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Abstract

In this study, an inversion method is conducted to determine the focal mechanism of Sefid-Sang
fault by comparing interferometric synthetic aperture radar (InSAR) technique and dislocation
model of earthquake deformation. To do so, the Sentinel-1A acquisitions covering the fault and its
surrounding area are processed to derive the map of line of sight (LOS) displacement over the
study area. Then, using the ascending and descending tracks of the satellite, the three-dimensional
displacement field is recovered over the region. The maximum horizontal and vertical
displacements are about 12 cm and 5 cm respectively. The resulting displacement field is
compared with Okada half-space dislocation model of earthquake to determine the focal
mechanism and fault parameters by a nonlinear inversion method, which is composed of artificial
neural network (ANN) and genetic algorithm (GA). The coulomb stress and strain changes, which
are important factors for prediction of aftershock event, are also determined. The numerical
achievements show a slip of 4.5 mm, a depth of 8 km, dip angle of 55 deg and width of 10 km for

this fault.
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1. Introduction

Surface deformation measurements are the
important means of monitoring and
understanding the crustal deformation related
to a variety of geophysical phenomenon
(Zebker and Villasenor, 1992). These
measurements have been widely used to
study both natural and man-made processes
such as earthquake, magmatic flow in
volcanic systems, landslide, glacial flow, and
subsidence due to the ground water
extraction (Fattahi and Amelung, 2016; Xu et
al., 2010). Recently, InSAR technology has
been extensively used to measure the
deformation field triggered by rupture on the
dislocation surfaces of the faults, particularly
for the study of co-seismic deformations,
which may have a significant magnitude
(Fialko et al., 2001; Motagh et al., 2015).
SAR interferometric data can also be used to
extract the three dimensional (3D)
deformation of the Earth’s surface by using
the phase part of the radar signal. In addition
to observational techniques such as InSAR
and Global Positioning System (GPS) (Wang
et al, 2013; Haji-Aghajany et al., 2017)
which measure the amount of deformation.

there are different analytical models that
investigate the physical nature of the
deformation to conceive its relation with the
tectonic activities within the Earth. In a
relation to seismic displacements, the
elasticity theory of dislocation plays an
important role in characterizing the
mechanism of earthquake, which relates the
deformation field to the geometric
parameters of the faults and the physical
properties of an earthquake source. The study
of co-seismic deformation in a half-space,
spherical and layered Earth model has been
the subject of many scientific researches
(Kawasaki et al, 1995; Furuya and
Satyabala, 2008; Kaneko et al., 2013). The
half-space Earth model that was first
introduced by Steketee (1958a, b), and later
developed by Maruyama (1964), and Okada
(1985), has become a standard model for the
study of earthquake source parameter. Okada
(1985) derived the 3D deformation field due
to a slip on the surface of rectangular fault
buried in a homogeneous and isotropic half-
space.

On Wednesday. 05 April 2017. the
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earthquake with magnitude 6.1 M,, was
triggered at 3 km from the Sefid-Sang city
and 84 km from southeast of Mashhad city,
in Khorasan Razavi province of Iran.
According to seismic records of the Institute
of Geophysics at the University of Tehran,
the cause of this earthquake was the Sefid-
Sang fault whose foci was located at a depth
of 6 km. According to the report from this
institute, the Sefid-Sang earthquake has been
the result of a reverse fault, in which the
compressive stress between the two sides of
the fault produced the dip-slip dislocation.
Fig. 1 shows the earthquake center and the
study area. Mashhad city is the second largest
city in Iran. It is located in northeastern of
Iran surrounded by active seismic zones. It
has  experienced several  destructive
earthquakes in the history of seismology of
Iran, and thus there is the possibility of
powerful events in this area and around it.
This active tectonic region is located in the
Mashhad Plain, between Kopet-Dagh basin
in the north and Binaloud mountain range in
the south, both of which have the potential
for large and strong earthquakes. The Plain
was formed by tectonic movements of
several faults, which extend along the
northwest to the southeast (Ambraseys and
Melville, 1982; Akbari et al., 2011). On the
basis of the recent studies conducted by the
International  Institute =~ of  Earthquake
Engineering and Seismology (IIEES), it has
been pointed out that the tectonics of the area
has a quite complex structure (Walker et al.,
2003). In Fig. 1, seismic hazard zonation map
of the study area based on iso-acceleration

contours for a return period of 75 years has
been shown. According to this map, the area
is located in a medium to high hazard zone.
Among the powerful earthquakes that have
occurred in this area, one can mention the
significant earthquakes of 1598, 1676 and
1678 A.D (Akbari et al., 2011). The most
important historical earthquake was that on
July 30, 1673, which killed about 4,000
people (Ambraseys and Melville, 1982;
Akbari et al., 2011).

In this study, an inversion method
is conducted to obtain the fault parameters
of the 2017 Sefid-Sang earthquake using
InSAR co-seismic deformation fields in
a conjunction with the analytical model
of Okada (1985). To do so, the Sentinel-1A
acquisitions for both descending and
ascending tracks of the satellite are processed
to determine the 3D displacement field
over the study area. After determination
of the actual displacement field due to
the fault rupture, it is entered into
the analytical model of Okada (1985)
to constrain the fault parameters and
focal mechanism of this earthquake.
Specifically, the nonlinear inversion
algorithm that includes the combination
of ANN and GA, is applied to tackle the
seismic  inverse problem. Since the
earthquake could change the coulomb stress
near the fault planes, and then make the
aftershocks easier to occur or delayed to
occur, the coulomb stress as an important
seismological factor is also computed at the
fault plane and its spatial variation is
discussed.

Very high hazard
High Hazard

Low hazard

" Sefid-Sang

61°

Figure 1. Earthquake center and its surrounding region and seismic hazard zonation map of the study area (Akbari et al.,

2011; Guangyu et al., 2018).
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2. InSAR techniques for the measurement
of deformation

The InSAR technique can measure the
projection of the deformation vector onto the
LOS direction, defined as the shortest path
from a given point on ground to the SAR
antenna phase center. INSAR provides some
unique capabilities for the study of crustal
deformation and active processes (Huadong
et al., 2010). The basic InSAR observable is
called an interferogram, which represents the
per-pixel phase difference between two SAR
acquisitions. For a given interferogram, the
observed InSAR phase change can be
expressed as (Jolivet et al., 2012; Wang et al.,
2013):

=0, +®, +®, +0, +&

topo atm Flatten noise

(D
where © . is the deformation phase along

the LOS direction, ®,___is the phase resulted

topo
from the topography effect, @, is the phase

resulted from the atmospheric delay, @ .,

is the phase from the orbital effect and @,

is the phase related to other thermal noise
errors (Zebker and Villasenor, 1992). Since
we decide to extract the displacement field
from InSAR observations, namely, @ , the

other contributions in the observable InSAR
phase should be modeled from auxiliary data
and removed from Eq. (1).

In this study, for the reduction of the
topography and orbital effects, the Aster
DEM with resolution of 30 m and orbital
files are used respectively. Orbital data are
not accurate enough to remove the orbital
effects completely. It has been proved that in
coseismic studies, these residuals represent
one or two fringes at most. If these residuals
cannot be ignored, it must be removed using
the best fitting twisted plane. The authors did
this process and the result showed that these
residuals can be discarded.

def >

The measured LOS displacement wu, ¢

represents the projection of the vector
displacement field U(U, , U, ,U,) onto the
LOS vector in which (Fialko et al., 2001):

[U sing —U cosg]sin A+
Uu Cos )\ + 6los =4

los
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where ¢ is the azimuth of the satellite

heading vector, A is the radar incidence
angle at the reflection point and &, ¢ is the

measurement error. The azimuthal offset

u,,, 1s a projection of the horizontal

component of the displacement vector onto a
satellite heading vector (Fialko et al., 2001)
which can be written as

[U cosp—U sinp|+6_ =u,,, 3)

For each pixel of the InNSAR data, a linear
system of two equations for the LOS
displacements from the ascending and
descending orbits, combined with one
equation for the azimuthal offsets of the
descending orbit are used to determine the
three components of the displacement vector
(Fialko et al., 2001).

3. Analytical model of earthquake
defor mation

Okada (1985) is one of the simplest
analytical models for investigation of surface
deformation due to rupture on a fault surface.
The motion of a fault can be caused by
various dislocations. Okada (1985) prepared
an analytical expression for the surface
displacement, strain and tilt. This model
computes displacement field in 3D space as a
function of fault parameters. Consequently,
with the presence of real displacement field
obtained by observational methods such as
InSAR, and comparison with displacement
fields obtained from the Okada model, the
parameters of the fault can be determined
from the solution of an inverse problem.

4. ANN equipped with GA

Determination of fault parameters by
inversion of Okada model using InSAR
displacement field is actually a kind of
nonlinear least square adjustment problem.
Thus, the use of proper optimization method
for solution of this problem is an inevitable
task (Haupt and Haupt, 2004). Generally, the
optimization method can be classified into
two groups: classical and evolutionary
methods. Classical methods such as steepest
descent, conjugate gradient and so on use
mathematical functions and their derivatives
to obtain the optimum point. These methods
are dependent on the correct initial values
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and they are very sensitive to the choice
of initial setup. Moreover, due to the use
of function derivatives, they have
some difficulties with complicated functions
such as those that are dealt with in this study.
Since the performance of these algorithms
is highly dependent on the choice of initial
values, it is most likely that they find a
local optimum point instead of a global
one (Haupt and Haupt, 2004) in the cases
that the initial setup does not choose
correctly.

Unlike the classical methods, evolutionary
optimization methods such as ANN and GA
use intelligent algorithms to find the solution.
Therefore, the evolutionary methods do not
have the problem of being trapped in a local
optimum point, because they do not depend
on the exact values of initial parameters (Del
Frate and Salvatori, 2004; Haupt and Haupt,
2004).

ANN is one of the most applicable
evolutionary  optimization methods in
nonlinear optimization, signal processing,
intelligent control and so on. This method is
a kind of combination of computer science
and biology. ANN has a computational
structure of biological neuron systems that
can discover and resolve nonlinear and
complex relationships between inputs in
order to find a global optimum point in a
large and finite space (Zell et al., 1995; Del
Frate et al., 2003; Del Frate and Salvatori,
2004). The ANN consists of many nodes
called neurons that communicate with each
other wusing node connections called
synapses. ANN has three main layers: input,
output, and hidden. In the processing with
ANN, two factors play an important role in
the accuracy of the results: The
interconnecting weights in the structure of
the ANN and their modified quantities.
Synapse weights the value sent from a
connected neuron. Weights may have a
positive, negative, or zero values. These
values may be integer or real numbers
depending on the application of ANN.
Because of the lack of information, the initial
weights of ANN are often produced
stochastically (Yang et al., 2001). Estimating
the initial weights that are global is difficult.

Improper choice of weights might cause the
ANN to be trapped in a local minimum and
thus decreases the probability of finding the
global optimum point. Moreover, it can
reduce the convergence velocity of method
and in some cases it may not converge at all.
These limitations in artificial neural network
must be resolved and optimized (Yang et al.,
2001).

Because of the above-mentioned drawbacks,
in this study, GA is used to produce the
weights of the network connection of ANN
optimization process. GA is a global iterative
optimization method in which, by simulating
the evolutionary processes of organisms,
especially selection and elimination, the
colony is selected and mutated repeatedly
(Wang and Cao, 2002). One of the most
important laws of evolution and mutation is
the survival of the best and elimination of the
worst (Wang and Cao, 2002). Based on these
laws, as well as the adaptive estimation of
every individual, better colony is gradually
produced. The best individuals in the
optimized colony are also found by global
and parallel techniques (Goldberg, 1989;
Michalewicz, 1992). GA has very strong
ability of global searching, because it
validates solutions in the finding space
simultaneously. GA has the ability to deliver
a good-enough and a fast-enough solution.
This makes GA attractive for use in solving
optimization problems. It is possible to apply
these advantages of GA to improve the
limitations of ANN. This technique in which
the ANN and GA are integrated is called
GANN method (Ahmad et al, 2010;
Sangwan et al., 2015). GANN processing
algorithm is illustrated in Fig. 2. It should be
noted that the best structure for the ANN and
GA is chosen based on the feedback received
from the network.

5. Coulomb stress change

The coulomb stress change is a seismic
process, whose origin is a local discrete
deformation event. It indicates that stress
during an earthquake can cause movements
in some parts of the fault and it is used in
earthquake-forecasting models to assess
earthquake activity.
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Figure 2. Sequence of operations in the integrated method of GANN.

The coulomb stress change caused by the
earlier earthquakes can explain the epicenter
location of aftershocks. The aftershocks
probably occur in that location where the
coulomb stress exceeds the failure strength of
the fault surface. The change of coulomb
failure stress can be defined as (Cocco and
Rice, 2002; Wang et al., 2014):

ACFF =Ar+ u(Ac, +AP) 4

where At is the shear stress in the direction
of slip on the fault plane, u is the friction
coefficient, Ag,, is its normal stress change
and AP is the pore pressure change. During
the co-seismic phase, the pore pressure
change can be expressed as (Cocco and Rice,

2002; Wang et al., 2014):

AP = _B2%

&)
where Aay, is the trace of the stress change
tensor, and B is Skempton’s coefficient. As a
result, the coulomb failure model may be
written as (Cocco and Rice, 2002; Wang et
al., 2014):

ACFF =AT+/1(A0”—B%} (6)

Considering the fault parameters, the
coulomb stress change for co-seismic
deformation can be expressed as (Cocco and
Rice, 2002; Wang et al., 2014):

ACFF =sin [— % sin® ¢sin(29)o'! + % sin(2¢)sin(28)o" +sin ¢ cos(25)c "

—%cos2 #sin(25)c> —cosgcos(25)c> + %sin(Zé‘)O'”]

+cos l[—%sin(2¢) sindc'" + cos(2¢) sin 5o + cos g cos So

+ %sin(2¢) sin 5o +sin gcos 5o’ |+ sin’ gsin® So'' —sin(2¢)sin’ So'?

—sin ¢sin(28)c" +cos” gsin® 5> + cos gsin(28)c > +cos’ S — ? (" +0” +07)]

(7
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where @, A and § are the strike, rake and dip
angle of the fault and {0” [i,]=1, 2,3} are

the components of the stress change tensor.
Previous experiments and studies concluded
that the values of y are between 0.6 and 0.8

for most rock materials (Byerlee, 1978;
Cattin et al., 2009). Besides, Skempton’s
coefficient is between 0.4 and 0.9 for granite,
sandstone and marble, but still unconstrained
for other rocks. In this study, according to the
geological features of the study area, the

values of 1 and B are considered to be equal

to 0.6 and 0.5 respectively (Byerlee, 1978;
Cattin et al., 2009; Khodaverdian et al.,
2015).

6. Data set

To perform the InSAR analysis, the two
Sentinel-1A radar acquisitions are used. The
dates of acquisitions are very near to the date
of Sefid-Sang earthquake that enables better
quantification of co-seismic displacement.
The features of data can be seen in Table 1.

7. Numerical results and discussion

In this section, the focus is on the case study
of the paper, presenting the numerical results
and detailed analysis of Sefid-Sang
earthquake along with its fault system. At the
outset, we about the selected SAR
acquisitions and the earthquake deformation
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field extracted from them are briefly
discussed. In the next step, an inversion
problem is conducted to determine the fault
parameters using Okada (1985) model by
integration of the genetic algorithm with the
artificial neural network.

7-1. Processing of radar acquisitions and
earthquake displacement field

The open source and free InSAR processing
software GMTSAR is prepared in c-code
and csh scripts (Sandwell et al.,, 2011).
This software provides the possibility
to easily process SAR, to access to the
relevant code and to add some filters in order
to enhance the accuracy of the final
displacement fields. InSAR processing
initiates with the preprocessing step from
radar data wusing DEM and orbital
information. The interferograms are multi-
looked by a factor 6 in range and 4
in azimuth, and the Lee filter is used for
phase filtering. Fig. 3 shows the
interferograms of ascending and descending
passes. Fig. 4 shows the horizontal and
vertical components of displacement field
derived by combination of descending and
ascending interferograms.

As can be seen in Fig. 4, the maximum
observed vertical displacement is about 12
cm and the maximum  horizontal
displacement is about 4 cm occurred around
the fault region.

Table 1. Sentinel-1A acquisitions.

Mission Master Date Slave Date Pass | Perpendicular Baseline (m) L ook Angle (d)
Sentinel- 1A 2017/03/25 2017/04/10 D 27 32
Sentinel- 1A 2017/03/28 2017/04/08 A 31 43

i J
Sangsefid fault
) e g

-y
Fod

,,ﬁ.}.

Figure 3. The obtained interferograms (left: Ascending and right: descending).
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(@)

Figure 4. 3D map of horizontal (a) and vertical (b) displacement fields.

7-2. Inversion of displacement field to
focal mechanism and fault parameters

In this section, the optimum fault parameters
and focal mechanism of Sefid-Sang fault
system are computed using the inversion of
the displacement field. The fault parameters
include length, width, dip angle, strike, rake,
depth and slip vector. In order to achieve the
training  settings and  evaluate the
performance of the trained artificial neural
network, the use of simulated data is
necessary. The training data is prepared by
changing parameters in the specific limits.
Parameter ranges and rates of change can be
seen in Table 2.

A fixed artificial neural network for all
samples which consists of 4812 points is
considered. Introducing the sample fault
parameters as an input to the Okada model,
the displacement field is calculated and used
as an input to the ANN. Therefore, ANN has
4812 inputs and 5 output neurons; therefore,
3670 samples are prepared. 2120 samples are
used for training of artificial neural network,
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and 1550 samples are used to evaluate the
network. Here, GA is applied to adjust the
weights of the network connections. The
Mean Square Error (MSE) is used to evaluate
the network performance. The computations
are completed when the MSE tends to a
constant value. After the training step, the
deformation field derived from InSAR
observations is used as an input for GANN,
and the fault parameters are derived as an
output. The results for fault parameters are
shown in Table 3. Consequently, moment
magnitude of about 5.7 Mw scale is
computed for this earthquake.

The computed parameters for this fault
using different data sets are presented in
Table 4. As can be seen, the results of this
study are close to the results obtained from
different methods and data sets. Existing
differences are because other data sets
considered the fault as a point, and so do not
provide a fault dimension. Moreover, these
differences are existed between these other
data sets.

Table 2. Parameter ranges and rates of change.

Lockingdepth | Dipangle | Width | Length Strike | Rake Slip
(km) (deg) (km) (km) (deg) | (deg) | (m)
Limit 5-10 55-75 8-16 20-40 110-150 | 0-60 | 0.5-6.5
Rate of changes 1 10 2 2 10 10 0.5
Table 3. The results of the calculation of fault parameters and their standard deviation.
L ocking depth Dip angle Width Length Strikeangle | Rakeangle Slip
(km) (deg) (km) (km) (deg) (deg) (m)
Result 8 55 10 34 210 154 4.5
Standard 1.3 47 2.1 3.4 3.8 1.9 0.78
deviation
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7-3.  Coulomb  strain and stress
computation

In this section, the strain and stress are
calculated using the Coulomb model and also
the dilatation caused by the earthquake
deformation is derived. The stress and strain
are calculated using the final fault parameters
determined in the previous section. Fig. 5
(a)—(c) represents the three components of
the normal strain and Fig. 5(d)—(f) represents
the components of the shear strain Sy, Sy,

and Sy, lying in the XY, XZ and YZ planes,
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respectively, thereby denoting the
propagation of strain energy along the north-
west—south-east direction.

Fig. 6 shows the pattern of coulomb stress
change. According to this figure, one can
infer that at first the compressive stress is
occurred, and then the tensile stress is
prevailed. With a careful looking, the results
expressed itself in dilatation. In Fig. 6, red
color represents regions of increased stress,
and blue represents regions of decreased
stress.

Table 4. Fault parameters estimated from different data sets.

Data set Locking depth Dip angle | Width Length Strikeangle | Rakeangle Slip
(km) (deg) (km) (km) (deg) (deg) (m)
USGS 13 20.73 - - 316.105 127.58 -
GCMT 12 53.44 - - 312.91 117.59 -
IRSC 6 45.46 - - 329.101 120.80 -
A bt i’ SRR . _ SO 10°
ol i‘gr ] b T
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Figure 5. The coulomb strain field. Normal Strain produced along the (a) x-direction (b) y-direction (c) z-direction and
the shear strain produced in the (d) XY plane (e) YZ plane (f) XZ plane (positive change denoted by red and
negative by blue colour).



Combination of Artificial Neural Network and Genetic Algorithm to ... 129

Coulomb stress change (bar)

20 40

-40 -20

V]
X (km)

Dilatation

)(‘10'5

0.5

s
X (km)

Figure 6. The coulomb stress change and dilatation from coulomb model.

8. Conclusion

In this study, the source parameters of Sefid-
Sang earthquake have been determined using
the InSAR technique of co-seismic
deformation field acquired by Sentinel-1A
satellite. To do so, two acquisitions before
and two acquisitions after the earthquake are
compared to each other to derive the LOS
displacement fields in directions of ascending
and descending tracks. Moreover, using both
descending and ascending LOS displacement
fields, the 3D displacement field in the local
coordinate system is derived. Finally, the
nonlinear inversion problem is conducted to
constrain the fault parameters using the
observed surface displacement field with the
aid of artificial neural network optimization
method, equipped with genetic algorithm.
The results of inversion process for fault
depth and slip are 8 km and 4.5 m
respectively. Besides, moment magnitude of
about 5.7 Mw is computed for this
earthquake.
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