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Abstract 
This paper reports on the progress for the first development of rocket probe for in-situ 
measurement of ionospheric plasma parameters in Iran. The designed probe known as Plasma 
Impedance Probe (PIP) will be used to measure the electron density, electron-neutral collision 
frequency, background magnetic field, and temperature in the mesospheric and in the altitude 
range of 70 km to 150 km. This paper presents a review of the current plan on design, analysis, 
fabrication and laboratory tests of the PIP. Specifically, the theoretical calculations as well as 
numerical simulations on the characteristics of the PIP is provided and discussed. The effect of 
several background parameters in the ionospheric region on the radiation characteristics of the 
immersed antenna in the background plasma is presented. The possible reduction technique in 
order to analyze the observational data and derive background ionospheric parameters is provided. 
The requirements for the implementation of the designed probe are investigated. The possible 
applications of the PIP in complex plasma are introduced.  
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1. Introduction  
The local measurements of atmospheric, 
ionospheric and magnetospheric parameters 
using a probe on rockets and satellites, which 
is known as in-situ observations, has a long 
history in the field of space science and 
remote sensing. The history of these 
observations goes back to the post world war 
II era. The technologies associated with in-
situ probes and instruments have been 
advanced over the years significantly such 
that they can provide very accurate 
observations of natural and artificially 
created phenomena in the near earth 
environment.  
One of the simple and applicable probes that 
have been used in several missions by NASA 
and other institutions is the Plasma 
Impedance Probe (PIP) (Balmain, 1964; 
Baker et al., 1966; Bishop and Baker, 1972; 
Oya, 1966; Oya and Aso, 1969; Oya and 
Obayashi, 1967; Oya and Morioka, 1975; 
Carlson, 2004; Ward et al., 2005; Ward, 
2006; Blackwell et al., 2005a, b, 2007; 
Spencer et al., 2007). The plasma impedance 
probe consists of an antenna with sweeping 
frequency within the range of background 
ionospheric plasma frequency. As the rocket 
passes through the ionosphere and based on 
the time scale of each frequency sweep, the 

resonance condition associated with electron 
plasma frequency, electron gyro-frequency, 
and electron-neutral collision frequency. This 
probe has passed the measurement 
capabilities within highly variable region of 
the ionosphere such as Aurora (Spencer et 
al., 2008; Abe et al., 2006; Wakabayashi and 
Ono, 2006; Jayram et al., 2008).  
There are several other in-situ probes that can 
be used on rockets or satellites for local 
measurements of plasma and ionospheric 
parameters, which are not the subject of this 
paper. One major probe, which is widely 
being used, is the Langmuir probe that is well 
known as a basic instrument for measurement 
of ionospheric parameters such as electron 
density. This probe is designed to determine 
the electron temperature, electron density, 
and electric potential of plasma. This probe 
uses a constant or time-varying electric 
potential between the various electrodes or 
between them and the surrounding plasma. 
While this technique can provide an accurate 
measurement of plasma parameters, the 
direct contact of the probe with the plasma 
and shielding effect could limit the 
performance and applications of such probe. 
Therefore, the PIP that is the subject of 
current paper has a great advantage over the 
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common in-situ probes both on simplicity 
and flexibility aspects. 
This paper presents the theoretical analysis of 
PIP with varying background ionospheric 
parameters. The capability assessment of this 
probe for measuring ionospheric parameters 
is investigated by varying background 
parameters. A complicated computational 
model is discussed and used for accurate 
determination of plasma parameters. A data 
reduction technique to analyze the measured 
parameters is presented. The planned 
laboratory experiments are also discussed. 
 
2. Plasma Impedance Probe (PIP) 
The plasma impedance probe has received 
attention of the researchers for in-situ 
observations of the mesosphere and 
ionosphere. As discussed before, the main 
goal of the PIP is to measure the induced 
variation of the antenna input impedance, 
which is a result of changes in the 
background electron density, electron 
temperature, as well as orientation with 
respect to the background magnetic field. 
These electrically short antennas in free 
space have a fundamental impedance of 
 ܼ௔௡௧௘௡௡௔ =  ି௝ఠ஼బ                                          (1) 

where ߱  is the transmission frequency, and ܥ଴  is the characteristics capacitance of the 
antenna. The simplest approximation of the 
effect of plasma on an antenna is obtained by 
treating the plasma as a dielectric. ߳௥ = ቀ1 − ఠ೛మఠమቁ                                            (2) 

In this expression, electron plasma frequency 
is ߱௣ = ݊݁ଶ ߳଴݉௘ൗ . Immersed antenna in 
plasma can be treated as a parallel plate 
capacitor filled with a dielectric ܥ = ߳௥ܥ଴ = ቀ1 − ఠ೛మఠమቁ  ଴                            (3)ܥ
If the plasma is modeled as a lossy dielectric, 
due to electron -neutral collisions (νen), the 
relative permittivity becomes ߝ௥ = 1 − ఠ೛మఠమି௝ఠజ೐೙                                           (4) 
In the case of lossy (collisional) plasma, the 
impedance of the antenna not only has a 
modified reactive component (X) of the 
impendence, but also adds a resistive 

component (R). The plasma parameters such 
as electron density and collision frequency 
can be obtained from the following 
expressions. 
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                       (5) 
Measuring the difference from a free space 
value results in ∆ܼ = ܼ௧௢௧௔௟ − ௙ܼ௥௘௘ ௦௣௔௖௘ = ∆ܴ + ݆∆ܺ     (6) 
 
3. Balmain Theoretical Model 
Balmain (1964) was the first to develop a 
relatively simple expression for an antenna in 
a magnetized plasma. For an antenna 
immersed in a cold, collisional magnetized 
plasma ܼ௜௡ =  ଵ௝ఠగఌబ௅ᇲ ቀ݈݊ ௅ᇲோᇲ − 1ቁ                          (7) 
For a short dipole in a plasma by only 
replacing the effective half length (L) and 
radius (R), The dielectric tensor contains 
essentially all of the information about the 
electromagnetic properties of a plasma. ܮᇱ = ඥ߳ଵܶ                                                 (8) ܴᇱܮ = ோଶ ൬ఢభඥఢయ√் + ඥ߳ଵ߳ଷ൰                             (9) ܶ = ߳଴ sinଶ ߠ + ߳ଵ cosଶ  (10)                         ߠ
where ߠ denotes the incident angle of the DC 
magnetic field. The dielectric tensor for a 
cold, collisional, magnetized plasma 

߳௥ന = ൭ ߳ଵ −݆߳ଶ 0݆߳ଶ ߳ଵ 00 0 ߳ଷ൱                           (11) 
߳ଵ = 1 − ఠ೛೐మ ሺଵି௝జ ఠ⁄ ሻఠమሺଵି௝జ ఠ⁄ ሻమିஐ೎೐మ                          (12) 
߳ଶ = ఠ೛೐మ ቀஐ೎೐ ఠൗ ቁఠమሺଵି௝జ ఠ⁄ ሻమିஐ೎೐మ                                 (13) ߳ଷ = 1 − ఠ೛೐మఠమሺଵି௝జ ఠ⁄ ሻమ                                (14) 
The theoretical results using the above-
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6. Conclusion 
The theoretical and computational modeling 
of antenna radiation characteristics such as 
input impedance in the presence of plasma is 
investigated for the first upcoming in-situ 
mesospheric measurement using sounding 
rockets in Iran. The plasma impedance probe 
(PIP), an immersed antenna in plasma has 
been used for local measurements of plasma 
layer parameters such as plasma density, 
collision frequency, magnetic field strength 
and temperature in the near Earth 
environment.  
The background ionospheric parameters will 
produce a clear signature on the characteristic 
impedance of antenna versus transmission 
frequency, which provides a measurement 
technique for in-situ measurements in the 
ionosphere using PIP on sounding rockets. It 
has been shown in this paper that the unique 
signature of electron-plasma frequency, gyro-
frequency and electron-neutral collision 
frequency on the characteristic impedance of 
the antenna is distinguishable and can be 
employed to measure the background 
ionospheric parameters. A data reduction 
technique to be used in the actual experiment 
for measuring background ionospheric 
parameters is discussed. It has been shown 
that the best practical approach is to 
determine an estimated value of parameters 
using the comparison of Balmain theoretical 
results and observations. A detailed 
computational modeling will be used next for 
exact determination of background 
parameters.  
As part of the pre-mission tests, laboratory 
experiments are planned to examine the 
performance of the electronic parts as well as 
the data reduction algorithm. Having access 
to magnetized plasma vacuum chamber for 
the laboratory experiments to verify the PIP 
observations is critical. There are several 
plasma laboratory facilities that suit well for 
the purpose of this study. 
The electronics and other parts of the probe 
are under development. Altitude resolution 
and corresponding frequency sweep time are 
being decided. The authors of this paper are 
currently investigating the broader 
applications of the plasma impedance probe 
in complex plasma and in the presence of 
dust particles for the first time. This study is 
expected to be used to diagnose natural dust 

layers in the near Earth environment as well 
as the laboratory. 
 
References 
Abe, T., Kurihara, J., Iwagami, N., Nozawa, 

S., Ogawa, Y., Fujii, R., Hayakawa, H. 
and Oyama, K.I., 2006, Dynamics and 
Energetics of the lower thermosphere in 
Aurora (DELTA)—Japanese sounding 
rocket campaign—, Earth Planets Space, 
58, 1165–1171. 

Balmain, K. G., 1964, The impedance of a 
short dipole antenna in a magnetoplasma, 
IEEE Transactions on Antennas and 
Propagation, 12(5), 605–617. 

Baker, K. D., Despain, A. M. and Ulwick, 
J.C., 1966, Simultaneous comparison of 
RF probe techniques for determination of 
ionospheric electron density, Journal of 
Geophysical Research, 71(3), 935–944. 

Bishop, R. H. and Baker, K. D., 1972, 
Electron temperature and density 
determination from RF Impedance probe 
measurements in the lower ionosphere, 
Planetary and Space Science, 20, 997–
1013. 

Blackwell, D. D., Walker, D. N., Messer, S. 
J., and Amatucci, W. E., 2005a, 
Characteristic of the plasma impedance 
probe with constant bias, Physics of 
Plasmas, 12(093510). 

Blackwell, D. D., Walker, D. N. and 
Amatucci, W. E., 2005b, Measurement of 
absolute electron density with a plasma 
impedance probe, Review of Scientific 
Instruments, 76(023503). 

Blackwell, D. D., Walker, D. N., Messer, S. 
J. and Amatucci, W. E., 2007, Antenna 
impedance measurements in a magnetized 
plasma II Dipole antenna, Physics of 
Plasmas, 14(092106). 

Carlson, C. G., 2004, Next generation plasma 
frequency probe instrumentation 
technique, Master’s thesis, Utah State 
University, Logan, UT. 

Jayram, M., Hamoui, M. E., Patra, S., 
Winstead, C. and Spencer, E., 2008, Fully 
Integrated electronics system for a plasma 
impedance probe. 22nd Annual 
AIAA/USU conference on small 
satellites. 

Oya, H., 1966, Study on boundary value 
problems of magneto-active plasma and 
their applications to space observation, 



244                                Journal of the Earth and Space Physics, Vol. 45, No. 4, Winter 2020 

 

Ph.D. thesis, Kyoto University. 
Oya, H. and Aso, T., 1969, Ionospheric 

electron temperature measured by a gyro-
plasma probe, Space Research IX, North-
Holland Publishing Comp., Amsterdam, 
287–296. 

Oya, H. and Obayashi, T., 1967, Rocket 
measurement of the ionospheric plasma 
by gyro-plasma probe, Rep. Ionos. Space 
Res. Japan, 21, 9–16. 

Oya, H. and Morioka, A., 1975, 
Instrumentation and observations of gyro-
plasma probe installed on TAIYO for 
measurement of ionospheric plasma 
parameters and low energetic particle 
effects, J. Geomag. Geoelectr., 27, 331–
361. 

Spencer, E. A., Patra, S., Andriyas, T., 
Senson, C. M. and Ward, J., 2007, Plasma 
impedance probe analysis with a finite 
difference time domain simulation. 16th 
IEEE-Pulsed Power Conference, doi: 
10.1109/PPPS.2007.4652493. 

Spencer, E., Patra, S., Andriyas, T., Swenson, 
C., Ward, J. and Barjatya, A., 2008, 
Electron density and electron neutral 
collision frequency in the ionosphere 
using plasma impedance probe 
measurements, Journal of Geophysical 
Research, 113, A09305, 9 PP. 
doi:10.1029/2007JA013004. 

Wakabayashi, M. and Ono, T., 2006, 
Electron density measurement under the 
influence of auroral precipitation and 
electron beam injection during the 
DELTA campaign, Earth Planets Space, 
58, 1147–1154. 

Ward, J., Swenson, C. M. and Furse, C., 
2005, The impedance of a short dipole 
antenna in a magnetized plasma via a 
finite difference time domain model, 
IEEE Transactions on Antennas and 
Propagation, 53(8), 2711–2718. 

Ward, J., 2006, The Numerical Modeling of 
an Antenna in Plasma. Ph.D. dissertation, 
Utah State University, Logan, UT. 

 


