

journal homepage: http://jac.ut.ac.ir

k-Total difference cordial graphs

R. Ponraj^{*1}, S.Yesu Doss Philip^{†2} and R. Kala^{‡3}

 $^{1}\mathrm{Department}$ of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu,

India.

²Research Scholar, Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627 012, Tamilnadu, India.

³Department of Mathematics Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627 012, Tamilnadu, India.

ABSTRACT

Let G be a graph. Let $f: V(G) \to \{0, 1, 2, ..., k-1\}$ be a map where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label |f(u) - f(v)|. f is called a ktotal difference cordial labeling of G if $|t_{df}(i) - t_{df}(j)| \leq$ $1, i, j \in \{0, 1, 2, ..., k - 1\}$ where $t_{df}(x)$ denotes the total number of vertices and the edges labeled with x.A graph with admits a k-total difference cordial labeling is called a k-total difference cordial graphs. We investigate k-total difference cordial labeling of some graphs and study the 3-total difference cordial labeling behaviour of star, bistar, complete bipartiate graph, comb, wheel, helm, armed crown etc.

ARTICLE INFO

Article history: Received 14, May 2018 Received in revised form 3, April 2019 Accepted 8 May 2019 Available online 01, June 2019

Keyword: Star, Bistar, Complete bipartiate,Comb, Wheel, Helm, Armed Crown

AMS subject Classification: 05C78.

^{*}Corresponding author: R. Ponraj Email: ponrajmaths@gmail.com

[†]jesuphilip09@gmail.com

[‡]karthipyi91@yahoo.co.in

1 Introduction

[1] introduced notion of cordial labeling of graphs. The cocept of k-difference cordial graph was introduced in [4]. Recently Ponraj etal [5] has been introduced the concept of k-total prime cordial graph. Motivated by this, we introduce k-total difference cordial labeling of graphs. Also we prove that every graph is a subgraph of a connected k-total difference cordial graphs and investigate 3-total prime cordial labeling of sevarel graphs like path, star, bistar, complete bipartite graph etc.

2 k-Total difference cordial labeling

Definition 2.1Let G be a graph. Let $f: V(G) \to \{0, 1, 2, ..., k-1\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label |f(u) - f(v)|. f is called k-total difference cordial labeling of G if $|t_{df}(i) - t_{df}(j)| \leq 1, i, j \in \{0, 1, 2, ..., k-1\}$ where $t_{df}(x)$ denotes the total number of vertices and the edges labelled with x.A graph with a k-total difference cordial labeling is called k-total difference cordial graph.

Remark. 2- total difference cordial graph is 2-total product cordial graph.

3 Preliminaries

Definition 3.1 The corona of G_1 with $G_2, G_1 \odot G_2$ is the graph obtained by taking one copy of G_2 and p_1 copies of G_2 and joining the i^{th} vertex of G_1 with an edge to every vertex in the i^{th} copy of G_2 .

Definition 3.2 Armed crown AC_n is the graph obtained from the cycle $C_n : u_1u_2 \ldots u_nu_1$ with $V(AC_n) = V(C_n) \cup \{v_i, w_i : 1 \le i \le n\}$ and $E(AC_n) = E(C_n) \cup \{u_iv_i, v_iw_i : 1 \le i \le n\}$. **Definition 3.3** $C_n(m)$ denotes the one point union of m copies of cycle C_n .

Definition 3.4An edge x = uv of G is said to be subdivided if it is replaced by the edges uw and wv where w is a vertex not in V(G). If every edge of G is subdivided, the resulting graph is called the subdivision graph S(G).

4 Main Results

Theorem 4.1.Let G be a (p, q) graph. Then G is a subgraph of a connected k-total different cordial graph.

Proof. Consider the graph K_p . Let u_1, u_2, \ldots, u_n be the vertices of K_p . Let $m = p + (\frac{p}{2})$ and Take $r = \begin{cases} \frac{m}{2}, & \text{if } m \text{ is even} \\ \frac{m-1}{2}, & \text{if } m \text{ is odd} \end{cases}$. Consider k-1 copies of the star $K_{1,r}$. Let $K_{1,r}^i$ be the i^{th} copy of the star $K_{1,r}$ and $V(K_{1,r}^i) = \{u^i, v_j^i : 1 \le j \le r\}, E(K_{1,r}^i) = \{u^i v_j^i : 1 \le i \le r\}$. The super graph G^* is obtained from K_p by identify u_i with $u^i, 1 \le i \le k-1$. We now assign the label to the vertices of G^* as given below. Assign the label 0 to $u_1, u_2 \ldots, u_n$. Next assign the label i to the vertices $v_1^i, v_2^i, \ldots, v_r^i, 1 \le i \le k-1$. Clearly $t_{df}(0) = t_{df}(1) = t_{df}(1) = t_{df}(1) = t_{df}(1)$ $t_{df}(k-1) = m$ or $t_{df}(0) = m, t_{df}(1) = t_{df}(2) = \dots + t_{df}(k-1) = m-1$ according as m is even or odd.

Theorem 4.2. If $n \equiv 0 \pmod{k}$ then the star $K_{1,n}$ is k-total difference cordial.

Proof. Let $V(K_{1,n}) = \{u, v_i : 1 \le i \le n\}$ and $E(K_1, n) = \{uv_i : 1 \le i \le n\}$. Let $n = kt, t \in N$ Assign the label 0 to the central vertex u. We now move to the pendent vertices. Assign the label 0 to the first t pendent vertices v_1, v_2, \ldots, v_t . Now assign the label 1 to the next t pendent vertices $v_{t+1}, v_{t+2}, \ldots, v_{2t}$. Next assign the label to the pendent $v_{2t+1}, v_{2t+2}, \ldots, v_{3t}$. We now assign the label 2 to the next t pendent vertices and so on. In this process, the vertices $v_{(k-1)t+1} \ldots v_{(k-1)t+t}$ receive the label k-1. Clearly $t_{df}(0) = t + 1, t_{df}(1) = t_{df}(2) = t_{df}(3) = \ldots = t_{df}(k-1) = t$.

Theorem 4.3. The path P_n is 3-total difference cordial iff $n \neq 2$

Proof. Let P_n be the path u_1, u_2, \ldots, u_n . Case 1. $n \in \{1, 3, 4, 5, 6, 7, 8\}$. 3-total difference cordial labeling is given in table 1

n	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8
0								
1	0	2						
1	0	2	0					
0	2	2	1	1				
0	2	2	1	1	0			
0	2	2	1	1	0	2		
0	2	2	2	2	1	0	1	

Table 1:

Case 2. n = 2.

Suppose f is a 3-total difference cordial labeling of P_2 . Then $t_{df}(0) = t_{df}(1) = t_{df}(2) = 1$. To get the label 2,2 must be the vertex label. Without loss of generality $f(u_1) = 2$. **Subcase 1.** $f(u_2) = 0$. Here, $t_{df}(1) = 0$,a contradiction. **Subcase 2.** $f(u_2) = 1$. In this case $t_{df}(0) = 0$ a contradiction. **Subcase 3.** $f(u_2) = 2$. Here, $t_{df}(1) = 0$,a contradiction. **Case 3.** n = 3t, t > 2 **Subcase 1.** n = 3t, t is odd. Assign the label 1 to the vertices u_1, u_2, \ldots, u_t and 2 to the vertices $u_2, u_4, \ldots, u_{t-1}$. Next assign the label 1 to the vertices $u_{t+1}, u_{t+2}, \ldots, u_{\frac{3t+1}{2}}$. Next assign the label 2 to the vertices $u_{\frac{3t+1}{2}}, u_{\frac{3t+3}{2}}, \ldots, u_n$. Clearly $t_{df}(0) = 2t - 1, t_{df}(1) = 2t, t_{df}(2) = 2t$. **Subcase 2.** n = 3t, t is even. Assign the label 1 to the vertices $u_1, u_3, \ldots, u_{t-1}, u_{t+1}$ and 2 to the vertices u_2, u_4, \ldots, u_t . Next assign the label1 to the vertices $u_{t+2}, u_{t+3}, \ldots, u_{\frac{3t+2}{2}}$. We now assign the label 2 to the next consequent vertices $u_{\frac{3t}{2}}, u_{\frac{3t+1}{2}}, \ldots, u_{3t-2}$.

Finally assign the 0 to the vertices u_{3t+1} and u_{3t} . Clearly $t_{df}(0) = 2t - 1, t_{df}(1) = 2t, t_{df}(2) = 2t$.

Case 4. n = 3t + 1, t > 2.

Subcase 1. t is odd.

As in subcase 1 of case 3 as the label to the vertices $u_1, u_2, \ldots, u_{n-1}$. Finally assign the label 0 to the vertex u_n . Clearly $t_{df}(0) = 2t, t_{df}(1) = 2t, t_{df}(2) = 2t + 1$. **Subcase 2.** t is even.

Let f be the 3-difference cordial labels of subcase 2 of case 3. Define $g(u_{i+1}) = f(u_i), 1 \le i \le n$ and $g(u_1) = 0$. Clearly $t_{df}(0) = 2t, t_{df}(1) = 2t + 1, t_{df}(2) = 2t$. Case 5. n = 3t + 2.t > 2Subcase 1. t is odd.

Let f be the 3-difference cordial labels of subcase 2 of case 4 Define $g(u_{i+1}) = f(u_i), 1 \le i \le n$ and $g(u_1) = 1$. Clearly $t_{df}(0) = 2t + 1, t_{df}(1) = 2t + 1, t_{df}(2) = 2t$. Subcase 2. t is even.

As in subcase 2 case 4 assign the label to the vertices $u_1, u_2, \ldots, u_{n-1}$. Finally assign the label 2 to the last vetex u_n . Clearly $t_{df}(0) = 2t + 1, t_{df}(1) = 2t + 1, t_{df}(2) = 2$.

Theorem 4.4. The bistar $B_{n,n}$ is 3-total different cordial iff $n \equiv 1, 2 \pmod{3}$.

Proof. Let $V(B_{n,n}) = \{u, v, u_i, v_i : 1 \le i \le n\}$ and $E(B_{n,n}) = \{uu_i, vv_i, uv : 1 \le i \le n\}$. Note that $B_{n,n}$ has 2n + 2 vertices and 2n + 1 edges. **Case 1.** $n \equiv (1 \mod 3)$.

Let n = 3t + 1. Assign the label 0 to the central vertices u and v. We now move to the pendent vertices u_i . Assign the label 1 to the vertices $u_1, u_2, \ldots, u_{2t}, u_{2t+1}$ and 0 to the vertices $u_{2t+2}, u_{2t+3}, \ldots, u_n$. Now we consider the vertices v_1, v_2, \ldots, v_n . Assign the label 2 to the vertices $v_1, v_2, \ldots, v_{2t+1}$ and 0 to the vertices $v_{2t+2}, v_{2t+3}, \ldots, v_n$. Case 2. $n \equiv 2 \pmod{3}$.

Let $n = 3t + 2, t \in N$. As in case 1 assign the label to the vertices u, v, u_i, v_i $(1 \le i \le n-1)$. Finally assign the label 1 and 2 respectively to the vertices u_n and v_n . The table given below establish that this vertex labeling pattern is a 3 total difference cordial labeling.

Values of n	$t_{df}(0)$	$t_{df}(1)$	$t_{df}(2)$
3t + 1	4t + 3	4t + 2	4t + 2
3t+2	4t + 3	4t + 4	4t + 4

Table 2:

Case 3. $n \equiv 0 \pmod{3}$.

Let $n = 3t, t \in \mathbb{N}$. Suppose f is a 3- total difference cordial labeling. This implies $t_{df}(0) = t_{df}(1) = t_{df}(2) = 3t + 1$.

Subcase 1. f(u) = f(v) = 0. Clearly to get the edge label 0, the pendent vertices should be received the label 0. Since the edge uv receive the label 0, We have 3 receive the label 0. That is the edge uv together with the vertices u and v. We need remain 3t-2, 0 labels. For the odd values of t, 3t-2 is odd. So we can not label $\frac{3t-2}{2}$ vertices by 0. For the even values of $t, 3sume \frac{3t-2}{2}$ vertices of u_1, u_2, \ldots, u_n is labelled by 0. In this case $t_{df}(2) = \frac{3t-2}{2} \leq 3t+1$ a contradiction.

Subcase 2. f(u) = 0, f(v) = 1. To get the edge label 2,2 should be label of the vertices u_i . Therefore the sum label 2 of the vertices and corresponding edge label is 3t + 1, a contradiction is odd.

Subcase 3. f(u) = 0, f(v) = 2 To get the edge label 1,0 and 1 are labels of adjacent vertices (or) 2 and 1 are the labels of adjacent vertices. Therefore the sum of label 1 of the vertices u_i and corresponding edge label is 3t + 1 or the sum of label 1 of u_i with corresponding edge label and label 1 of vertices v_i with corresponding edge label is 3t + 1, a contradiction.

Theorem 4.5 The complete bipartite graph $K_{2,n}$ is 3-total difference cordial.

Proof. Let $V_1 = \{u, v\}$ and $V_2 = \{u_1, u_2 \dots u_n\}$ where (V_1, V_2) is the bipartition of $K_{2,n}$. We now give the vertex labeling. Assign the label 1 and 2 respectively to the vertices u and v of V_1 . Next assign the label 0 to all the vertices u_1, u_2, \dots, u_n of V_2 . It is easy to verify that, $t_{df}(1) = t_{df}(2) = n + 1$ and $t_{df}(0) = n$

Theorem 4.6 All combs are 3-total difference cordial.

Proof. Let $P_n \odot K_1$ be the comb with $P_n = u_1 u_2 \ldots u_n$ and $V(P_n \odot K_1) = V(P_n) \cup \{v_i : 1 \le i \le u\}$ and $E(P_n \odot K_1) = E(P_n) \cup \{u_i v_i : 1 \le i \le u\}$. clearly $|V(P_n \odot K_1)| + |E(P_n \odot K_1)| = 4n - 1$ Case 1. $n \equiv 0 \pmod{3}$.

Let $n = 3t, t \in N$. Assign the label 2 to the all the path vertices u_1, u_2, \ldots, u_n . We now move to the pendent vertices. Assign the label 2 to the pendent vertices v_1, v_2, \ldots, u_t . Next assign the label 1 to the remaining pendent vertices $v_{t+1}, v_{t+2} \ldots v_{3t}$.

Case 2. $n \equiv 2 \pmod{3}$.

Let n = 3t + 2. In this case assign the label 2 to the all the path vertices and to the pendent vertices $v_1, v_2, \ldots, v_{t+1}$. Next assign the label 1 to the remaining pendent vertices. The table given below shows that this labeling f is a 3-total difference cordial labels.

Values of n	$t_{df}(0)$	$t_{df}(1)$	$t_{df}(2)$
3t	4t - 1	4t	4t
3t+2	4t + 2	4t + 2	4t + 3

Table 3:

Theorem 4.7 All Wheels are 3-total difference cordial.

Proof. Let $W_n = C_n + K_1$ where C_n is the cycle $u_1 u_2 \dots u_n u_1$ and $V(K_1) = \{u\}$. Assign the label 1 to the central vertex u and assign the label 2 to the all the rim vertices $u_i(1 \le i \le n)$. Clearly $t_{df}(1) = n+1$ and $t_{df}(0) = t_{df}(2) = n$. Hence W_n is 3-total difference cordial.

Theorem 4.8 Helms H_n is 3-total difference cordial.

Proof. Helm H_n is obtained from the wheel $W_n = C_n + K_1$ where C_n is the cycle $u_1 u_2 \ldots u_n$ and $V(K_1) = \{u\}$ by attaching pendent edges to the rim vertices. Let v_1, v_2, \ldots, v_n be the pendent vertices adjacent to u_1, u_2, \ldots, u_n respectively. Assign label to the vertices u and u_i as in theorem 4.7.

Case 1. $n \equiv 0 \pmod{3}$.

Let $n = 3t, t \in N$. Assign the label 0 to the vertices $u_1, u_4, \ldots, u_{3t-2}$ and 1 to the vertices $u_2, u_5, \ldots, u_{3t-1}$ and 2 to the vertices u_3, u_6, \ldots, u_{3t}

Case 2. $n \equiv 1 \pmod{3}$.

Let $n = 3t + 1, t \in N$. Assign the label to the vertices u_1, u_2, \ldots, u_{3t} as in case (1). Next assign the label 0 to the vertex u_{3t+1} .

Case 3. $n \equiv 2 \pmod{3}$.

Let $n = 3t + 2, t \in N$. In this case, assign the label to the vertices $u_1, u_2, \ldots, u_{3t}, u_{3t+1}$ as in case 2. Finally assign the label 1 to the vertex u_{3t+2} .

The table given below shows that this labeling f is a 3-total difference cordial labelling of H_n .

Values of n	$t_{df}(0)$	$t_{df}(1)$	$t_{df}(2)$
3t	4t	4t + 1	4t
3t + 1	4t + 1	4t + 1	4t
3t+2	4t + 2	4t + 1	4t + 1

Table 4:

Theorem 4.9 AC_n is 3-Total difference cordial for all $n \ge 3$

Proof. Clearly AC_n has 3 vertices and 3n edges. Assign the label 2 to the all the cycle vertices $u_1u_2...u_n$. Neext assign the label 2 to the all the vertices with degree 2. That is assign the label 2 to the vertices $v_1, v_2, ..., v_n$. Finally assign the label 1 to all the pendent vertices $w_1w_2...w_n$. It is easy to verify that $t_{df}(0) = t_{df}(1) = t_{df}(2) = 2n$.

Any star is $S(K_{1,n})$ -total difference cordial. Let $V(S(K_{1,n})) = \{u, u_i, v_i : 1 \le i \le n\}$ and $E(S(K_{1,n})) = \{uu_i, u_iv_i : 1 \le i \le n\}.$ Case 1. n = 3t.

Assign the label o to u, Next assign 0 the vertices u_1, u_2, \ldots, u_{2t} and 2 to $u_{2t+1}, u_{2t+2}, \ldots, u_{3t}$. Now consider the pendent vertices v_1, v_2, \ldots, v_m .

Assign the label 2 to the vertices v_1, v_2, \ldots, v_m . Finally assign the label 1 to the every

126

pendent vetices $v_{t+1}, v_{t+2}, \ldots, v_{2t}, \ldots, v_{3t}$. Clearly $t_{df}(0) = 4t + 1, t_{df}(1) = 4t, t_{df}(2) = 4t$.

Case 2. m = 3t + 1.

Assign the label to the vertices $u, u_i, v_i \ 1 \le i \le 3t$ as in case 1. Finally assign the label 2 and 1 respectively to the vertices u_n and v_n . Clearly $t_{df}(0) = 4t + 1, t_{df}(1) = 4t + 2, t_{df}(2) = 4t + 2$.

Case 3. m = 3t + 2.

As in case 1 assign the label to the vertices $u, u_i, v_i \ 1 \le i \le 3t$. Finally assign the label 1,2 and 0 respectively to the vertices u_{3t+1}, u_{3t+2} and v_{3t+1} and v_{3t+2} . Clearly $t_{df}(0) = 4t + 3, t_{df}(1) = 4t + 3, t_{df}(2) = 4t + 3$.

Theorem 4.10 $C_4(m)$ is 3-total difference cordial for all even values of m.

Proof. Let $C_4 : u_1^i u_2^i u_3^i u_4^i u_1^i$ be the $i^t h$ copy of the cycle in C_4^m and $u = u_1^1 = u_1^2 = \ldots = u_1^m$. Assign the label 0 to the central vertex u. Next assign the label 2 to the vertices $u_2^i, u_3^i, u_4^i, 1 \le i \le \frac{m-2}{2}$. We now assign the label 1 to the vertices $u_2^i, u_3^i, u_4^i, \frac{m}{2} \le i \le m - 2$. Finally assign the label 0, 1, 1, 0, 2 and 2 respectively to the vertex $u_2^{m-1}, u_3^{m-1}, u_4^{m-1}, u_2^m, u_3^m$ and u_4^t . The tabel is establish that this labelling f is a 3-total difference cordial labelling.

Values of t	$t_{df}(0)$	$t_{df}(1)$	$t_{df}(2)$
6r	14r+1	14r	14r
6r+2	14r+5	14r+5	14r+5
6r+4	14r + 9	14r + 10	14r + 9

Tal	ble	5	
		~ ~	

Theorem 4.11 The subdivision of bistar $B_{n,n}$, $S(B_{n,n})$ is 3-total different cordial for all n.

Proof. Let $V(S(B_{n,n})) = \{u, w, v, u_i, v_i, x_i, y_i : (1 \le i \le n)\}$ and $E(S(B_{n,n})) = \{uu_i, u_i x_i, uw, wv, vv_i, v_i y_i : 1 \le i \le n\}.$

Case 1. u = 3t.

Assign the label 0 to the vertices u and v. We now assign the label 0 to the vertices $u_1, u_2 \ldots u_{2t}$ and v_1, v_2, \ldots, v_{2t} . Now assign the label 2 to the vertices

 $u_{2t+1}, u_{2t+2}, \ldots, u_{3t}, u_{2t+1}, u_{2t+2}, \ldots, u_{3t}$. Assign the label 2 to the vertices x_1, x_2, \ldots, x_t and y_2, y_3, \ldots, y_t . Next assign the label 1 to $y_1, y_{t+1}, \ldots, y_{2t}, \ldots, y_{3t}$.

Case 2. $n = 3t + 1, t \in N$.

As in case 1 assign the label to the vertices $u, v, w, u_i, v_i, x_i, y_i$ $(1 \le i \le n-1)$. Finally assign the label 2,2,0 and 1 respectively to the vertices u_n, x_n, v_n , and y_n . **Case 3.** $n = 3t + 2, t \in N$.

Assign the label to the vertices $u, v, w, u_i, v_i, x_i, y_i$ $(1 \le i \le n-1)$ as in case 2. Finally assign the label 2,0,1 and 0 respectively to the vertices x_n, u_n, v_n , and y_n .

The table given below establish that this vertex labeling pattern is a 3 total difference cordial labeling.

127

Values of t	$t_{df}(0)$	$t_{df}(1)$	$t_{df}(2)$
3t	8t+2	8t+2	8t+1
3t+1	8t+4	8t+4	8t+5
3t+2	8t+7	8t+7	8t+7

Table 6:

Theorem 4.12 $P_n \odot 2K_1$ is 3-total difference cordial for all n

Proof. .

Let P_n be the path u_1, u_2, \ldots, u_n . Let v_i, w_i be the pendent vertices adjacent to u_i $(1 \le i \le n)$. We divide the proof into two cases.

Case 1. n is even..

Assign the label 0 to all the path vertices u_1, u_2, \ldots, u_n . Next we consider the pendent vertices. Assign the label 1 to the vertices $v_1, v_2, \ldots, v_{\frac{n}{2}}, w_1, w_2, \ldots, w_{\frac{n}{2}}$ and 2 to the vertices $v_{\frac{n}{2}+1}, v_{\frac{n}{2}+2}, \ldots, v_n, w_{\frac{n}{2}+1}, w_{\frac{n}{2}+2}, \ldots, w_n$.

Case 2. n is odd.

Assign the label to the vertices u_i, v_i, w_i $(1 \le i \le n-1)$ as in case 1. Finally assign the label 0,1 and 2 respectively to the vertices u_n, v_n, w_n .

Since $t_{fd}(0) = 2n - 1$, $t_{fd}(1) = t_{fd}(2) = 2n$, this labeling pattern is a 3-total difference cordial labeling.

References

- Cahit, I., Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria, 23(1987), 201-207.
- [2] Gallian, J.A., A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2017) #Ds6.
- [3] Harary, F., Graph theory, Addision wesley, New Delhi (1969).
- [4] Ponraj, R., Adaickalam M.Maria, and Kala R., k-difference cordial labeling of graphs, International J.Math.combin, 2(2016), 121-131.
- [5] Ponraj, R., Maruthamani J., and Kala, R., k-total prime cordial labeling of graphs, Journal of Algorithms and Combutation, 50(2018), 143-149.