
تعداد نشریات | 162 |
تعداد شمارهها | 6,623 |
تعداد مقالات | 71,548 |
تعداد مشاهده مقاله | 126,912,463 |
تعداد دریافت فایل اصل مقاله | 99,962,622 |
تأثیر شدت تمرین ورزشی بر ظرفیت نوزایی قلبی در رتهای مبتلا به آنفارکتوس میوکارد | ||
نشریه علوم زیستی ورزشی | ||
مقاله 2، دوره 11، شماره 1، خرداد 1398، صفحه 17-34 اصل مقاله (884.43 K) | ||
نوع مقاله: مقاله پژوهشی Released under CC BY-NC 4.0 license I Open Access I | ||
شناسه دیجیتال (DOI): 10.22059/jsb.2019.134611.1006 | ||
نویسندگان | ||
محمد همتی نفر1؛ عباسعلی گائینی* 2؛ محمد رضا کردی3؛ سیروس چوبینه3؛ فریبا کریم زاده4 | ||
1استادیار گروه فیزیولوژی ورزشی، دانشکدۀ علوم تربیتی و روانشناسی، بخش علوم ورزشی، دانشگاه شیراز، شیراز، | ||
2. استاد تمام گروه فیزیولوژی ورزشی، دانشکدۀ تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران | ||
3.دانشیار گروه فیزیولوژی ورزشی، دانشکدۀ تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران | ||
4استادیار علوم اعصاب، مرکز تحقیقات سلولی مولکولی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی ایران، تهران، ایران | ||
چکیده | ||
هدف از پژوهش حاضر، بررسی تأثیر شدت تمرین ورزشی بر ظرفیت نوزایی قلبی در رتهای مبتلا به آنفارکتوس میوکارد (MI) بود. به این منظور، ابتدا رتهای نر نژاد ویستار تحت عمل جراحی بستن شریان کرونری LAD قرار گرفتند و سپس از طریق اکوکاردیوگرافی ایجاد MI تأیید شد. چهار هفته پس از جراحی، رتهای مبتلا به MI بهصورت تصادفی در گروههای تمرین ورزشی با شدتهای کم (LIT)، متوسط (MIT)، بالا (HIT) و شم (Sham) به اضافۀ گروه کنترل سالم (Con) قرار گرفتند و پروتکلهای تمرین ورزشی را به مدت 6 هفته و 5 جلسه در هفته اجرا کردند. پس از اتمام مداخلۀ تمرین ورزشی رتها تشریح شده و دادههای حاصل از طریق آزمون ANOVA یکطرفه و آزمون LSD تجزیهوتحلیل شدند. نتایج نشان داد بین گروهها در مقادیر کسر تزریقی، کسر کوتاهشدگی، mRNA Gata4 و mRNA Tbx5 تفاوت معناداری وجود دارد (001/0P=). نتایج آزمون تعقیبی نشان داد در هر سه گروه تمرین ورزشی مقادیر کسر تزریقی و کسر کوتاهشدگی نسبت به گروه Sham افزایش معناداری داشتهاند، اما با وجود این افزایش، مقادیر آنها در گروه Con به شکل معناداری بیشتر از گروههای مبتلا به MI بود. همچنین در مقادیر mRNA Gata4 گروه LIT نسبت به گروههای MIT، HIT، Sham و Con افزایش معناداری مشاهده شد. با وجود این، در مقادیر mRNA Tbx5 بین گروههای مبتلا به MI تغییرات معناداری مشاهده نشد و تنها مقادیر mRNA Tbx5 در گروه Con نسبت به گروههای مبتلا به MI بهصورت معناداری بیشتر است. در نتیجه، تمرین ورزشی صرفنظر از شدت، عملکرد قلبی رتهای مبتلا به MI را افزایش میدهد، اما بهنظر میرسد تمرین ورزشی با شدت کم، عامل مؤثرتری در افزایش ظرفیت نوزایی قلبی رتهای مبتلا به MI باشد. | ||
کلیدواژهها | ||
آنفارکتوس میوکارد؛ شدت تمرین ورزشی؛ ظرفیت نوزایی قلبی؛ عملکرد قلبی | ||
مراجع | ||
1. Nordlie MA, Wold LE, Kloner RA. Genetic contributors toward increased risk for ischemic heart disease. Journal of molecular and cellular cardiology. 2005;39(4):667-79. 2. Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature. 2002;415(6868):240. 3. Beltrami AP, Urbanek K, Kajstura J, Yan S-M, Finato N, Bussani R, et al. Evidence that human cardiac myocytes divide after myocardial infarction. New England Journal of Medicine. 2001;344(23):1750-7. 4. Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circulation research. 2003;92(2):139-50. 5. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98-102. 6. Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart. 2012;98(1):5-10. 7. Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiological reviews. 2005;85(4):1373-416. 8. Rajala K, Pekkanen-Mattila M, Aalto-Setälä K. Cardiac differentiation of pluripotent stem cells. Stem cells international. 2011;2011. 9. van Rooij E, Doevendans PA, Crijns HJ, Heeneman S, Lips DJ, van Bilsen M, et al. MCIP1 overexpression suppresses left ventricular remodeling and sustains cardiac function after myocardial infarction. Circulation research. 2004;94(3):e18-e26. 10. Zwetsloot PP, Végh AMD, Jansen of Lorkeers SJ, van Hout GP, Currie GL, Sena ES, et al. Cardiac stem cell treatment in myocardial infarction: a systematic review and meta-analysis of preclinical studies. Circulation Research. 2016;118(8):1223-32. 11. Bernardo BC, McMullen JR. Molecular aspects of exercise-induced cardiac remodeling. Cardiology clinics. 2016;34(4):515-30. 12. Zucker IH, Musch TI. Benefits of exercise training on cardiovascular dysfunction: molecular and integrative. American Journal of Physiology-Heart and Circulatory Physiology. 2018;315(4):H1027-H31. 13. Lerchenmüller C, Rosenzweig A. Mechanisms of exercise-induced cardiac growth. Drug discovery today. 2014;19(7):1003-9. 14. Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary Behavior, Exercise, and Cardiovascular Health. Circulation research. 2019;124(5):799-815. 15. Boström P, Mann N, Wu J, Quintero PA, Plovie ER, Panáková D, et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell. 2010;143(7):1072-83. 16. Vujic A, Lerchenmüller C, Wu T-D, Guillermier C, Rabolli CP, Gonzalez E, et al. Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nature communications. 2018;9(1):1659. 17. Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, et al. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. European heart journal. 2012;35(39):2722-31. 18. Kraljevic J, Marinovic J, Pravdic D, Zubin P, Dujic Z, Wisloff U, et al. Aerobic interval training attenuates remodelling and mitochondrial dysfunction in the post-infarction failing rat heart. Cardiovascular research. 2013;99(1):55-64. 19. Wisløff U, Støylen A, Loennechen J, Bruvold M, Rognmo Ø, Haram P, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: A randomized study. Circu. 2007; 115 (24): 3086-3094. CONCLUSÃO GERAL. 20. Van Laake LW, Hassink R, Doevendans PA, Mummery C. Heart repair and stem cells. The Journal of Physiology. 2006;577(2):467-78. 21. Høydal MA, Wisløff U, Kemi OJ, Ellingsen Ø. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. European Journal of Cardiovascular Prevention & Rehabilitation. 2007;14(6):753-60. 22. Kemi OJ, Haram PM, Loennechen JP, Osnes J-B, Skomedal T, Wisløff U, et al. Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovascular research. 2005;67(1):161-72. 23. Peinnequin A, Mouret C, Birot O, Alonso A, Mathieu J, Clarençon D, et al. Rat pro-inflammatory cytokine and cytokine related mRNA quantification by real-time polymerase chain reaction using SYBR green. BMC immunology. 2004;5(1):3. 24. Lunn D, Wazny V, Cutie S, Huang G. Cardiac Repair and Regeneration. Cell Dev Biol. 2018;7(193):2. 25. Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nature Reviews Cardiology. 2018:1. 26. Chai J, Tarnawski A. Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing. 2002. 27. Ellison GM, Torella D, Dellegrottaglie S, Perez-Martinez C, de Prado AP, Vicinanza C, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. Journal of the American College of Cardiology. 2011;58(9):977-86. 28. Xiao J, Xu T, Li J, Lv D, Chen P, Zhou Q, et al. Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells. International journal of clinical and experimental pathology. 2014;7(2):663. 29. Catalucci D, Latronico M, Ellingsen O, Condorelli G. Physiological myocardial hypertrophy: how and why. Front Biosci. 2008;13(6):312-24. 30. Torella D, Rota M, Nurzynska D, Musso E, Monsen A, Shiraishi I, et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circulation research. 2004;94(4):514-24. 31. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. The Journal of clinical investigation. 2009;119(9):2758-71. 32. Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, et al. Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell metabolism. 2005;1(4):259-71. | ||
آمار تعداد مشاهده مقاله: 790 تعداد دریافت فایل اصل مقاله: 522 |