
Journal of the Earth and Space Physics, Vol. 45, No. 4, Winter 2020, P. 121-131 

DOI: 10.22059/jesphys.2019.269596.1007065 

Combination of Artificial Neural Network and Genetic Algorithm to Inverse Source 
Parameters of Sefid-Sang Earthquake Using InSAR Technique and Analytical Model 

Conjunction  
 

Haji Aghajany, S.1, Pirooznia, M.1, Raoofian Naeeni, M.2* and Amerian, Y.2 
 

1. Ph.D. Student, Department of Geodesy, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of 
Technology, Tehran, Iran 

2. Assistant Professor, Department of Geodesy, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University 
of Technology, Tehran, Iran 

(Received: 1 Dec 2018, Accepted: 14 May 2019) 
 

Abstract 
In this study, an inversion method is conducted to determine the focal mechanism of Sefid-Sang 
fault by comparing interferometric synthetic aperture radar (InSAR) technique and dislocation 
model of earthquake deformation. To do so, the Sentinel-1A acquisitions covering the fault and its 
surrounding area are processed to derive the map of line of sight (LOS) displacement over the 
study area. Then, using the ascending and descending tracks of the satellite, the three-dimensional 
displacement field is recovered over the region. The maximum horizontal and vertical 
displacements are about 12 cm and 5 cm respectively. The resulting displacement field is 
compared with Okada half-space dislocation model of earthquake to determine the focal 
mechanism and fault parameters by a nonlinear inversion method, which is composed of artificial 
neural network (ANN) and genetic algorithm (GA). The coulomb stress and strain changes, which 
are important factors for prediction of aftershock event, are also determined. The numerical 
achievements show a slip of 4.5 mm, a depth of 8 km, dip angle of 55 deg and width of 10 km for 
this fault. 
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1. Introduction 
Surface deformation measurements are the 
important means of monitoring and 
understanding the crustal deformation related 
to a variety of geophysical phenomenon 
(Zebker and Villasenor, 1992). These 
measurements have been widely used to 
study both natural and man-made processes 
such as earthquake, magmatic flow in 
volcanic systems, landslide, glacial flow, and 
subsidence due to the ground water 
extraction (Fattahi and Amelung, 2016; Xu et 
al., 2010). Recently, InSAR technology has 
been extensively used to measure the 
deformation field triggered by rupture on the 
dislocation surfaces of the faults, particularly 
for the study of co-seismic deformations, 
which may have a significant magnitude 
(Fialko et al., 2001; Motagh et al., 2015). 
SAR interferometric data can also be used to 
extract the three dimensional (3D) 
deformation of the Earth’s surface by using 
the phase part of the radar signal. In addition 
to observational techniques such as InSAR 
and Global Positioning System (GPS) (Wang 
et al., 2013; Haji-Aghajany et al., 2017) 
which measure the amount of deformation, 

there are different analytical models that 
investigate the physical nature of the 
deformation to conceive its relation with the 
tectonic activities within the Earth. In a 
relation to seismic displacements, the 
elasticity theory of dislocation plays an 
important role in characterizing the 
mechanism of earthquake, which relates the 
deformation field to the geometric 
parameters of the faults and the physical 
properties of an earthquake source. The study 
of co-seismic deformation in a half-space, 
spherical and layered Earth model has been 
the subject of many scientific researches 
(Kawasaki et al., 1995; Furuya and 
Satyabala, 2008; Kaneko et al., 2013). The 
half-space Earth model that was first 
introduced by Steketee (1958a, b), and later 
developed by Maruyama (1964), and Okada 
(1985), has become a standard model for the 
study of earthquake source parameter. Okada 
(1985) derived the 3D deformation field due 
to a slip on the surface of rectangular fault 
buried in a homogeneous and isotropic half-
space.  
On Wednesday, 05 April 2017, the 
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2. InSAR techniques for the measurement 
of deformation 
The InSAR technique can measure the 
projection of the deformation vector onto the 
LOS direction, defined as the shortest path 
from a given point on ground to the SAR 
antenna phase center. InSAR provides some 
unique capabilities for the study of crustal 
deformation and active processes (Huadong 
et al., 2010). The basic InSAR observable is 
called an interferogram, which represents the 
per-pixel phase difference between two SAR 
acquisitions. For a given interferogram, the 
observed InSAR phase change can be 
expressed as (Jolivet et al., 2012; Wang et al., 
2013): 

def topo atm Flatten noise
F = F + F + F + F + F   

(1) 
 

where def is the deformation phase along 

the LOS direction, topo is the phase resulted 

from the topography effect, atm is the phase 

resulted from the atmospheric delay, Flatten
is the phase from the orbital effect and noise
is the phase related to other thermal noise 
errors (Zebker and Villasenor, 1992). Since 
we decide to extract the displacement field 
from InSAR observations, namely, def , the 

other contributions in the observable InSAR 
phase should be modeled from auxiliary data 
and removed from Eq. (1).  
In this study, for the reduction of the 
topography and orbital effects, the Aster 
DEM with resolution of 30 m and orbital 
files are used respectively. Orbital data are 
not accurate enough to remove the orbital 
effects completely. It has been proved that in 
coseismic studies, these residuals represent 
one or two fringes at most. If these residuals 
cannot be ignored, it must be removed using 
the best fitting twisted plane. The authors did 
this process and the result showed that these 
residuals can be discarded. 

The measured LOS displacement 
LOS
u  

represents the projection of the vector 
displacement field U(Ue , Un ,Uu) onto the 
LOS vector in which (Fialko et al., 2001): 

[ sin cos ]sin

cos
n e

u los los

U U

U u

j j l
l d
- +
+ =

                      (2) 

where   is the azimuth of the satellite 

heading vector,   is the radar incidence 
angle at the reflection point and LOS  is the 

measurement error. The azimuthal offset 

AZO
u  is a projection of the horizontal 

component of the displacement vector onto a 
satellite heading vector (Fialko et al., 2001) 
which can be written as 

[ cos sin ]
n e azo AZO
U U uj j d- + =             (3) 

For each pixel of the InSAR data, a linear 
system of two equations for the LOS 
displacements from the ascending and 
descending orbits, combined with one 
equation for the azimuthal offsets of the 
descending orbit are used to determine the 
three components of the displacement vector 
(Fialko et al., 2001). 
 
3. Analytical model of earthquake 
deformation 
Okada (1985) is one of the simplest 
analytical models for investigation of surface 
deformation due to rupture on a fault surface. 
The motion of a fault can be caused by 
various dislocations. Okada (1985) prepared 
an analytical expression for the surface 
displacement, strain and tilt. This model 
computes displacement field in 3D space as a 
function of fault parameters. Consequently, 
with the presence of real displacement field 
obtained by observational methods such as 
InSAR, and comparison with displacement 
fields obtained from the Okada model, the 
parameters of the fault can be determined 
from the solution of an inverse problem. 
 
4. ANN equipped with GA 
Determination of fault parameters by 
inversion of Okada model using InSAR 
displacement field is actually a kind of 
nonlinear least square adjustment problem. 
Thus, the use of proper optimization method 
for solution of this problem is an inevitable 
task (Haupt and Haupt, 2004). Generally, the 
optimization method can be classified into 
two groups: classical and evolutionary 
methods. Classical methods such as steepest 
descent, conjugate gradient and so on use 
mathematical functions and their derivatives 
to obtain the optimum point. These methods 
are dependent on the correct initial values 
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and they are very sensitive to the choice  
of initial setup. Moreover, due to the use  
of function derivatives, they have  
some difficulties with complicated functions 
such as those that are dealt with in this study. 
Since the performance of these algorithms  
is highly dependent on the choice of initial 
values, it is most likely that they find a  
local optimum point instead of a global  
one (Haupt and Haupt, 2004) in the cases  
that the initial setup does not choose 
correctly.  
Unlike the classical methods, evolutionary 
optimization methods such as ANN and GA 
use intelligent algorithms to find the solution. 
Therefore, the evolutionary methods do not 
have the problem of being trapped in a local 
optimum point, because they do not depend 
on the exact values of initial parameters (Del 
Frate and Salvatori, 2004; Haupt and Haupt, 
2004). 
ANN is one of the most applicable 
evolutionary optimization methods in 
nonlinear optimization, signal processing, 
intelligent control and so on. This method is 
a kind of combination of computer science 
and biology. ANN has a computational 
structure of biological neuron systems that 
can discover and resolve nonlinear and 
complex relationships between inputs in 
order to find a global optimum point in a 
large and finite space (Zell et al., 1995; Del 
Frate et al., 2003; Del Frate and Salvatori, 
2004). The ANN consists of many nodes 
called neurons that communicate with each 
other using node connections called 
synapses. ANN has three main layers: input, 
output, and hidden. In the processing with 
ANN, two factors play an important role in 
the accuracy of the results: The 
interconnecting weights in the structure of 
the ANN and their modified quantities. 
Synapse weights the value sent from a 
connected neuron. Weights may have a 
positive, negative, or zero values. These 
values may be integer or real numbers 
depending on the application of ANN. 
Because of the lack of information, the initial 
weights of ANN are often produced 
stochastically (Yang et al., 2001). Estimating 
the initial weights that are global is difficult. 

Improper choice of weights might cause the 
ANN to be trapped in a local minimum and 
thus decreases the probability of finding the 
global optimum point. Moreover, it can 
reduce the convergence velocity of method 
and in some cases it may not converge at all. 
These limitations in artificial neural network 
must be resolved and optimized (Yang et al., 
2001). 
Because of the above-mentioned drawbacks, 
in this study, GA is used to produce the 
weights of the network connection of ANN 
optimization process. GA is a global iterative 
optimization method in which, by simulating 
the evolutionary processes of organisms, 
especially selection and elimination, the 
colony is selected and mutated repeatedly 
(Wang and Cao, 2002). One of the most 
important laws of evolution and mutation is 
the survival of the best and elimination of the 
worst (Wang and Cao, 2002). Based on these 
laws, as well as the adaptive estimation of 
every individual, better colony is gradually 
produced. The best individuals in the 
optimized colony are also found by global 
and parallel techniques (Goldberg, 1989; 
Michalewicz, 1992). GA has very strong 
ability of global searching, because it 
validates solutions in the finding space 
simultaneously. GA has the ability to deliver 
a good-enough and a fast-enough solution. 
This makes GA attractive for use in solving 
optimization problems. It is possible to apply 
these advantages of GA to improve the 
limitations of ANN. This technique in which 
the ANN and GA are integrated is called 
GANN method (Ahmad et al., 2010; 
Sangwan et al., 2015). GANN processing 
algorithm is illustrated in Fig. 2. It should be 
noted that the best structure for the ANN and 
GA is chosen based on the feedback received 
from the network. 
 
5. Coulomb stress change  
The coulomb stress change is a seismic 
process, whose origin is a local discrete 
deformation event. It indicates that stress 
during an earthquake can cause movements 
in some parts of the fault and it is used in 
earthquake-forecasting models to assess 
earthquake activity. 
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