تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,320 |
تعداد دریافت فایل اصل مقاله | 97,205,991 |
استخراج هیومیک اسید از پسماندهای کمپوست قارچ به کمک تیمار قلیایی و فراپالایش غشایی | ||
مهندسی بیوسیستم ایران | ||
مقاله 9، دوره 50، شماره 4، بهمن 1398، صفحه 847-861 اصل مقاله (1.38 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2019.269856.665118 | ||
نویسندگان | ||
رسول تاجی نیا* 1؛ محمدحسین کیانمهر2؛ احسان سرلکی3؛ علی شریف پاقلعه4؛ حسین میر سعید قاضی5 | ||
1دانشآموخته کارشناسی ارشد مهندسی مکانیک بیوسیستم، گروه مهندسی فنی کشاورزی، پردیس ابوریحان، دانشگاه تهران، تهران، ایران. | ||
2استاد، گروه مهندسی فنی کشاورزی، پردیس ابوریحان، دانشگاه تهران، تهران، ایران. | ||
3دانشجوی دکتری، گروه مهندسی فنی کشاورزی، پردیس ابوریحان، دانشگاه تهران، تهران، ایران. | ||
4استادیار، گروه مهندسی فناوری صنایع غذایی، پردیس ابوریحان، دانشگاه تهران، تهران، ایران. | ||
5دانشیار، گروه مهندسی فناوری صنایع غذایی، پردیس ابوریحان، دانشگاه تهران، تهران، ایران. | ||
چکیده | ||
تولید هیومیک اسید با درصد خلوص بالا و خواص کیفی مطلوب برای مصارف مختلف به روش استخراج و پالایش در فرآیند تولید آن بستگی دارد. تحقیقات نشان دادهاند که برای تحقق این امر، جداسازی ترکیبات فولوات و ناخالصیهای غیرآلی از هیوماتهای قلیایی استخراج شده از مواد اولیه از اهمیت بالایی برخوردار است. هدف اصلی این مطالعه جداسازی هیوماتهای قلیایی از ترکیبات فولوات و ناخالصیهای غیر آلی با فناوری جداسازی غشایی است. از پسماندهای کمپوست قارچ به عنوان یک پسماند آلی برای استخراج ترکیبات هیومیکی شامل هیومات و فولوات با روش تیمار قلیایی استفاده شد. سپس فرآیند جداسازی غشایی با یک سامانه مجهز به ماژول قاب و صفحهای و غشای پلی سولفون با اندازه منفذ kDa 5 آزمون گردید. اثر فشار عملیاتی در چهار سطح 50، 150، 250 و 350 کیلو پاسکال بر عملکرد جداسازی شامل شار تراوه ترکیبات فولوات، مکانیسم غالب گرفتگی، شاخص گرفتگی (i) و مقاومتهای گرفتگی و همچنین بر خواص شیمیایی، طیفی و درصد خلوص نهایی هیومیک اسید فراپالایش شده از ناتراوههای هیوماتی بررسی شد. نتایج این تحقیق نشان داد که با افزایش فشار، شار تراوه ترکیبات فولوات 8/41 درصد افزایش مییابد. بر اساس مدل هرمیا، مکانیسم غالب گرفتگی در تمام سطوح فشار، تشکیل لایه کیک بود. نتایج شاخص گرفتگی (i) نشان داد که تمام مکانیسمهای گرفتگی در سامانه نقش دارند و با افزایش فشار، گرفتگی کامل منافذ و تشکیل لایه کیک به ترتیب زودتر و دیرتر رخ میدهند. آنالیز تصاویر میکروسکوپ الکترونی روبشی (SEM) به منظور تایید دادهای تجربی پدیده گرفتگی نیز نشان داد که با افزایش فشار از 50 تا 350 کیلو پاسکال، ضخامت تشکیل لایه کیک بروی سطح غشا 3 برابر افزایش پیدا میکند. ارزیابی خواص هیومیک اسید فراپالایش شده نشان میدهد که فناوری جداسازی غشایی نقش موثری بر خواص شیمیایی و طیفی هیومیک اسید در مقایسه با دیگر روشهای پالایش آن داشته و خلوص نهایی هیومیک اسید را تا 8/87 درصد افزایش میدهد. | ||
کلیدواژهها | ||
پسماند کمپوست قارچ؛ هیومیک اسید؛ فراپالایش غشایی؛ خلوص؛ خواص شیمیایی و طیفی | ||
مراجع | ||
Cassano, A., Conidi, C., Drioli, E. (2010). Physicochemical parameters of cactus pear (Opuntia ficus-indica) juice clarified by microfiltration and ultrafiltration processes, Desalination, 250, 1101–1104. Curtin, J.S. & Mullen, G.J. (2007). Physical properties of some intensively cultivated soils of Ireland amended with spent mushroom compost. Land Degradation & Development, 18(4), 355-368. Doskocil, L., Burdíková-Szewieczková, J., Enev, V., Kalina, L., Wasserbauer, J. (2017). Spectral characterization and comparison of humic acids isolated from some European lignites. Fuel, 213, 123–132. Fuentes, M., Gaitano, G. G. & Mina, J. M. G. (2006), “The usefulness of UV–visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts”, Org. Geochem. 37, 1949-1959. Ghosh, A. M. & Balakrishnan, M. (2003). Pilot demonstration of sugarcane juice ultrafiltration in an Indian sugar factory. Journal of Food Engineering, 58(2), 143-150. Hamid, N. A. A. Ismail A. F. Matsuura T. Zularisam, A. W. Lau W. J. Yuliwati, E. & Abdullah M. S. (2011). Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humic acid removal. Desalination, 273(1), 85-92. Hao, Y. Moriya, A. Maruyama, T. Ohmukai, Y. & Matsuyama, H. (2011). Effect of metal ions on humic acid fouling of hollow fiber ultrafiltration membrane. Journal of membrane science, 376(1), 247-253. Hermia, J. (1982). Constant pressure blocking filtration laws-application to power law non-Newtonian fluid, Transaction of Institute of Chemical Engineers, 60, 183-190. Hwang, L. L. Tseng, H. H. & Chen J. C. (2011). Fabrication of polyphenylsulfone/polyetherimide blend membranes for ultrafiltration applications: The effects of blending ratio on membrane properties and humic acid removal performance. Journal of membrane science, 384(1), 72-81. Janos, P. and Tokarova, V. (2002). Characterization of coal-derived humic substances with the aid of low-pressure gel permeation chromatography. Fuel, 81, 1025-1031. Katsoufidou, K. Yiantsios, S. G. & Karabelas, A. J. (2005). A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: experiments and modeling. Journal of Membrane Science, 266(1), 40-50. Lamar, R.T. and Talbot, K.H. (2009). Critical comparison of humic acid test methods, Communications in Soil Science and Plant Analysis, 40(15): 2309-2322. Lamar, R.T., Olk, D.C., mayhew, L and Bloom, P.R. (2014). A new standardized method for quantification of humic and fulvic acids in humic ores and commercial products. Journal of AOAC International, 94 (3): 1-10. Li, H. Li, Y. Zou, S. & Li, C. (2014). Extracting humic acids from digested sludge by alkaline treatment and ultrafiltration. Journal of Material Cycles and Waste Management, 16(1), 93-100. Lou, Z., Sun, Y., Bian, S., Baig, S.A. Hu, B., Xu, X. (2017). Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar, Chemosphere, 169, 23-31. Mirsaeedghazi, H., Mousavi, S.M., Emam-Djomeh, Z., Rezaei, K., Aroujalian, A. and Navidbakhsh, M. (2012). Comparison between ultrafiltration and microfiltration in the clarification of pomegranate juice. Journal of Food Process Engineering, 3 (5), 424–436. Nardi, S., Pizzeghello, D., Bragazza, L., Gerdol, R. (2003). Low-molecular-weight organic acids and hormone-like activity of dissolved organic matter in two forest soils in n Italy. Journal of Chemical Ecology. 29(7), 1-16. Ng, C. Y., Mohammad, A. W., Ng, L. Y. (2014). Jahim, J. M., Membrane fouling mechanisms during ultrafiltration of skimmed coconut milk, Journal of Food Engineering, 142, 190–200. Novak, J., Kozler, J., Janos, P., Cezikova, J., Tokarova, V., Madronova, L. (2001). Humic acids from coals of the North-Bohemian coal field I. Preparation and characterization. Reactive & Functional Polymers, 47, 101–109. Prosyolkov, N.V., Glukhovtsev, V.E., Kapkin, N.V., Chestyunin, S.V., Kalinin, A.N., Panov, O.A., Filippov, V.A., Filyanov, V.I., Novikov. A.V, (2013). A method of production of humic acid concentrate from brown coal and a line for humic acid concentrate production. Russian Patent RU 2473527. Rasmussen, Hans W., George, St., Lawrence H. Allen, Hemet, CA. (2001). Method for producing calcium fulvate from humus material. United States Patent. Patent No: US Patent, 6,204,396 B1. Ritchie, J. D. & Perdue, E. M. (2003). Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim. Cosmochim Acta,67, 85-96. Said, M. Ahmad, A. Mohammad, A. W. Nor, M. T. M. & Abdullah S. R. S. (2015). Blocking mechanism of PES membrane during ultrafiltration of POME. Journal of Industrial and Engineering Chemistry, 21, 182-188. Sarlaki, E. (2015). Separation of Humic and Fulvic Acid from Lignite Coals by Using of Membrane Ultrafiltration Process. M.Sc. Thesis. College of Abouraihan. University of Tehran. (In Farsi). Sarlaki, E., and Sharif, A. P. (2017). Effects of centrifuge pre-treatment on membrane ultrafiltration of coal-derived humic alkaline extracts. Iranian journal of biosystem engineering, 48(2), 273-283. (In Farsi). Sarlaki, E., and Sharif, P.A, Kianmehr, M. H., Mirsaeedghazi, H. (2017). Effect of Processing Temperature on Membrane Ultrafiltration of Lignite coals-derived Humic Alkaline Extracts, Membrane Performance and Humic Acid Purity. Iranian journal of biosystem engineering, 48(4), 475-489. (In Farsi). Sarlaki, E., Sokhandan Toomaj, M., Sharif Paghaleh, A., Kianmehr, M., Nikousefat, O. (2019a). Extraction of Humic Acid from Lignite Coals using Stirred Tank Reactors (STRs): Assessment of Process Parameters and Final Product Charaterization. Iranian Journal of Soil and Water Research, 50(5), 1111-1125. (In Farsi). Sarlaki, E., Sharif Paghaleh, A., Kianmehr, M. H., & Asefpour Vakilian, K. (2019b). Extraction and purification of humic acids from lignite wastes using alkaline treatment and membrane ultrafiltration. Journal of Cleaner Production, 235, 712–723. Sarlaki, E., Sharif Paghaleh, A., Kianmehr, M. H., Shakiba, N., Asefpour Vakilian, K. & Mirsaeedghazi, H. (2019c). Post-treatment of lignite-derived humate alkaline extracts using membrane-based technology for high-purity humic acid production. Journal of Environmental Science and Technology, doi: 10.22034/jest.2019.36816.4333. (In Farsi). Schnitzer, M. & Gupta, U.C. (1965). Determination of acidity in soil organic matter, Soil Science Society of America,29, 27-277. Shakiba, N. (2016). Investigation of the effective parameters on separation and purification of humic acid from the Leonardite humate using a proper filter. M.Sc. Thesis. College of Abouraihan. University of Tehran. (In Farsi). Shao, J. Hou, J. & Song, H. (2011). Comparison of humic acid rejection and flux decline during filtration with negatively charged and uncharged ultrafiltration membranes. Water research, 45(2), 473-482. Sharif, A. P., Sarlaki, E., Kianmehr, M. H., Shakiba, N. (2017). Study of Spectral, Structural and Chemical characteristics of Humic Acids Isolated from Coalfield of Iran. Iranian journal of soil and water research, 48(5), 1145-1158. (In Farsi). Shi, X., Tal, G., Hankins, N. P., Gitis, V. (2014). Fouling and cleaning of ultrafiltration membranes: A review. Journal of Water Process Engineering, 1, 121-138. Sun, Z., Tang, B., Xie, H. (2015). Treatment of Waste Gases by Humic Acid. Energy& Fuels, 29(3), 1269–1278. Unsal, T. & Ok, S.S. (2001). Description of characteristics of humic substances from different waste materials, Bioresource Technology, 78(3), 239-42. Van Dyke, D. C. Nielson, A. S. Sutton, B. Davies, D. & Adams, L. B. (2014). U.S. Patent No. 8,641,797. Washington, DC: U.S. Patent and Trademark Office. Wright, J.R. & Schnitzer, M. (1959). Oxygen-containing functional groups in the organic matter of a podzol soil, Nature, 1462–1463. Yue, D. Han, B. Qi, G., & Cheng, Y. (2011). Recovery of humic substances from landfill leachate via 2500 Da ultrafiltration membrane. WIT Transactions on Ecology and the Environment, 145, 737-746. Zara, M., Z. Ahmad, J. Akhtar, K. Shahzad, N. Sheikh, and S. Munir. (2017). Extraction and characterization of humic acid from Pakistani lignite coals. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39 (11), 1159-1166. Zhao, C. Xue, J. Ran, F. & Sun, S. (2013). Modification of polyethersulfone membranes–a review of methods. Progress in Materials Science, 58(1), 76-150. | ||
آمار تعداد مشاهده مقاله: 1,064 تعداد دریافت فایل اصل مقاله: 646 |