an 

effec tive  range  o f 1 .2  km.  However, in 

comparison to the other models, the exponential 

model which was the best fitted cross-semi-

variogram model had a high coefficient of 

determination (R2=0.74), low nugget/sill ratio 

[C /(C+C)] of 0.17, and an effective range of 

2.6 km (Figure 5c). 

 

 

 
Fig. 5. a- exponential model of experimental variogram for CEC. b- Gaussian model of experimental variogram for Clay., 

c- exponential model of experimental variogram for cross validation of CEC and clay 

a b 

c 
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     The prediction map of soil CEC by cokriging 

and kriging methods is shown in Figure 6.  

The values of CEC were relatively higher in the 

central, southwest, and northeast regions due to 

higher clay and organic matter in these areas and 

relatively lower in the southeast and northwest 

regions of the study area because of lighter 

soil textures.  

 

Comparison of Interpolation Performance 

 

     Summary statistics for soil CEC estimated by 

kriging and cokriging for the test dataset 

containing 33 soil samples and predicted dataset 

containing 74 soil samples are shown in Table 

3. 

 

 
 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 6. Predicted soil CEC (coml. kg-1) by kriging (A) and cokriging (B) with PC1 derived from soil physical-chemical properties in 
Gotvand, Khuzestan, Iran 

 

    Table 4.  Results of validation and cross-validation of kriging and cokriging methods for soil cation exchange capacity in  
    Gotvand, Khuzestan, Iran 

Variable Min Max Mean Std. dev. CV (%) ME RMSE 

Validation of test dataset (n=33) 
     

  

Measured 7.0 18.9 12.1 3.0 25.2   
Krigging 8.8 16.3 11.9 1.8 15.2 -0.13 2.76 

Co-Krigging 7.9 16.4 12.0 1.9 15.8 -0.06 2.32 

Validation of prediction dataset (n=74) 
     

  
Measured 4.8 20.9 12.1 4.1 33.8   

Krigging 8.0 19.1 12.2 2.6 21.4 0.09 3.36 

Co-Krigging 7.2 18.3 12.2 2.9 24.1 0.03 2.16 

 

     This table shows the results of cross-

validation by both interpolators. The predicted 

soil CEC for the data test-set by kriging ranged 

from 8.8 to 16.3 cmol+/kg-1, with a mean of 

11.9 cmol/kg-1, and a standard deviation of 1.8 

cmol/kg-1. The predicted soil CEC for the 
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data test-set by cokriging ranged from 7.9 to 

16.4 cmol/kg-1, with a mean of 12.0 cmol/kg-1,  

and a standard deviation of 1.9 cmol/ kg -1. The 

measured soil CEC for the data test -set 

however, ranged from 7.0 to 18.9 cmol/kg-1, 

with a mean of 12.1cmol/kg-1, and a standard 

deviation of 3.0 cmol/kg-1. The ME and RMSE 

of kriging for the data test -set were -0.13 and 

2.76 Cmol+/kg -1. ME and RMSE of cokriging for 

the data test-set were -0.06 and 2.32 cmol/kg-1, 

respectively. 

     The predicted soil CEC for the prediction 

dataset of kriging ranged from 10.05 to 21.06 

cmol/kg -1, and the predicted soil CEC for the 

prediction dataset by cokriging ranged from 7.2 

to 18.3 cmol/kg -1. The measured soil CEC of 

the prediction dataset, however, ranged from 

4.8 to 20.95 cmol/kg -1. The coefficients of 

variation of the two predictions were similar 

but significantly less than that of the 

observations.  The coefficient of determination 

(R2) for the prediction dataset was 0.32 for 

kriging cross-validation and 0.73 for 

cokriging cross-validation. In Figure 7, we can 

clearly see that the scattered points of performed 

kriging were more scattered than those of 

performed cokriging. 

 

 
 

 

Fig. 7. Measured soil CEC (cmol.  kg-1) and predicted soil CEC from cross-validation by  kriging (A) and cokriging (B), 

respectively, in Gotvand, Khuzestan, Iran 

 

4. Discussion 
 

     As it was expected, CEC is highly correlated 

with soil clay and organic carbon content. The 

regression graph between CEC and clay showed 

R-sq (adj) equal to 75 %. This showed that clay 

had a strong correlation with CEC and can be 

used as an auxiliary variable in cokriging to 
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improve the accuracy of soil CEC prediction, 

meanwhile the eighenvalue in PC1 is 3.3 

which is higher than 1 and in PC1 clay, organic 

carbon and CEC are grouped together and this 

is another reason for choosing clay as a 

covariate in cokriging. Is hiher than 1. The 

regression graph between CEC and OC (%) 

showed R-sq (adj) equal to 35%. This showed 

that organic carbon had a moderate correlation 

with CEC and can be used as a second auxiliary 

variable in cokriging to improve the accuracy of 

soil CEC prediction.  

     In this study, most of the variance in soil 

physical-chemical properties was explained by 

PC1 and PC2. Soil CEC was highly correlated 

with PC1, whereas no significant correlation 

was between CEC and PC2. Compared to the 

OM and EC used by Paz-González et al. (2000) 

and Jung et al. (2006), PC1 had a better 

correlation with CEC. Therefore, PC1 was 

selected as an auxiliary variable for improving 

the prediction of soil CEC. 

     The nugget/sill ratio was used to divide the 

spatial dependence of the environmental 

variables. According to Cambardella et al. 

(1994), “a variable has strong spatial 

dependence when the ratio is less than 25%, a 

moderate spatial dependence when the ratio is 

between 25 and 75%, and a weak spatial 

dependence when the ratio is more than 75%”.  

The nugget/sill ratio of the exponential model 

for soil CEC by kriging was at 24%, which 

indicated that soil CEC had a strong spatial 

dependence on the study area.  The spatial 

variability of soil CEC was affected by 

intrinsic factors of soil formation factors, such 

as soil parent materials (Cambardella et al. 

1994)., and this is consistent to the fact that soil 

CEC is related to the amount of clay and OM, 

the higher CEC is due to higher soil clay and 

organic matter in the study areas.  The 

effective range could be reflected by some 

information about the spatial dependency of 

environmental variables (Journal and 

Huijbregts, 1978). The semivariogram of soil 

CEC had nearly a 1.2 km effective range, which 

indicated that soil CEC had a strong spatial 

dependence. 

     The predicted soil CEC for the data test-set 

based on kriging and cokriging methods had 

some differences in the measured values. 

Because of the smoothing effect, the 

maximum prediction values of kriging and 

cokriging were significantly lower than that 

of the observations, while the minimum 

prediction values of kriging and cokriging were 

significantly higher.  The predicted soil CEC of 

cokriging had a more similar summary statistic 

to the observations than that of kriging, which 

indicated that cokriging can better describe the 

spatial variability of soil CEC.  Having  

negative ME values in their data test-sets, both 

kriging and cokriging showed an overall 

tendency of systematic overestimation of soil 

CEC. The ME and RMSE for kriging for the 

data test-set were -0.13 and 2.76 cmol+/kg-1, and 

ME and RMSE of cokriging for the test dataset 

were -0.06 and 2.32 cmol/kg -1, respectively. 

     The absolute ME and RMSE of cokriging 

were relatively lower than those of kriging, 

which indicated that cokriging with clay can 

improve prediction accuracy of soil CEC. 

 

5. Conclusion 

 

     Soil CEC was highly correlated with clay 

derived from soil physical-chemical properties 

(r=0.85, P<0.01).  The clay was used as an 

auxiliary variable in cokriging for soil CEC 

prediction. The application of cokriging gave 

more precise results than kriging, which is 

shown in the lower ME and RMSE. This study 

demonstrates that the usage of clay derived from 

soil physical-chemical properties as an 

auxiliary data for cokriging of soil CEC was 

efficient in the improvement of prediction 

accuracy. 
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