تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,028 |
تعداد مشاهده مقاله | 125,499,436 |
تعداد دریافت فایل اصل مقاله | 98,762,037 |
بخشبندی شیمیایی و ارزیابی خطر زیستمحیطی سرب در پسماندهای معدن سرب-روی | ||
تحقیقات آب و خاک ایران | ||
مقاله 16، دوره 50، شماره 9، بهمن 1398، صفحه 2303-2322 اصل مقاله (1.61 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2019.276613.668133 | ||
نویسندگان | ||
احمد اخوان* 1؛ احمد گلچین2 | ||
1دانشجوی دکتری، گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران | ||
2استاد، گروه خاکشناسی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران | ||
چکیده | ||
بررسی مقدار آبشویی عناصر از منابع آلوده کننده محیطزیست نظیر پسماندها، جهت تعیین سطح خطر این مواد و پایدار کردن کیفیت پسماندهای معدن سرب-روی زنجان اجرا شد. بدین منظور دو نمونه مرکب (0-20 سانتیمتری) از هر دو نوع پسماندهای این معدن برداشت شد و رفتار آبشویی وابسته به پیاچ، زمان، اندازه ذرات و نسبت مایع به جامد با استفاده از آزمایش آبشویی بسته مشخص گردید. برای تعیین ترکیب عنصری پسماندها از دستگاه فلوئورسانس اشعه ایکس (XRF)، کانیشناسی پسماندها از دستگاه پراش اشعه ایکس (XRD)، مورفولوژی ترکیبات از میکروسکوپ الکترونی روبشی (SEM) و بررسی سطح خطر پسماندها از پروتکلهای آبشویی؛ روش شستشوی مزرعهFLT) )، روش آبشویی باران مصنوعی SPLP))، روش استخراج ویژه سمیت TCLP)) و روش عصارهگیری شیرابه (LEP)و همچنین جهت مشخص کردن چگونگی توزیع سرب در بین بخشهای مختلف پسماندها از روش عصارهگیری متوالی استفاده شد. غلظت محیطزیست امری بسیار ضروری است. این تحقیق با هدف مشخص کردن غلظت، سطح خطر و رفتار آبشویی سرب از عنصر سرب در تمامی عصارهها با دستگاه ICP-OES اندازهگیری گردید. نتایج نشان داد که زمان، اندازه ذرات، پیاچ و نسبت مایع به جامد تأثیر بسیار بالایی بر غلظت آبشویی سرب از پسماندها داشته و بیشینهی غلظت سرب آبشویی شده از پسماندها در دامنهی متفاوتی از اندازه ذرات اتفاق افتاد. بیشترین مقدار سرب در بین پسماندهای مورد مطالعه به ترتیب در بخش باقیمانده، کربناتی، تبادلی، آلی، اکسیدهای آهن و منگنز و محلول مشاهده شد. نتایج پروتکلهای آبشویی نیز اثبات کرد که هر دو نوع پسماند دارای اثرات باقی مانده زیادی بر محیطزیست بوده و جزء بقایای زاید خطرناک محسوب میشوند. بنابراین باید جهت انباشت ایمن این مواد در محیطزیست و جلوگیری از آبشویی سرب تدابیر خاصی اندیشیده شود. | ||
کلیدواژهها | ||
آلودگی؛ سطح خطر؛ محیط زیست؛ رفتار آبشویی | ||
مراجع | ||
Al-Abed, S. R., Hageman, P. L., Jegadeesan, G., Madhavan, N., & Allen, D. (2006). Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste. Science of the total Environment, 364(1-3), 14-23 Al-Jabri, K., Taha, R., Al-Hashmi, A., and Al-Harthy, A. (2006). Effect of copper slag and cement by-pass dust addition on mechanical properties of concrete. Construction and building materials, 20(5), 322-331 Brend, L. G. 2007. Mine Wastes, Characterization, Treatment and Environmental Impacts. Springer Pup. Boyer, R. (1990). The regulation school: a critical introduction: Columbia University Press Cappuyns, V., Swennen, R., and Deckers, J. (2003). Patterns of metal release in aged and recent dredged sediments during pHstat leaching. Communications in agricultural and applied biological sciences. 68(3), 71-74. Cao, X., & Dermatas, D. (2008). Evaluating the applicability of regulatory leaching tests for assessing lead leachability in contaminated shooting range soils. Environmental monitoring and assessment, 139(1-3), 1-13 Chand, P., Kumar, A., Gaur, A., and Mahna, S. (2009). Elemental analysis of ash using X-ray fluorescence technique. Asian journal of chemistry Chandler, A. J., Eighmy, T. T., Hjelmar, O., Kosson, D., Sawell, S., Vehlow, J., Hartlén.,J. (1997). Municipal solid waste incinerator residues (Vol. 67): Elsevier Colombani, N., Mastrocicco, M., Di Giuseppe, D., Faccini, B., and Coltorti, M. (2015). Batch and column experiments on nutrient leaching in soils amended with Italian natural zeolitites. Catena, 127, 64-71 Çoruh, S., Elevli, S., Ergun, O. N., and Demir, G. (2013). Assessment of leaching characteristics of heavy metals from industrial leach waste. International Journal of Mineral Processing, 123, 165-171 Cote, P., and Constable, T. (1982). Evaluation of experimental conditions in batch leaching procedures. Resources and conservation, 9, 59-73 El-Kamash, A., Zaki, A., and El Geleel, M. A. (2005). Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. Journal of hazardous materials, 127(1-3), 211-220. Enkhzaya, S., Ohe, K., Shiomori, K., Oyuntsetseg, B., Bayanjargal, O., & Watanabe, M. (2016). Assessment of heavy metals in mining tailing around Boroo and Zuunkharaa gold mining areas of Mongolia. Journal of Environmental Science and Technology, 9(5), 379-389 Falagán, C., Grail, B. M., and Johnson, D. B. (2017). New approaches for extracting and recovering metals from mine tailings. Minerals Engineering, 106, 71-78 Fernández-Olmo, I., Lasa, C., Lavín, M. A., and Irabien, A. (2009). Modeling of amphoteric heavy metals solubility in stabilized/solidified steel foundry dust. Environmental Engineering Science, 26(2), 251-262 Grathwohl, P., and Susset, B. (2009). Comparison of percolation to batch and sequential leaching tests: theory and data. Waste Management, 29(10), 2681-2688. Grathwohl, P., and van der Sloot, H. (2007). Groundwater Risk Assessment at Contaminated Sites (GRACOS): Test Methods and Modelling Approaches. In Groundwater Science and Policy (pp. 291-315). Guyonnet, D. (2010). Comparison of percolation to batch and sequential leaching tests: Theory and data. Waste Management, 30(8-9), 1746-1747 Hageman, P. L. (2007). US Geological Survey field leach test for assessing water reactivity and leaching potential of mine wastes, soils, and other geologic and environmental materials Hageman, P. L., and Briggs, P. H. (2000). A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands: US Department of the Interior, US Geological Survey Houben, D., Evrard, L., and Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92(11), 1450-1457 Hudson-Edwards, K. A., and Dold, B. (2015). Mine waste characterization, management and remediation. In: Multidisciplinary Digital Publishing Institute Hudson, C. (2001). The role of international environmental law in the protection of the Danube river basin: the Baia Mare cyanide spill. Colo. J. Int'l Envtl. L. & Pol'y, 12, 367 Iwegbue, C. M. (2013). Chemical fractionation and mobility of heavy metals in soils in the vicinity of asphalt plants in Delta State, Nigeria. Environmental Forensics, 14(3), 248-259 Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., and Masunaga, S. (2015). Metal speciation in sediment and their bioaccumulation in fish species of three urban rivers in Bangladesh. Archives of environmental contamination and toxicology, 68(1), 92-106 Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7(2), 60-72 Janusa, M. A., Bourgeois, J. C., Heard, G. E., Kliebert, N. M., and Landry, A. A. (1998). Effects of particle size and contact time on the reliability of toxicity characteristic leaching procedure for solidified/stabilized waste. Microchemical journal, 59(2), 326-332 Jones, J. M., and Hao, J. (1993). Sequential extraction method: a review and evaluation. Environmental geochemistry and health, 15(2-3), 185 Kabala, C., and Singh, B. R. (2001). Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environmental Quality, 30(2), 485-492 Kabata-Pendias, A. (1995). Agricultural problems related to excessive trace metal contents of soils. In Heavy metals (pp. 3-18): Springer Kaniki, A. T., & Tumba, K. (2019). Management of mineral processing tailings and metallurgical slags of the Congolese copperbelt: Environmental stakes and perspectives. Journal of Cleaner Production, 210, 1406-1413 Karaca, O., Cameselle, C., & Reddy, K. R. (2016). Characterization of heavy metals in mine tailings and lake sediments: implications on remediation. In Geo-Chicago 2016 (pp. 12-21). Karbassi, A., and Shankar, R. (2005). Geochemistry of two sediment cores from the west coast of India. International Journal of Environmental Science & Technology, 1(4), 307-316 Karius, V., and Hamer, K. (2001). pH and grain-size variation in leaching tests with bricks made of harbour sediments compared to commercial bricks. Science of the Total Environment, 278(1-3), 73-85 Kirby, C. S., and Rimstidt, J. D. (1994). Interaction of municipal solid waste ash with water. Environmental Science & Technology, 28(3), 443-451 Katana, C., Jane, M., & Harun, M. (2013). Speciation of zinc and copper in open-air automobile mechanic workshop soils in Ngara area-Nairobi Kenya. Resources and Environment, 3(5), 145-154 Kogbara, R. B. (2011). Process envelopes for and biodegradation within stabilised/solidified contaminated soils. University of Cambridge Lèbre, É., Corder, G. D., & Golev, A. (2017). Sustainable practices in the management of mining waste: A focus on the mineral resource. Minerals Engineering, 107, 34-42 Lei, M., Zhang, Y., Khan, S., Qin, P.-f., and Liao, B.-h. (2010). Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn mining area. Environmental monitoring and assessment, 168(1-4), 215-222 Li, F., and Chen, M. (2017). Copper recovery from waste printed circuit boards and the correlation of Cu, Pb, Zn by ionic liquid. Environment Protection Engineering, 43(4). Li, J.-s., Xue, Q., Fang, L., and Poon, C. S. (2017). Characteristics and metal leachability of incinerated sewage sludge ash and air pollution control residues from Hong Kong evaluated by different methods. Waste Management, 64, 161-170 Liang, S.-x., Wang, X., Li, Z., Gao, N., and Sun, H. (2014). Fractionation of heavy metals in contaminated soils surrounding non-ferrous metals smelting area in the North China Plain. Chemical Speciation & Bioavailability, 26(1), 59-64. Lim, M., Han, G.-C., Ahn, J.-W., You, K.-S. & Kim, H.-S. (2009). Leachability of arsenic and heavy metals from mine tailings of abandoned metal mines. International journal of environmental research and public health, 6, 2865-2879. Liu, Y., Qi, T., Chu, J., Tong, Q., and Zhang, Y. (2006). Decomposition of ilmenite by concentrated KOH solution under atmospheric pressure. International Journal of Mineral Processing, 81(2), 79-84 Lottermoser, B. G. (2010). Radioactive Wastes of Uranium Ores. In Mine Wastes (pp. 263-312): Springer Mendez, M. O., and Maier, R. M. (2007). Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environmental health perspectives, 116(3), 278-283 Montanaro, L., Bianchini, N., Rincon, J. M., and Romero, M. (2001). Sintering behaviour of pressed red mud wastes from zinc hydrometallurgy. Ceramics international, 27(1), 29-37. Moors, E. H., and Dijkema, G. P. (2006). Embedded industrial production systems: lessons from waste management in zinc production. Technological Forecasting and Social Change, 73(3), 250-265 Nemati, K., Bakar, N. K. A., Abas, M. R., and Sobhanzadeh, E. (2011). Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. Journal of hazardous materials, 192(1), 402-410 Olajire, A., Ayodele, E., Oyedirdan, G., and Oluyemi, E. (2003). Levels and speciation of heavy metals in soils of industrial southern Nigeria. Environmental monitoring and assessment, 85(2), 135-155 Olobatoke, R., and Mathuthu, M. (2016). Heavy metal concentration in soil in the tailing dam vicinity of an old gold mine in Johannesburg, South Africa. Canadian journal of soil science, 96(3), 299-304 Panchal, S., Deb, D., and Sreenivas, T. (2018). Mill tailings based composites as paste backfill in mines of U-bearing dolomitic limestone ore. Journal of Rock Mechanics and Geotechnical Engineering, 10(2), 310-322 Peng, C., Tang, L., Tan, X., Li, Y., Wang, X., Ai, X., and Qiu, J. (2017). Heavy metal fractionation after application of fermented sludge to soil and its effect on sedum lineare. Fresenius Environmental Bulletin, 26(1 A), 810-822 Peralta, G. L. (1997). Characterization, leachability and acid mine drainage potential of geothermal solid residues. National Library of Canada Bibliothèque nationale du Canada Raskin, I., and Ensley, B. D. (2000). Phytoremediation of toxic metals: John Wiley and Sons. Restituta Paul M., P. M. S., B and William John Senkondo, M. . (2018). Leaching Behaviour and Speciation of Pb, Zn and Cu in Stabilized Gold Mine Tailings. International Journal of Environmental Monitoring and Protection, 5, 11-17. Rubinos, D. A., & Barral, M. T. (2013). Fractionation and mobility of metals in bauxite red mud. Environmental Science and Pollution Research, 20(11), 7787-7802 Roussel, C., Bril, H., and Fernandez, A. (2000). Arsenic speciation: involvement in evaluation of environmental impact caused by mine wastes. Journal of Environmental Quality, 29(1), 182-188 Saleem, M., Iqbal, J., Akhter, G., and Shah, M. H. (2018). Fractionation, bioavailability, contamination and environmental risk of heavy metals in the sediments from a freshwater reservoir, Pakistan. Journal of Geochemical Exploration, 184, 199-208 Sauve, S. (2003). The role of chemical speciation in bioavailability. Bioavailability, toxicity and risk relationships in ecosystems, 59-82 Schreck, E., Bonnard, R., Laplanche, C., Leveque, T., Foucault, Y., and Dumat, C. (2012). DECA: a new model for assessing the foliar uptake of atmospheric lead by vegetation, using Lactuca sativa as an example. Journal of environmental management, 112, 233-239 Schultz, M. K., Burnett, W. C., and Inn, K. G. (1998). Evaluation of a sequential extraction method for determining actinide fractionation in soils and sediments. Journal of environmental radioactivity, 40(2), 155-174 Sims, K. W., Gill, J. B., Dosseto, A., Hoffmann, D. L., Lundstrom, C. C., Williams, R. W., and Prytulak, J. (2008). An inter‐laboratory assessment of the thorium isotopic composition of synthetic and rock reference materials. Geostandards and Geoanalytical Research, 32(1), 65-91 Slack, R., and Voulvoulis, N. (2006). Mine Wastes: Characterization, Treatment and Environmental ImpactsBernd G. Lottermoser, Springer-Verlag, Berlin, Heidelberg, New York, 2003, ISBN: 3-540-00526-9 (277 pp., Hardback). In: Elsevier Sposito GLJL, A. C. C. (1982). Trace Metal Chemistry in Arid-zone Field Soils Amended with Sewage Sludge: I.Fractionation of Ni, Cu, Zn, Cd, and Pb in Solid Phases. Soil Science Society of America Journal., 46, 260-274 Sundaray, S. K., Nayak, B. B., Lin, S., and Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi basin, India. Journal of hazardous materials, 186(2-3), 1837-1846 Tessier, A., Campbell, P. G., and Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry, 51(7) , 844-851. Tiwari, M. K., Bajpai, S., Dewangan, U. K., and Tamrakar, R. K. (2015). Suitability of leaching test methods for fly ash and slag: A review. Journal of Radiation Research and Applied Sciences, 8, 523-537. USEPA. (2004). Characteristics Introduction and Regulatory Definitions, TestMethods for Evaluating Solid Waste, Physical/Chemical Methods (SW 846). US Environmental Protection Agency USEPA. (1992). Method 1311, Toxicity Characteristic Leaching Procedure (TCLP). Publication SW)846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. www. epa.gov/epaoswer/hazwaste/test/pdfs/1311.pdf. USEPA, (1994). Synthetic precipitation leaching procedure (SPLP). EPA Method 1312, Washington, USA. USEPA, (1989). Stabilization/Solidification of CERCLA and RCRA Wastes, EPA/625/6-89/022. Van der Sloot, H., Kosson, D., and Hjelmar, O. (2001). Characteristics, treatment and utilization of residues from municipal waste incineration. Waste Management, 21(8), 753-765 Van Herck, P., Van der Bruggen, B., Vogels, G., and Vandecasteele, C. (2000). Application of computer modelling to predict the leaching behaviour of heavy metals from MSWI fly ash and comparison with a sequential extraction method. Waste Management, 20(2-3), 203-210 Verplanck, P. L. 2008. Understanding contaminants associated with mineral deposits. Geological Survey (US). Vodyanitskii, Y. N. (2016). Standards for the contents of heavy metals in soils of some states. annals of agrarian science, 14(3), 257-263. World Health Organization. (2004). Guidelines for drinking-water quality (Vol. 1). Yang, H., Liu, J., and Yang, J. (2011). Leaching copper from shredded particles of waste printed circuit boards. Journal of hazardous materials, 187(1-3), 393-400 Yang, S., Cao, J., Hu, W., Zhang, X., and Duan, C. (2013). An evaluation of the effectiveness of novel industrial by-products and organic wastes on heavy metal immobilization in Pb–Zn mine tailings. Environmental Science: Processes & Impacts, 15(11), 2059-2067 Ye, C., He, F., Shu, H., Qi, H., Zhang, Q., Song, P., and Xie, J. (2015). Preparation and properties of sintered glass–ceramics containing Au–Cu tailing waste. Materials & Design, 86, 782-787 Younger, P. L., and Wolkersdorfer, C. (2004). Mining impacts on the fresh water environment: technical and managerial guidelines for catchment scale management. Mine water and the environment, 23, s2-s80 Zandi, M., and Russell, N. V. (2007). Design of a leaching test framework for coal fly ash accounting for environmental conditions. Environmental monitoring and assessment, 131(1-3), 509-526. Zhang, Y., Jiang, J., and Maozhe, C. (2008). MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash. Journal of Environmental Sciences, 20(11), 1398-1402 Zinck, J., Wilson, L., Chen, T., Griffith, W., Mikhail, S., and Turcotte, A. (1997). Characterization and stability of acid mine drainage treatment sludges. Mining and Mineral Sciences Laboratories Report, 96-079. | ||
آمار تعداد مشاهده مقاله: 788 تعداد دریافت فایل اصل مقاله: 598 |