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Abstract  
Heat transfer coefficient and thermal efficiency of γ-Al2O3/water 

nanofluids flowing through a double tube heat exchanger were 

experimentally investigated. The nanoparticles were well dispersed 

in distilled water at 0.05–0.15 %vol. A large number of experiments 

were performed at different fluid flow rates under turbulent flow 

regime (18,000<Re<40,000) and various nanofluid inlet temperatures 

ranging from 45 °C to 65 °C. The heat transfer coefficients were 

measured along the length of the heat exchanger. Results showed that 

the local heat transfer coefficients have an asymptotic behavior. 

Furthermore, the addition of these small amounts of nanoparticles to 

the base fluid augmented the heat transfer up to 16% at the best 

conditions. In the end, the thermal performance factor was calculated 

to find the optimum condition at which the nanofluid was used. It was 

shown that the thermal performance factor of this nanofluid could 

reach to 1.11. This value was obtained at the nanoparticle 

concentration of 0.15 vol.% and Reynolds number 18000. 
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Introduction 

It is believed that energy resources are limited and demands for energy usage are growing. This 

reality requires innovative technologies for energy saving. It was recently proved that 

nanofluids which are suspensions containing stable nanoparticles (10 nm to 100 nm size) in a 

base fluid can be one of the proper thermal energy transfer media. Nanofluids are currently 

attracting a great deal of experimental and theoretical study according to their properties and 

performance. A review of the recent literature shows that most of the papers in this field were 

mainly focused on flow and heat transfer in simple geometries, such as circular tubes. For 

example, Pirhayati et al [1] measured the convective heat transfer coefficient of nanofluid inside 

an inclined copper tube which its boundary was at the uniform heat flux. Their Results show 

that the heat transfer coefficient of nanofluid with different weight fractions increases with the 

increasing Reynolds number inside horizontal and inclined round tubes. Rostamzadeh et al [2] 

carried out an experimental investigation to analyze mixed convection heat transfer from 

Al2O3/water nanofluid inside a vertical, W-shaped, copper-tube with uniform wall temperature. 
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The results showed that the rate of heat transfer coefficient improved with Reynolds number 

for average wall temperatures of 50 and 60 °C. 

However, heat transfer and pressure drop experimental data for nanofluid flow in the 

complicated geometries such as double tube heat exchangers and compact heat exchangers are 

limited [3].It should be emphasized that in a double tube heat exchanger, heat transfer surface 

has not experienced constant temperature or constant heat flux boundary conditions. As a result, 

the heat transfer coefficient in such a geometry is not easy to calculate. As can be found, several 

correlations and empirical methods were developed for this purpose. All the previous methods 

can be classified into three groups as follows: 

The first method includes the application of Logarithmic Mean Temperature Difference 

(LMTD) which was extensively used before [4-7]. In the second method, which can be named 

as “simplified LMTD”, some simplifications are implemented on the first method, and in the 

third method, the heat transfer surface temperature is considered to be constant through the heat 

exchanger [8-11]. 

Zarringhalam et al [12] studied the rheological and thermal behavior of CuO/Water 

nanofluid in a double tube heat exchanger at different concentrations. The Results showed that 

the addition of nanoparticles increases the heat transfer coefficient compared to the base fluid. 

Moreover, it is concluded that increasing nanoparticle volume fraction and Reynolds number 

enhance the heat transfer coefficient and Nusselt number.  

Raei et al [13] studied the turbulent convective heat transfer and flow characteristics of γ-

Al2O3/water nanofluid in a double tube heat exchanger. Their results showed that nanofluids 

had a higher Nusselt number in comparison with pure water. They also reported that the greatest 

increase of the friction factor and the heat transfer coefficient were 23 and 25% respectively, 

which were observed when the nanoparticle concentration was 0.15 vol%.  

As can be seen, several studies performed on the application of nanofluid in a circular smooth 

tube or other simple geometries where the heat transfer surfaces were subjected to constant 

surface temperature or constant heat flux boundary conditions in these studies. As can be seen, 

fewer works can be found on the thermal and fluid flow properties of different types of 

nanofluids in a double tube heat exchanger. Also, the average heat transfer coefficient was 

measured in almost all of the studies performed on the double tube heat exchangers, so far. 

Therefore, analysis of the variation of local convective heat transfer coefficient in double tube 

heat exchangers can be a novel subject for researchers. 

In this research, an experimental study has been performed to measure local convective heat 

transfer coefficient and friction factor of stabilized γ-Al2O3/water nanofluid in a fully-

developed turbulent flow regime in a double tube heat exchanger. Experiments performed at 

different nanofluid concentrations, operating temperatures, and nanofluid flow rates. 

Experimental 

Setup and Procedure 

Schematic view of the experimental setup is shown in Fig. 1. This apparatus has already been 

used in similar researches [13,14-16] and also details of the experimental setup have been 

described in the mentioned references. 

Uncertainty Analysis  

In this work, an uncertainty analysis was performed. The range of operating conditions and 

their corresponding measurement uncertainties are summarized in Table 1. 
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Fig. 1. Schematics of the experimental setup: 

Table 1. The range of operating conditions and their measurement uncertainty 

Uncertainty Unit Range Condition 

±0.1 l/min 7-11 Hot liquid flowrate 

±0.1 C° 45-65 Hot liquid inlet temperature 

±0.1 l/min 13 Cold liquid flowrate 

±0.1 C° 6 Cold liquid inlet temperature 

9.7% K 2W/m 8,100-16,400 Heat transfer coefficient 

4.65% - 0.02-0.034 Friction factor 

0.83% - 18,000-40,000 Reynolds number 

0.1% vol.% 0-0.15 Nanoparticle concentration 

Nanofluids Preparation and Properties 

In this work, aluminum oxide nanoparticle with 99 % purity and 20 nm average particle size 

was purchased from US Research Nanomaterials, Inc., USA. The almost spherical 

nanoparticles were dispersed mechanically in distilled water as the base fluid. To provide stable 

nanofluid, no chemical was added in order to prevent any probable complication. 

Different concentrations of nanofluid including 0.05 and 0.15 of vol% were prepared. For 

this purpose, an accurate three decimal places balance was used to weigh a certain amount of 

γ-alumina nanoparticle. This nanoparticle was then added to distilled water as the base fluid. 

Mixing with a magnetic stirrer for half an hour, and ultrasonication for 3 h guarantees the 

stability of the nanofluid up to 28 h. The ultrasonic vibrator (BANDELIN Co.) had a frequency 

of 35 kHz and power of 240 kW. 

In the design of the experiment, some experiments were repeated to check the repeatability 

of the data. Furthermore, some tests were repeated with a longer period of time in order to check 

the stability of the nanofluids. All of these repeated data showed an acceptable accuracy and 

proved the nanofluid stability. 

Density and specific heat capacity of γ-Al2O3/water nanofluid were calculated at the average 

of the fluid inlet and outlet temperatures as follows [17,18]: 
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The dynamic viscosity and the thermal conductivity of the nanofluid have been calculated 

using the correlations proposed by Williams et al. [19]. Their correlations were based on 

experimental data specifically for γ-Al2O3-water nanofluid as shown in Eqs. (3) and (4): 

4.91
( )exp

0.2092
nf bf T


 



 
=  − 

 (3) 

( )(1 4.5033 )nf bfk k T = +  (4) 

Data Reduction  

As previously stated, three different methods were used by the researchers to calculate the 

average heat transfer coefficient in a double tube heat exchanger. A detailed explanation of 

these three methods was presented elsewhere [15]. In this research, a novel method is used for 

the calculation of the average heat transfer coefficient. In this method, data of local heat transfer 

coefficient along the heat exchanger are implemented.  

Results and Discussions 

Validation of The Experimental System 

Before evaluating the heat transfer performance of the nanofluids, the pure water is used as the 

working fluid for estimating the reliability and accuracy of the experimental system. The results 

of the experimental Nusselt number are compared with those obtained from the Gnielinski 

equation [20], which is defined as follows: 
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The friction factor can be calculated from the Colebrook equation [23] as follows: 
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 (6) 

where ε is roughness of stainless steel 316 tube and was considered 0.002 mm in this study 

[14]. 

Fig. 2 compares pure water experimental Nusselt numbers with the prediction of Gnielinski 

correlation. Relative average error compared to Gnielinski correlation is 8%. The average 

relative error between the experimental friction factor of distilled water and the prediction of 

Colebrook [21] relation is 8%. It is noted that the Nusselt number and friction factor results of 

the experiment have a good agreement to empirical equations. 

Local Heat Transfer Coefficient 

Fig. 3 shows the local convective heat transfer coefficient versus the axial distance of the 

annulus at three different volumetric flow rate. Table 2 summarizes the measurements and 
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calculations of the local heat transfer coefficient at different temperatures for different 

concentrations of alumina nanofluids under a turbulent flow regime at Qnf=11 l/min. The results 

clearly show that using γ-Al2O3 nanofluid, moderately increase the convective heat transfer, 

especially at the entrance region and at the higher volumetric flow rate. 

It can be seen that the maximum enhancement rate is observed at the inlet of the test section 

and it decreases as approaches to the end of the test section. It can be attributed to the variation 

of the thermal boundary layer thickness in this distance. At the inlet of the test section, the 

thickness of the thermal boundary layer and the resultant thermal resistance is small. It causes 

the heat transfer coefficient to increase. On the other hand, at the end of the test section, the 

thermal boundary layer and the thermal resistance increase which result in a reduction of the 

heat transfer coefficient.  

In addition, in comparison to pure water, when the nanoparticle concentration increases, the 

heat transfer coefficient rises. It can be seen that increasing the fluid flow rate from 7 to 11 

l/min causes the heat transfer coefficient to be increased. Increasing fluid flow rate increases 

Re and consequently increases the turbulence and better dispersion of nanoparticles in the liquid 

bulk. As a result, the temperature distribution is flattened and the temperature gradient between 

the heat transfer surface and the working fluid is sharpened. 

 
Fig. 2. Nusselt number results for experiments with distilled water and Gnielinski equation 

Table 2. Experimental data of local heat transfer coefficient (kW/m2K) of alumina-water nanofluids at 

Qnf =11l/min 
Tnf (°c) x(cm) φ = 0 φ = 0.05% φ = 0.15% 

45 5 43.18 56.19 42.31 

 10 29.62 36.69 30.33 

 20 7.81 9.13 9.71 

 40 4.61 7.61 6.41 

 hav 11.93 12.94 13.39 

     

55 5 48.81 44.97 44.59 

 10 34.55 33.76 33.29 

 20 9.35 11.48 11.21 

 40 5.71 6.29 7.81 

 hav 14.01 14.47 15.06 

     

65 5 51.46 49.13 46.66 

 10 36.24 36.61 36.41 

 20 9.44 11.01 13.36 

 40 7.23 7.81 8.05 

 hav 15.22 15.78 16.35 
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Table 2 shows that the enhancement of the heat transfer coefficient increases with increasing 

the temperature. Several mechanisms may cause these improvements. These could be due to 

the increase in the Brownian motion of particles by increasing the temperature [22]. 

  

 
Fig. 3. Local heat transfer coefficient variation of γ-Al2O3/water nanofluid along axial distance at Tnf 

= 45 °C, a) Qnf = 7 l/min, b) Qnf = 9 l/min, c) Qnf = 11 l/min 

Average Heat Transfer Coefficient 

Fig. 4 shows that heat transfer in nanofluids is higher than distilled water and this will increase 

in a fixed volumetric flow rate with slight increases in nanoparticles concentration. In addition, 

heat transfer increases with an increase in the volumetric flow rate and inlet temperatures. 

As Fig. 4 shows, at higher concentration levels, no sensible increase is obtained in the heat 

transfer of nanofluid. For example, at a volumetric flow rate of 7 l/min and inlet temperature of 

45 °C, the value of hnf/hbf was 1.12 and 1.16 for 0.05% and 0.15% concentration, respectively, 

which showed merely 4% improved for 0.10% increase in nanofluid concentration. Therefore, 

increasing the concentration of nanoparticles in a small range studied in this work had no 

significant influence on the heat transfer enhancement.  

This observation is not in accordance with the observations of Xuan and Li [23] and also 

Heris et al. [24] who reported considerable enhancement of heat transfer coefficient of 

nanofluids with increasing the nanoparticles concentration. However, some other researches 

like Fotukian and Nasr [25] and also Sajadi and Kazemi [26] obtained similar results like those 

obtained in this study. 



Journal of Chemical and Petroleum Engineering 2019, 53(1): 25-36 31 

 

 

  

 
Fig. 4. The average heat transfer coefficient of γ-Al2O3/water nanofluid as a function of the nanofluid 

flow rate at different nanofluid concentrations and inlet temperatures of  a) 45 °C, b) 55 °C, c) 65 °C 

It is shown that the addition of nanoparticles improves the heat transfer coefficient of 

nanofluids compare with pure water. One of the reasons which was previously proved to be 

efficient in nanofluid heat transfer mechanism is the improvement of thermal conductivity of 

the working fluid with the addition of nanoparticles [27-30]. It was also shown that a decrease 

of boundary layer thickness due to the Brownian motion of nanoparticles may also be another 

reason for nanofluid heat transfer improvement. The random displacement of nanoparticles in 

the base fluid agitates the thermal boundary layer, and as a result, higher heat transfer 

coefficients may be achievable. When a concentration of nanoparticles was added, effects of 

both mechanisms were magnified and consequently, higher heat transfer coefficient may be 

obtained at higher concentrations. Furthermore, increasing the fluid inlet temperature causes 

the enhancement in the heat transfer coefficient. It is found that maximum improvement in heat 

transfer coefficient compared with water was 23% which was obtained at 0.15 vol.% of γ-

Al2O3/water nanofluid, the temperature of 65 °C, and flow rate of 11 l/min. 
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Friction Factor  

The friction factor of the working fluid is calculated at various concentrations of nanoparticles 

(Table 3). Increase of the friction factor at low Reynolds numbers is more significant at a higher 

volume fraction of nanoparticles. When the flow velocity is low, the viscous forces is greater 

than the inertia forces and, as a result, increasing the concentration of nanoparticles causes more 

shear stress among the fluid layers, and hence, the greater friction factor may be expected.  In 

addition, the results show that the friction factor of the nanofluids slightly increases with 

increasing the nanoparticle concentration. 

Table 3. The experimental data for the friction factor 

Re  f  

φ=0 φ=0.05 φ=0.15 

18500 0.0252 0.0282 0.0313 

24100 0.0231 0.027 0.0288 

29400 0.0217 0.0242 0.0254 
 

Thermal Performance Factor 

As shown in the previous sections, aqueous γ-alumina nanofluid enhances the heat transfer 

coefficient when using inside the heat exchanger instead of water. However, this advantage is 

accompanied by a penalty of increasing pressure drop which is a great disadvantage from an 

industrial point of view.  

In order to simultaneously consider the effect of using nanofluid on the heat transfer 

coefficient, besides the pressure drop, the thermal performance factor is a suitable definition 

which was previously used in different studies. 

It was shown that nanoparticles simultaneously enhance the thermal conductivity and the 

viscosity of the base fluid. Increase of these two physical properties has contradicting effects 

on the heat transfer while increasing of the viscosity increases the pressure drop. The thermal 

performance factor, η, can be defined as [31]: 

1
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f

nf

fNu
Nu f


 
 =
 
 
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Thermal performance factor evaluates the heat transfer enhancement technique regarding 

the required pumping power. It was shown that when the thermal performance factor was 

greater than unity, the heat transfer improvement technique would be a good choice for 

implementing in practical and industrial applications. Fig. 5 demonstrates the variation of 

thermal performance factor as a function of Reynolds number for γ-Al2O3/water nanofluids at 

different nanofluid concentrations. 

As Fig. 5 shows, the thermal performance that investigated in ranges of Reynolds number 

and nanofluid concentration is always higher than unity. It reveals that the augmentation of the 

heat transfer by using the nanoparticles is higher than the pressure drop penalty. The decrease 

in the Reynolds number and increase in nanoparticle concentration causes the thermal 

performance to generally grow. 

Over the studied range, the maximum thermal performance factor of 1.11 is found with the 

use of nanofluid of 0.15 by volume at Reynolds number of 18,000. As shown, at all the 

operating conditions, increasing the heat transfer coefficient by using nanofluids compensated 

for the disadvantage of increasing pressure drop. Similar results were reported in a large number 
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of studies [32-34,29,16]. In addition, some few studies concluded that the thermal performance 

factor may decrease at higher concentrations of the nanoparticle. They related this observation 

to particle agglomeration and sedimentation.   

 
Fig. 5. Evolutions of thermal performance factor of the test section. 

In this study, the results are in contradiction to the results of other researchers [35,9]. It is 

not easy to explain these contradictions. These could be attributed to several experimental 

parameters such as type of base fluid, particle geometry (size, shape or even type), nanofluid 

stabilization and preparation techniques (utilizing sonication or surfactant or variation in pH), 

and also a method of synthesis of nanoparticle [36-39]. Therefore, more experimental and 

theoretical studies must be carried out to deeply explore the application of nanofluids in the 

heat transfer apparatus. The experimental data are summarized in Table 3. 

Conclusions 

In this study, the local convective heat transfer coefficient and the friction factor of γ-

Al2O3/water nanofluid in a double tubular heat exchanger has been measured experimentally. 

The experiments were conducted at wide ranges of nanofluid flow rate, nanoparticle volume 

concentrations and at different nanofluid inlet temperatures. The experimental results are 

summarized in the following conclusion: 

• By adding a small amount of γ-Al2O3 nanoparticles to distilled water, the heat transfer 

coefficient of nanofluids increases. Also, increasing the concentration of the 

nanoparticles in the range of this research didn’t have a substantial impact on the heat 

transfer coefficient. 

• The thermal performance factor for the given nanofluids is greater than unity, and 

maximum thermal performance factor was about 1.11 at 0.15% particle concentration 

and Reynolds number 18,000. So, nanofluids can be used as working fluid in heat 

transfer and it helps engineers to design more efficient heat exchangers. 
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Nomenclature 

Cp specific heat (J/kg °C) 

D Diameter (m) 

Exp experimental 

f friction factor 

h hour 

ID Inner diameter (mm) 

k thermal conductivity (W/m.K) 

l liter 

L length (m) 

Nu Nusselt number 

P pressure (Pa) 

PC personal computer 

Pr Prandtl number 

Re Reynolds number 

T temperature (°C) 

vol volume 

x Axial distance 

Greek Symbols 

φ volume fraction 

ε roughness (m) 

μ viscosity (Pa.s) 

ρ density (kg/m3) 

∆ difference 

η Thermal Performance Factor 

Subscripts 

av average 

b bulk 

bf base fluid 

c cold 

h hot 

nf nanofluid 

p particle 

x local 
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