تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,553 |
تعداد دریافت فایل اصل مقاله | 97,221,158 |
مروری بر روشهای مختلف تعیین پارامترهای معادلات نفوذ با رویکرد معکوس در آبیاری جویچهای | ||
تحقیقات آب و خاک ایران | ||
مقاله 5، دوره 50، شماره 9، بهمن 1398، صفحه 2155-2170 اصل مقاله (902.73 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2019.277469.668144 | ||
نویسندگان | ||
مینا رحیمی1؛ پیام کمالی2؛ وحید رضاوردی نژاد* 3؛ حامد ابراهیمیان4 | ||
1دانشجوی دکتری، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
2دانشجوی دکتری، گروه مهندسی آبیاری و زهکشی، پردیس ابوریحان دانشگاه تهران، تهران، ایران | ||
3گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
4گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، تهران، ایران | ||
چکیده | ||
به منظور افزایش بازده سامانههای آبیاری سطحی، لازم است که ضرایب معادلات نفوذ با دقت بالایی تخمین زده شوند. مدلسازی معکوس از روشهای دقیق در برآورد ضرایب معادلات نفوذ میباشد. در این تحقیق، در مرحله اول عملکرد معادلات مختلف نفوذ شامل خانواده نفوذ NRCS، کاستیاکف، کاستیاکف اصلاح شده، کاستیاکف اصلاح شده شاخهای، خانواده شدت نفوذ-زمان و زمان مشخص ارزیابی و مقایسه شدند. سپس بهترین معادله نفوذ بطوریکه که بتواند فازهای پیشروی، پسروی و رواناب را با کمترین خطا برآورد کند تعیین گردید. با مقایسه معادلات مختلف نفوذ، روش کاستیاکف اصلاح شده با متوسط درصد خطای 14/2، 99/2 و 95/2 به ترتیب در فازهای پیشروی، پسروی و رواناب، به عنوان معادله نفوذ با بهترین عملکرد تعیین شد. در مرحله دوم براساس معادله نفوذ بهینه (کاستیاکف اصلاح شده)، سه نرمافزار متداول در برآورد معکوس پارامترهای معادله نفوذ شامل: WinSRFR، IPARM و SIPAR-ID با استفاده از دادههای میدانی چهار جویچه آبیاری تحت کشت ذرت واقع در مزرعه پژوهشی پردیس کشاورزی و منابع طبیعی دانشگاه تهران در سال 1393، مورد مقایسه قرار گرفتند. نتایج نشان داد که مدل IPARM با متوسط درصد خطای40/2، 87/5 و 11/2 به ترتیب در فازهای پیشروی، پسروی و رواناب عملکرد نسبتاً مشابهی با نرمافزار WinSRFR داشت؛ اما فاز پسروی را با خطای تقریباً دو برابری نسبت به آن برآورد نمود. مدل SIPAR-ID نیز عملکرد ضعیف با بیشترین نوسانات در مقادیر ضرایب را نشان داد. | ||
کلیدواژهها | ||
آبیاری سطحی؛ پارامترهای نفوذ؛ جویچه؛ مدلسازی معکوس | ||
مراجع | ||
Alazba, A. A. (1994). Efficiency of irrigation borders as affected by inflow hydrograph shape. The University of Arizona. Amali, S., Rolston, D.E., Fulton, A.E., Hanson, B.R., Phene, C.J. and Oster, J.D. (1997). Soil water variability under subsurface drip and furrow irrigation. Irrigation Science, 17(4), 151-155. Bautista, E., Clemmens, A. J., Strelkoff, T. S. and Schlegel, J. (2009). Modern analysis of surface irrigation systems with WinSRFR. Agricultural Water Management, 96(7), 1146-1154. Benham, B. L., Reddell, D. L. and Marek, T. H. (2000). Performance of three infiltration models under surge irrigation. Irrigation Science, 20(1), 37-43. Cahoon, J. (1998). Kostiakov infiltration parameters from kinematic wave model. Journal of Irrigation and Drainage Engineering, 124(2), 127-130. Cavero, J., Playán, E., Zapata, N. and Faci, J. M. (2001). Simulation of maize grain yield variability within a surface-irrigated field. Agronomy Journal, 93(4), 773-782. Childs, J., Wallender, W. W. and Hopmans, J. W. (1993). Spatial and seasonal variation of furrow infiltration. Journal of Irrigation and Drainage Engineering, 119(1), 74-90. Clemmens, A. J. (1981). Evaluation of infiltration measurements for border irrigation. Agricultural Water Management, 3(4), 251-267. Clemens, A. J. (1991). Direct solution to surface irrigation advance inverse problem. Journal of Irrigation and Drainage Engineering, 117(4), 578-594. Corradini, C., Melone, F. and Smith, R. E. (1997). A unified model for infiltration and redistribution during complex rainfall patterns. Journal of Hydrology, 192(1-4), 104-124. Elliott, R. L. and Walker, W. R. (1982). Field evaluation of furrow infiltration and advance functions. Transactions of the ASAE, 25, 396-400. Ebrahimian, H., Liaghat, A., Ghanbarian-Alavijeh, B. and Abbasi, F. (2010). Evaluation of various quick methods for estimating furrow and border infiltration parameters. Irrigation Science, 28(6), 479-488. Ebrahimian, H. (2014). Soil infiltration characteristics in alternate and conventional furrow irrigation using different estimation methods. KSCE Journal of Civil Engineering, 18(6), 1904-1911. Etedali, H. R., Ebrahimian, H., Abbasi, F. and Liaghat, A. (2011). Evaluating models for the estimation of furrow irrigation infiltration and roughness. Spanish Journal of Agricultural Research, (2), 641-649. Gillies, M. H. and Smith, R. J. (2005). Infiltration parameters from surface irrigation advance and run-off data. Irrigation Science, 24(1), 25-35. Gillies, M. H., Smith, R. J. and Raine, S. R. (2007). Accounting for temporal inflow variation in the inverse solution for infiltration in surface irrigation. Irrigation Science, 25(2), 87-97. Gillies, M. H. (2008). Managing the effect of infiltration variability on the performance of surface irrigation. Doctoral dissertation, University of Southern Queenslan, Australia. Gillies, M. H. and Smith, R. J. (2015). SISCO: surface irrigation simulation, calibration and optimisation. Irrigation Science, 33(5), 339-355. Hall, W. A. (1956). Permeability and infiltration relationships in one dimensional infiltration in a uniform soil. Eos, Transactions American Geophysical Union, 37(5), 602-604. Holzapfel, E. A., Jara, J., Zuniga, C., Marino, M. A., Paredes, J. and Billib, M. (2004). Infiltration parameters for furrow irrigation. Agricultural Water Management, 68(1), 19-32. Kazeroonian, S. M., Abbasi, F. and Sedghi, H. (2017). Statistical study of infiltration parameters variations of kostiakov-lewis equation in furrow irrigation during three farming seasons. Journal of Water and Soil Conservation, 24(4), 83-101 (In Farsi). Kamali, P., Ebrahimian, H. and Rezaverdinejad, V. (2015). Evaluation and comparison of multilevel optimization method and IPARM model to estimate infiltration parameters in furrow. Journal of Water and Irrigation Management, 5(1), 43-54 (In Farsi). Kamali, P., Ebrahimian, H. and Parsinejad, M. (2018). Estimation of Manning roughness coefficient for vegetated furrows. Irrigation Science, 36(6), 339-348. Khatri, K. L. and Smith, R. J. (2005). Evaluation of methods for determining infiltration parameters from irrigation advance data. Irrigation and Drainage, 54(4), 467-482. Khatri, K. L. (2007). Toward real-time control of surface irrigation. Doctoral dissertation, University of Southern Queensland, Australia. Kostiakov, A. N. (1932). On the dynamics of the coefficient of water percolation in soils and the necessity of studying it from the dynamic point of view for the purposes of amelioration. Trans. Sixth Comm. Int. Soc. Soil Sci., 1, 7-21. Maheshwari, B. L. and Jayawardane, N. S. (1992). Infiltration characteristics of some clayey soils measured during border irrigation. Agricultural Water Management, 21(4), 265-279. Majdzadeh, B., Ojaghloo, H., Ghobadi-Nia, M., Sohrabi, T. and Abbasi, F. (2009). Estimating infiltration parameter for simulation of advance flow in furrow irrigation. In International Conference on Water Resources (ICWR 2009). Maroufpoor, E., Seyedzadeh, A. and Behzadynasab, M. (2017). Investigation of the accuracy of Non-point infiltration measurement methods in designing of furrow irrigation system. Journal of Water and Soil Conservation, 24(2), 257-271 (In Farsi). McClymont, D. J. and Smith, R. J. (1996). Infiltration parameters from optimization on furrow irrigation advance data. Irrigation Science, 17(1), 15-22. Merriam, J. L., & Keller, J. (1978). Farm irrigation system evaluation: A guide for management. Farm irrigation system evaluation: a guide for management. Utah State University. Merriam, J. L. and Clemmens, A. J. (1985). Time rated infiltrated depth families. In Development and management aspects of irrigation and drainage systems, ASCE, 67-74. Nash J. E. and Sutcliffe J. V. (1970). River flow forecasting through conceptual models. A discussion of principles. Journal of Hydrology, 10, 282–290. Nie, W.B., Fei, L.J. and Ma, X.Y. (2014). Applied closed-end furrow irrigation optimized design based on field and simulated advance data. Journal of Agricultural Science and Technology, 16, 395-408. Ramezani, E.H., Ebrahimian, H., Abbasi, F. and Liaghat, A. (2012). Evaluation of EVALUE, SIPAR_ID and INFILT models for estimating of Kostiakov infiltration parameters in furrow irrigation. Irrigation Sciences and Engineering, 35(1), 1-9 (In Farsi). Rodriguez, J.A. and Martos, J.C. (2010). SIPAR_ID: freeware for surface irrigation parameter identification. Environmental Modelling & Software, 25(11), 1487-1488. Oyonarte, N. A., Mateos, L. and Palomo, M. J. (2002). Infiltration variability in furrow irrigation. Journal of Irrigation and Drainage Engineering, 128(1), 26-33. Parhi, P. K., Mishra, S. K. and Singh, R. (2007). A modification to Kostiakov and modified Kostiakov infiltration models. Water Resources Management, 21(11), 1973-1989. Sayah, B., Gil-Rodríguez, M. and Juana, L. (2016). Development of one-dimensional solutions for water infiltration. Analysis and parameters estimation. Journal of Hydrology, 535, 226-234. Scaloppi, E. J., Merkley, G. P. and Willardson, L. S. (1995). Intake parameters from advance and wetting phases of surface irrigation. Journal of Irrigation and Drainage Engineering, 121(1), 57-70. Shepard, J. S., Wallender, W. W. and Hopmans, J. W. (1993). One-point method for estimating furrow infiltration. Transactions of the ASAE, 36(2), 395-404. Sedaghatdoost, A. and Ebrahimian, H. (2015). Calibration of infiltration, roughness and longitudinal dispersivity coefficients in furrow fertigation using inverse modelling with a genetic algorithm. Biosystems Engineering, 136, 129-139. Strelkoff, T. and Katopodes, N. D. (1977). Border-irrigation hydraulics with zero inertia. Journal of the Irrigation and Drainage Division, 103(3), 325-342. Strelkoff, T. S., Clemmens, A. J. and Schmidt, B. V. (1998). SRFR, Version 3.31—A model for simulating surface irrigation in borders, basins and furrows. US Department of Agriculture Agricultural Research Service, US Water Conservation Laboratory, Phoenix, Arizona. Strelkoff, T. S., Clemmens, A. J. and Bautista, E. (2009). Estimation of soil and crop hydraulic properties. Journal of Irrigation and Drainage Engineering, 135(5), 537-555. Smerdon, E. T., Blair, A. W. and Reddell, D. L. (1988). Infiltration from irrigation advance data. I: Theory. Journal of Irrigation and Drainage Engineering, 114(1), 4-17. Soroush, F. (2016). Accurate assessment of modified NRCS intake families using field data and zero inertia models. 5th Integrated water Resources Management Conference, Iranian Irrigation and Water Engineering Society, Kerman, Iran (In Farsi). US Department of Agriculture, Natural Resources and Conservation Service. (1974). National Engineering Handbook. Section 15. Border Irrigation. National Technical Information Service, Washington, DC, Chapter 4. Valiantzas, J. D., Aggelides, S. and Sassalou, A. (2001). Furrow infiltration estimation from time to a single advance point. Agricultural Water Management, 52(1), 17-32. Valipour, M., Sefidkouhi, M. A. G. and Eslamian, S. (2015). Surface irrigation simulation models: a review. International Journal of Hydrology Science and Technology, 5(1), 51-70. Walker, W. R. (2005). Multilevel calibration of furrow infiltration and roughness. Journal of Irrigation and Drainage Engineering, 131(2), 129-136. Walker, W. R., Prestwich, C. and Spofford, T. (2006). Development of the revised USDA–NRCS intake families for surface irrigation. Agricultural water management, 85(1-2), 157-164. Weibo, N., Liangjun, F. and Xiaoyi, M. (2012). Estimated infiltration parameters and Manning roughness in border irrigation. Irrigation and Drainage, 61(2), 231-239. Xiaoyan, G., Peiling, Y. and Ye, L. (2008). Estimation of soil infiltration parameters during furrow irrigation based on IPARM method. Transactions of the Chinese Society of Agricultural Engineering, 2008 (1). | ||
آمار تعداد مشاهده مقاله: 699 تعداد دریافت فایل اصل مقاله: 412 |