تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,788 |
تعداد دریافت فایل اصل مقاله | 97,206,385 |
پیآمد کاربرد کود گاوی و زغال زیستی آن بر برخی از فرآیندهای چرخه نیتروژن در خاک | ||
تحقیقات آب و خاک ایران | ||
مقاله 1، دوره 50، شماره 3، مرداد 1398، صفحه 515-525 اصل مقاله (547.25 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2018.268289.668039 | ||
نویسندگان | ||
صفورا ناهیدان* 1؛ علی اکبر صفری سنجانی2 | ||
1استادیار، گروه خاکشناسی، دانشگاه بوعلی سینا، همدان، ایران | ||
2استاد، گروه خاکشناسی، دانشگاه بوعلی سینا، همدان، ایران | ||
چکیده | ||
در سالهای اخیر، کاربرد زغال زیستی در خاکهای سرزمینهای خشک و نیمهخشک به منظور افزایش کربن آلی خاک مورد توجه قرار گرفته است. با وجود این، گزارشهای اندکی در ارتباط با پیامد زغال زیستی بر بازچرخ نیتروژن در خاکهای چنین سرزمینهایی در دست است. هدف از پژوهش اخیر بررسی پیامد کاربرد کود گاوی و زغال زیستی آن بر برخی از فرآیندها و ویژگیهای زیستی کارا در چرخه نیتروژن در یک خاک آهکی میباشد. بدین منظور مقادیر 0، 1، 2 و 5 درصد از کود گاوی و زغال زیستی آن به یک خاک آهکی افزوده شد و سپس برای 30 و 90 روز انکوباسیون گردید. یافتهها نشان داد که نیتروژن زیستتوده میکروبی و فعالیت آنزیم اورهآز در خاکهای تیمارشده به کود گاوی با شدت بیشتری در برابر خاکهای تیمارشده به زغال زیستی افزایش مییابند. کاربرد زغال زیستی به میزان 2 و 5 درصد، کانی شدن نیتروژن را به میزان 5/20 و 3/32 درصد در زمان 30 روز و به میزان 103 و 106 درصد در زمان 90 روز انکوباسیون افزایش داد. افزودن 1 تا 5 درصد کود گاوی به خاک، افزایش کانی شدن نیتروژن را به میزان 38-235 درصد در زمان 30 روز و 105-214 درصد در زمان 90 روز انکوباسیون به همراه داشت. در 30 روز انکوباسیون، تنها کاربرد 5 درصد زغال زیستی، نیتریفیکاسیون را افزایش داد. در 90 روز انکوباسیون، کاربرد 1، 2 و 5 درصد زغال زیستی، افزایش نیتریفیکاسیون را به میزان10-50 درصد در برابر شاهد به همراه داشت. در برابر آن، افزودن کود گاوی به خاک باعث افزایش نیتریفیکاسیون به میزان 300-1500 و 39-95 درصد در برابر شاهد پس از 30 و 90 روز انکوباسیون شد. به طور کلی، یافتهها نشان داد که کاربرد زغال زیستی کود گاوی در برابر کود گاوی میتواند کانی شدن نیتروژن و نیتریفیکاسیون را کاهش داده و از آبشویی سریع نیترات جلوگیری نماید. | ||
کلیدواژهها | ||
زغال زیستی کود گاوی؛ کانی شدن نیتروژن؛ آمونیفیکاسیون؛ نیتریفیکاسیون | ||
مراجع | ||
Ameloot, N., Sleutel, S., Das, K.C., Kanagaratnam, J. and de Neve, S. (2015). Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties. GCB Bioenergy, 7 (1), 135–144. Bi, Q.F., Chen, Q.H., Yang, X.R., Li, H., Zheng, B.X., Zhou, W.W., Liu, X.X., Dai, P.B., Li, K.J. and Lin, X.Y. (2017). Effects of combined application of nitrogen fertilizer and biochar on the nitrification and ammonia oxidizers in an intensive vegetable soil. AMB Express, 7(1), 198. Brookes, P. C., Landman, A., Pruden, G. and Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil biology and biochemistry, 17(6), 837-842. Burt, R. (2004). Soil survey laboratory methods manual: Soil survey investigations. Version 4.0. Natural Resources Conservation Service, Nebraska, United States. Celya, P., Gascóa, G., Paz-Ferreirob, J. and Méndez, A. (2015). Agronomic properties of biochars from different manure wastes. Journal of Analytical and Applied Pyrolysis, 111, 173–182. Chen, Y., Zhang, X., Chen, W., Yang, H. and Chen, H. (2017). The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresource technology, 246, 101-109. Cheng, C. H., Lehmann, J., Thies, J.E. and Burton, S.D. (2008). Stability of black carbon in soils across a climatic gradient. Journal of Geophys Research, 113, 1027-1033. Clough, T.J. and Condron. L.M. (2010). Biochar and the Nitrogen Cycle: Introduction. Journal of Environmental Quality, 39, 1218-1223. Demisie, W., Liu, Z., and Zhang, M. (2014). Effect of biochar on carbon fractions and enzyme activity of red soil. Catena, 121, 214-221. Dempster, D.N., Gleeson, D.B., Solaiman, Z.M., Jones, D.L. and Murphy, D.V. (2012a). Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant and Soil, 354, 311–324. Dempster, D.N., Jones, D.L. and Murphy, D.V. (2012b). Organic nitrogen mineralisation in two contrasting agro-ecosystems is unchanged by biochar addition. Soil Biology and Biochemistry, 48, 47–50. Fan, F., Yang, Q., Li, Z., Wei, D., Cui, X. A. and Liang, Y. (2011). Impacts of organic and inorganic fertilizers on nitrification in a cold climate soil are linked to the bacterial ammonia oxidizer community. Microbial Ecology, 62(4), 982-990. Gul, S. and Whalen, J.K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology and Biochemistry, 103, 1-15. Heaney, N., Mamman, M., Tahir, H., Al-Gharib, A. and Lin, C. (2018). Effects of softwood biochar on the status of nitrogen species and elements of potential toxicity in soils. Ecotoxicology and environmental safety, 166, 383-389. Hu, Y. L., Wu, F. P., Zeng, D. H. and Chang, S. X. (2014). Wheat straw and its biochar had contrasting effects on soil C and N cycling two growing seasons after addition to a Black Chernozemic soil planted to barley. Biology and Fertility of Soils, 50(8), 1291-1299. Ippolito, J. A., Stromberger, M.E., Lentz, R.D. and Dungan, R.S. (2016). Hardwood biochar and manure co-application to a calcareous soil. Chemosphere, 142, 84-91. Jiang, L.L., Han, G.M., Yu, L.A.N., Liu, S.N., Gao, J.P., Xu, Y.A.N.G., Jun, M.E.N.G. and Chen, W.F. (2017). Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates. Journal of Integrative Agriculture, 16(3), 713-724. Kaleem Abbasi, M., Hina, M., Khalique, A. and Razaq Khan, S. (2007). Mineralization of three organic manures used as nitrogen source in a soil incubated under laboratory conditions. Communications in Soil Science and Plant Analysis, 38(13-14), 1691-1711. Keeney, D.R. and Nelson. D.W. (1982). Nitrogen-inorganic forms. In: A.L. Page (Ed.), Methods of Soil Analysis, Part 2. pp. 643-698 American Society of Agronomy, Madison WI, USA. Lalande, R., Gagnon, B., Simard, R. R., and Cote, D. (2000). Soil microbial biomass and enzyme activity following liquid hog manure application in a long-term field trial. Canadian Journal of Soil Science, 80(2), 263-269. Li, L.L. and Li, S.T. (2014). Nitrogen mineralization from animal manures and its relation to organic N fractions. Journal of Integrative Agriculture, 13(9), 2040-2048. Luo, X., Chen, L., Zheng, H., Chang, J., Wang, H., Wang, Z., and Xing, B. (2016). Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China. Geoderma, 282, 120-128. Mengel, K. (1996). Turnover of organic nitrogen in soils and its availability to crops. Plant and Soil, 181, 83–93. Owen, J.S., King, H.B., Wang, M.K. and Sun, H.L. (2010). Net nitrogen mineralization and nitrification rates in forest soil in northeastern Taiwan. Soil Science and Plant Nutrition, 56(1), 177-185. Prayogo, C., Jones, J., Baeyens, J., Bending, G. (2013). Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biology and Fertility of Soils, 50 (4), 695–702. Rezai, H. (2013). A reviow of research on application of livestock manure in agricultural land of Iran. Journal of Land Management, 1, 55-68. (In persian) Safari Sinegani A.A. (2015). Soil organic matter. Bu-Ali Sina University Pubilcation Center, Hamadan, Iran, 364p. (In persian). Song, W. and Guo, M., (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of analytical and applied pyrolysis, 94: 138-145.
Tabatabai, M.A. and Bremner, J. M. (1972). Assay of urease activity in soils. Soil Biology and Biochemistry, 4: 479–486. Taghizadeh-Toosi, A., Clough, T.J., Sherlock, R.R. and Condron, L.M. (2012). A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant and Soil 353, 73-84. Wang, Y., Shen, Q. R. and Shi, R. H. (1998). Changes of soil microbial biomass C, N, and P and the N transformation after application of organic and inorganic fertilizers. Acta Pedologica Sinica .35, 227-234. Wang, W., Camps Arbestain, M., Hedley, M. and Bishop, P. (2012). Chemical and bioassay characterisation of nitrogen availability in biochar produced from dairy manure and biosolids. Organic Geochemistry, 51, 45-54. Wu, F.P., Jia, Z.K., Wang, S.G., Chang, S. and Startsev, A. (2012). Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biology and Fertility of Soils, 49 (5), 555–565. Zhang, Q. Z., Dijkstra, F. A., Liu, X. R., Wang, Y. D., Huang, J. and Lu, N. (2014). Effects of biochar on soil microbial biomass after four years of consecutive application in the north China plain. PloS one, 9(7), 1-8. Zhang, K., Chen, L., Li, Y., Brookes, P. C., Xu, J. and Luo, Y. (2017). The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biology and Fertility of Soils, 53(1) , 77-87. Zhao, W., & Wang, H. (2012). Effects of Manure and Chemical Fertilizer on Nitrogen Transformations and Functional Bacteria in a Black Soil of the Song-nen Plain. Communications in soil science and plant analysis, 43(10) , 1468-1481. | ||
آمار تعداد مشاهده مقاله: 601 تعداد دریافت فایل اصل مقاله: 447 |