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Abstract 
Through the lens of supply chain management, integrating process planning decisions 

and scheduling plans becomes an issue of great challenge and importance. Dealing 

with the problem paves the way to devising operation schedules with minimum 

makespan; considering the flexible process sequences, it can be viewed as a 

fundamental tool for achieving the scheme, too. To deal with this integration, the 

modeling approach to problem with MIP structure is common in the literature. These 

models take precedence constraints into consideration to select machines and to 

determine sequences. In order to obtain viable sequences, we employed a proposed 

transformation matrix (TM). We also took advantage of an evolutionary search, called 

Learnable genetic Architecture (LEGA). Based on LEGA, we developed an integrated 

process planning and scheduling learnable genetic algorithm (IPPSLEGA). Our 

approach was evaluated with problems with various sizes. The experimental results 

show that our proposed architecture outperforms prior approaches, or it performs, at 

least, as efficiently as they do.  
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 Introduction 
A supply network works via several interrelated entities which are 

orchestrated as a unified process to turn inputs into predefined 

demanded outputs from downstream layers of the networks (Beamon, 

1998). Considering supply chain, activities involving planning and 

scheduling are very complicated and must be done through the entire 

supply chain and also within the enterprise. Thus, in order to achieve 

global optimal solutions, one needs to focus on more coordinated and 

integrated planning processes. 

Process planning gives insight to how an item is manufactured. It 

connects design, manufacturing, and scheduling. It also takes 

alternative resources into account. Generally, customer orders intended 

for processing might have a flexible process sequence and can be 

scheduled based on different resources. In Hankins et al. (1984), it is 

shown that taking advantage of several alternative resources can reduce 

order–to-delivery times and result in better resource exploitation. Nasr 

and Elsayed (1990) studied the problem in which each operation could 

have more than one routing. Their heuristics were meant to deliver an 

efficient schedule. Brandimarte and Calderini (1995) designed a two-

stage tabu search for planning and scheduling. Based on simulated 

annealing, a method was developed by Palmer (1996) for solving 

integrated problems. However, in these studies, no rule was employed 

to sequence an operation. A primal-dual approach was introduced by 

Guinet (2001) to find the solution for a model of networked production 

planning. Zhang et al. (2003) purported to present a novel method for 

integrating these two decisions in a batch production system. Wong et 

al. (2006) developed an agent-based modeling focusing on negotiations 

for this integrated problem. Moon et al. (2002) developed a model to 

sequence and schedule the process in an integrated manner to achieve 

more flexibility and minimize the total tardiness. Cochran et al. (2003) 

developed an evolutionary algorithm in which two different populations 

serve solutions for each stage of bi-objective scheduling problem 

independently. Tan and Khoshnevis (2004) modeled the integrated 

problem as an MIP. Moon et al. (2008) designed a genetic algorithm 

(GA) for PPS to minimize the makespan. Shao et al. (2009) developed 

a new model to determine PPS decisions jointly, rather than 

sequentially, and promoted it to IPPS. They presented a genetic 

algorithm with improved representation to facilitate making these 

decisions simultaneously. 
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Leung et al. (2010) proposed the agent-based structure and 

implemented the ACO algorithm on the platform in which multiple 

agents operate. They showed that in terms of robustness, an agent-based 

view of the problem is better than a centralized one. Li et al. (2012) 

developed an active learning genetic algorithm through learning from 

excellent individuals/peers to improve the efficiency and quality of the 

optimization of the IPPS problem. In this study, the cross-over operator 

was used as the learning operator. Wang et al. (2014) developed a graph 

based on the ant colony and improved the prematurity of the algorithm 

through some modifications in attraction process and compared their 

algorithm with two other types of ACO. Comparing their results with 

test beds by Leung et al. (2010), they showed improvements in some 

beds, but not all of them. Zhang et al. (2015) introduced a genetic 

algorithm in which a chromosome shows the sequence of operation 

performed on all machines. They showed their GA outperforms the 

algorithms of other studies in most of the test beds. Zhang and Wong 

(2016) presented a graph model for IPPS including a network of 

operation sequences which are evaluated by the mapping rule. The 

suggested generic framework in their study gives different constructive 

heuristic methods. Petrovic´ et al. (2016) proposed a particle swarm 

optimization algorithm equipped with ten different chaotic maps, which 

was labeled as cPSO to avoid local optima trap. Their multi-objective 

model is to optimize a blend of five objectives, among which the 

balancing utilization of machines is less studied in IPPS literature. Xia 

et al. (2016) developed a hybrid GAVNS to solve the dynamic IPPS 

problem. They presented a 6-step procedure to deal with IPPS decisions 

in the more realistic environment with relevant disturbances. While the 

majority of researchers have studied IPPS in the job shop environment, 

some have studied other environments i.e., Reconfigurable 

Manufacturing Systems (RMS) and process industries.  In the RMS 

environment, the multi-configuration nature of machines makes setup 

planning a critical issue, so that it should be incorporated in process 

planning. Mohapatra et al. (2013) addressed the adaptive setup planning 

through cross-machine setup. Bensmaine et al. (2014) developed a 

heuristic which used availability time and selection index and applied 

it to a simple simulated instance. There exists a study in process 

industries done by Shah et al. (2012) that deals with process and 

scheduling decisions in multi-period mode with a given supply chain 

network. Here, the purpose of process planning is to assign tasks to 

sites, and the starting time of processing batches is determined by 
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scheduling. Multi-period modeling used in this study requires authors 

to consider inventory and transportation decisions. The multi-objective 

studies on IPPS have been stemmed from the work done by Li et al. 

(2012). One might classify objectives in such studies into four general 

classes: makespan and/or flow, machine work/load, tardiness, and the 

costs of machining or production. To solve these multi-objective 

problems, researchers have designed GA- and PSO-based algorithms 

(Li et al. 2012, Mohapatra et al. 2013, Ausaf et al. 2015, Petrovic´ et al. 

2016, Luo et al. 2017). In the work done by Ausaf et al. (2015), the 

authors developed a heuristic algorithm which employed dispatching 

rules to find satisfactory solutions regarding all classes of objectives, 

except for the cost. The GA algorithms in the foregoing studies are 

equipped with some supplement or compliment property, shown in the 

last column of Table 1. These features help algorithms in conquering 

the intractability of the problem. Table 1 summarizes the most related 

IPPS studies in the last five years. 

In our work, the model determines three decisions, i.e. the selection 

of resource as well as the sequencing and scheduling of operation to 

optimize the total processing time. We also developed an integrated 

process planning learnable genetic algorithm (IPPLEGA), to tackle the 

IPPS decisions. IPPLEGA is a development of the learnable genetic 

architecture (LEGA) presented by Ho et al. (2007), which has been 

successfully evaluated for solving a number of benchmarks for the 

Flexible Jobshop scheduling problems (Mesghouni et al. 1997; Chen et 

al. 1999; Kacem et al. 2002a; Kacem et al. 2002b Brandimarte, 1993) 

and active learning-based GA presented by Xinyu Li et al (2012). 

Moreover; in the IPPLEGA we took advantage of a proposed 

transformation matrix (TM). This evolutionary search is based on TM 

and able to achieve a satisfactory solution to the model efficiently. The 

main contribution of the solution method of this study is adapting the 

application of LEGA in making joint decisions in IPPS by means of 

introducing innovative module, which is called as “Transformation”. 

This module manages the relationships of three LEGA modules 

effectively to solve the IPPS.  

The rest of the paper is presented by the following briefly-introduced 

sections: Section 2 defines the studied problem; section 3 describes an 

integrated mathematical model dealing with process planning and 

scheduling; in section 4 the proposed architecture, IPPLEGA, is 

introduced; section 5 reports computational results, and the conclusion 

of this study is given in section 6.   
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Problem definition 
The set of processes required for turning all types of inputs into final 

products can be performed under predefined precedence constraints. 

Process planning is about identifying operations and sequences based 

on counterpart routes so that, producing an order is accomplished 

effectively. IPPS involves determining the best schedules along with 

process plans with respect to precedence constraints, set of operations, 

given processing times, and the counterpart routes. 

 
Table 1. IPPS researches during recent five years 

Author 

(Year) 

Environ

ment 

Other 

Decisions 
Objectives 

Algorit

hm/ 

Feature 

Lian et 

al. (2012) 
Job shop  Makespan(S) 

ICA/ 

Operation-

based 

representati

on 

Shah et 

al. (2012) 

Process 

industry 

Produ

ction 

/inventory 

planning 

Total Production/ 

inventory cost (S) 

Lagran

gian 

decomposit

ion / 

Diagonal 

Quadratic 

approximat

ion 

Li et al. 

(2012) 
Job shop  Makespan(S) 

GA/ 

active 

learning 

Li et al. 

(2012) 
Job shop  

Makespan/MMW/TMW 

(M) 

GA-

TS/ Nash 

Equilibriu

m solutions 

for 

generations 

Mohapa

tra et al. 

(2013) 

RMS 

Adapt

able setup 

planning 

Machining 

cost/Makespan/Machine 

utilization 

(M) 

NSGA-

II/ Fuzzy 

set theory 

for 

selecting 

Pareto 

solutions 

Wang et 

al. (2014) 
Job shop  Makespan(S) 

ACO/ 

graph 

based 

A.Bens

maine et al. 

(2014) 

RMS 

time 

of 

Availabilit

y / 

selection 

Makespan(S) 

Heurist

ic/ Discrete 

event 

simulator 
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Author 

(Year) 

Environ

ment 

Other 

Decisions 
Objectives 

Algorit

hm/ 

Feature 
index 

Zhang 

et al. (2015) 
Job shop  Makespan(S) 

GA/ 

object-

coding 

Ausaf et 

al. (2015) 
Job shop  

Makespan/MML/TML/T

FT/MFT/TT 

(M) 

Heurist

ic-PBOA/ 

Dispatchin

g rules/ 

External 

archive 

Zhanga 

and Wong 

(2016) 

Job shop  Makespan(S) 

constru

ctive 

heuristic/ 

Generic 

framework 

Petrovic

´ a et al. 

(2016) 

Job shop  

Production time, 

production cost, makespan, 

machine utilization and mean 

flow time(M) 

cPSO/ 

Chaotic 

maps 

Xia et 

al. (2016) 
Job shop  Makespan(S) 

GAVN

S/ 

Luo et 

al. (2017) 
Job shop  

Makespan/TT/TFT/MM

W/TMW(M) 

MOGA

-IE/ 

Immune 

principle -

External 

archive 

RMS: Reconfigurable Manufacturing Systems 

(M): Multi-objective 

(S): Single objective 
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This problem can be described like this: A set of n jobs must be 

processed using m machines with alternative operation andcounterpart 

sequences. It is necessary in a process plan representation to include 

representation of constraints that limit the decisions to pre-defined 

precedencies. A pre-determined process sequence governs the manner 

in which all jobs must be processed. The decision of machine selection 

is made in the process planning. In our scheme, every job needs a 

number of operations performable on some pre-defined machines with 

non-equal processing times. Each machine can perform a number of 

operations and has finite capacities with different capabilities. The time 

to complete all customer orders can be usually considered as the 

summation of process times and some kind of non-value added times 

including idle and transportation times. When there are several jobs to 

complete, makespan is the required time to finish all of them. 

 
Model for IPPS 
We used an MIP model presented by Moon et al. (2008) which 

minimizes the makespan. Relations (1) - (8) are adapted from Moon et 

al. (2008). 
 

 Minimize 𝐹 = max
∀𝑖,𝑘 and 𝑗

 {𝑥𝑖𝑘𝑗}     

subject to    

𝑥𝑖𝑔𝑞 − 𝑥𝑖𝑘𝑗 + 𝑀(1 −

𝑌𝑖𝑔𝑞) ≥ 𝑝𝑖𝑔𝑞  

∀(𝑘, 𝑔) ∈
𝑅𝑖, 𝑖, 𝑗 and 𝑞,  

(1) 

𝑥𝑖𝑔𝑞 − 𝑥𝑖𝑘𝑗 + 𝑀(1 −

𝑑𝑖𝑘𝑔) ≥ 𝑝𝑖𝑔𝑞  

∀(𝑘, 𝑔) ∈
𝐵𝑖, 𝑖, 𝑗 and 𝑞,  

(2) 

𝑥ℎ𝑔𝑗 − 𝑥𝑖𝑘𝑗+≥ 𝑝ℎ𝑔𝑗 −

𝑀(1 − 𝑣𝑘𝑔𝑗)       
∀(𝑘, 𝑔) ∈

𝐺𝑗 , 𝑖, 𝑗, 𝑞 and 𝑖 ≠ ℎ,  
(3)   

∑ 𝑌𝑖𝑘𝑗
𝐻
𝑗=1 = 1  ∀𝑖 and 𝑘,  (4) 

𝑥𝑖𝑘𝑗 ≤ 𝑀𝑦𝑖𝑘𝑗  ∀𝑖 , 𝑘, 𝑎𝑛𝑑 𝑗  (5) 

𝑥𝑖𝑘𝑗 ≥

{
𝑝𝑖𝑘𝑗     for 𝑖, 𝑘 ∈ 𝐵𝑖, 𝑗

 0       for all other 𝑖, 𝑘
  

 (6) 
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𝑦𝑖𝑘𝑗 ∈ {0,1}  ∀𝑖, 𝑘, and 𝑗  (7) 

𝑣𝑘𝑔𝑗 ∈ {0,1}  ∀𝑗, 𝑘, and 𝑔  (8) 

For which the following notations stand: 
Prime sets: 

Jobs: indexed by i, h with the size of I 

Operations: indexed by k, g with the size of K and Ki 

Machines: indexed by j, q with the size of H 
Derived sets: 

Precedencies: defined for any job as the pairs of its operations indexed 

by 𝑹𝒊 = {𝒓𝒌𝒈|∀𝒈 = 𝟏,… , 𝑱𝟏𝒊} with the size of J1i 

Non-Precedencies: defined for any job as the pairs of its operations, 

indexed by 𝑹𝒊 = {𝒓𝒌𝒈|∀𝒈 = 𝟏,… , 𝑱𝟏𝒊}  with the size of 𝑱𝟐𝒊  which 

counts the pairs of operations with no precedence relations 

Machines - Operations: defined for any machine as the operations 

which can be processed on it, indexed by Gj  
Parameter and variables: 

Jobs - Operations - Machines: 

The processing time shown by pikj; 

The completion time of an operation of each job on each machine 

calculated by 𝒙𝒊𝒌𝒋; 

A binary variable to determine whether an operation of a job is 

performed on a machine or not calculated by 𝒚𝒊𝒌𝒋; 

Jobs – Operations - Operations: 

Quantifying the precedence requirement of each pair of operations 

of any job as a binary number by 𝒅𝒊𝒌𝒈 ; 

Machine - Operations - Operations: 

A binary variable to determine the sequence of operations on any 

machine calculated by 𝒗𝒌𝒈𝒋; 

 Constraint (1) forces the model  to comply with the given 
precedence relations for the operations of each job. Whenever 𝒀𝒊𝒈𝒒 is 
not equal to 1, the left side of this relation will be sufficiently large and 
the value of relation is true. Constraint (2) ensures that operations of a 
job cannot be simultaneously performed, even on different machines. 
Relation (3) guarantees that a machine can process just one operation 
of any job. Constraint (4) results in assigning just one machine to each 
operation. Relation (5) sets the completion time of each operation on 
each machine to zero if no such an assignment is adjusted. Constraints 
(6) – (8) set problem variables as integer or binary ones. 



 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable… 315 

Integrating learning population evolution and process planning 
Integrating well-devised knowledge-based encoding, learning 

methodology and initialization results in improving the quality of the 

algorithm solution and its efficiency (Ho et al. 2007). In order to solve 

flexible job-shop problem (FJSP), Ho et al. (2007) proposed an 

architecture called LEGA. Three modules constitute LEGA, namely a 

Population Generator module, Evolutionary Algorithm (EA) module 

and a Schemata Learning (SL) module. These modules require a 

feasible operation sequence in order to solve a problem. To do this, we 

added a new module, i.e. Transformer module, to the structure of LEGA 

(see Figure 1). Transformer module provides an appropriate sequence 

for these modules. Sections 4.1, 4.2, 4.3, and 4.4 provide information 

on the modules mentioned above. 

 

Population Generator 

Module 

Evolutionary Algorithm 

Module

Schemata Learning 

Module

Transformer Module
send

send

modify

traininitialize

 

Figure 1. IPPLEGA architecture 

 
 Module 1: Population Generator 

A heuristic algorithm known as composite dispatching rules (CDR) is 

employed to produce proper initial solutions to elaborate the scheduling 

suitable flexible job-shop problem. CDR was proposed by Ho et al. 

(2007) and its effectiveness was evaluated on several benchmarks 

proposed by Mesghouni et al. (1997) and Kacem et al. (2002b). 

With respect to CDR, note that three basic dispatching rules, namely 

SPT, LPT and FIFO, are applied. Thus, with one random set of n jobs 

to be scheduled, we will be able to generate three different schedules. 

Module 2: Schemata learning 
Two distinguished memories, i.e. chromosomal memory and operational 

memory, were used by Ho et al. (2007) and yielded solutions with high 

quality for different instances of FJSP. Therefore, we took these two 

memories into consideration. Additionally, obtained results show that the 
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use of chromosomal and operational memories in our proposed architecture 

can lead to better solutions. 

The main purpose of incorporating chromosomal memory in our 

work is to ensure the survival of high quality chromosomes into the next 

generation. In order to achieve this goal, a similarity template is 

operationalized during the crossover process. A predefined number of 

solutions with better fitness function values are selected in the current 

generation so that the similarity template of these chromosomes are 

inherited and the current population is influenced. Each chosen 

chromosome is evaluated based on its desirability against other 

chromosomes in chromosomal memory. The first k (a predefined value) 

chromosomes in term of similarities will be moved to the current 

generation. We use the following equation to calculate the similarity in 

term of Hamming distance: 
𝑺 (𝑪𝟏, 𝑪𝟐) =  ∑ 𝑶𝒑𝒕𝟏(𝒊) ⊗ 𝑶𝒑𝒕𝟐(𝒊) + ∑ 𝑴𝒄𝒉𝟏(𝒋) ⊗ 𝑴𝒄𝒉𝟐(𝒋)𝐦

𝐣=𝟏
𝐧
𝐢=𝟏   

where C1 and C2 are two chromosomes. Each chromosome has two 

main parts, i.e. operation order and machine order. By positioning each 

operator and machine, the chromosome gives a unique solution. By 

comparing the positions one by one and finding the same operation in 

the operation part and the machine in the machine part, the function 

returns 1, otherwise the returned value is 0. The smaller value of S 

indicates the closer chromosomes. Operational memory includes a set 

of machines which are technically capable to process a particular 

operation of a job. The structure of operation memory is an array of 

bites. As a matter of fact, this memory keeps track of more proper 

machines for processing the operations. In order to add any other 

machine to the operational memory, Ho et al. (2007) considered the 

processing time; but in this work, we took the end-time into 

consideration. As an example, assume that the set of machines to 

perform one particular operation of job i is {𝑴𝟐, 𝑴𝟒, 𝑴𝟓}. Moreover, 

assume that in a generation, this operation is processed on M2, M5. 

Figure 2 shows the operational memory for this operation. Furthermore, 

to reduce the computational time, memories are updated every q (a 

predefined value) generation. 
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Figure 2. Operation memory for a particular operation  

Module 3: Evolutionary algorithm (EA) 

The third module of IPPLEGA architecture contains a genetic 

algorithm. In order to have high-quality solutions, we also used active 

scheduling in this module. The details of GA are illustrated below. 

Encoding 

Previous chromosomal representations for solving the FJSP include a 

parallel machine and a parallel job representation by Mesghouni et al. 

(1997), A–B string representation proposed by Chen et al. (1999), and 

an assignment table introduced by Kacem et al. (2002b). An important 

drawback of these representations is that after each crossover and 

mutation, we will have infeasible solutions most of the time. 

The chromosomal representation designed by Ho et al. (2007), i.e. 

OOMS, guarantees feasible chromosomes in the randomized crossover 

and mutation procedures. Moreover, this representation helps to 

construct active schedules while running the decoding algorithm. 

OOMS consists of two components, namely the operation order and the 

machine selection. In this paper, the representation of operation order 

is according to Cheng et al. (1996), Bierwirth (1995), and Varela et al. 

(2003). In Ho et al. (2007) an individual is generated by substituting 

each operation with its job index. As an example, consider four 

operations O11, O12, O31, and O32, and let {𝑶𝟑𝟏, 𝑶𝟏𝟐, 𝑶𝟑𝟐, 𝑶𝟏𝟏} be a 

possible schedule. The resulting process sequence will be {𝟑, 𝟏, 𝟑, 𝟏}. 
Figure 3 illustrates this example. 

 

 

Figure 3. An operation part of a chromosome 
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The machine selection part of a chromosome is built up by binary 

values. For instance, Let O11, O12, O31, and O32 be our operations. 

M1, M3, and M5 are three machines meant to perform the operations. 

Suppose that O11, O31, and O32 can be processed on M1 and M3, and 

O12 can be processed on all machines. If O11 is processed on M3, O12 

is processed on M5, M1 performs the O31, and O32 is assigned to M3. 

Machine selection part is shown in Figure 4. 

 

 

Figure 4. A machine selection part of a chromosome 

Crossover operator 
To encode a solution, the applied chromosome consists of two parts. 

Therefore, in this study, to apply crossover to operation order part, we 

used a two-point crossover, in line with Varela et al. (2003),. For 

instance, assume that we have these two chromosomes: (2 1 2 1 1) and 

(1 1 1 2 2). Supposed we have (2 1 1) as a randomly selected substring 

from (2 1 2 1 1). So, O22, O12, and O13 are realized from the substring.  

Then, after omitting the corresponding positions of the elements in the 

second chromosome, we have (1 1 1 2 2). Finally, a new offspring is 

generated by inserting the substring to the second chromosome at the 

same position in the first chromosome: (1 2 2 1 1). Machine selection 

part of the chromosome is crossed-over by generating two random 

numbers between 2 and the length of machine selection part minus one. 

Two partial parts of the chromosomes between these two loci are then 

exchanged. Figure 5 depicts an example in which r1 = 2 and r2 = 4.  

1 01001100010

1 01010101000

parent 1

parent 2

 

r1

 

r2

1 01010101000

1 01001100010

child 1

child 2  

Figure 5. An example of mutation operator on machine selection part 
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Mutation operator 

Mutation explores the solution space via being incorporated on 

operation and machine parts of a chromosome. Operation order part is 

mutated, by inverting a substring of a chromosome.  This substring is 

determined by generating two random numbers between 2 and the 

length of operation order part minus one. For instance, if we consider 

(3 1 2 2 1) and assume 1 and 3 as the generated random positions, the 

chromosome will be mutated as (2 1 3 2 1). 

The operational memory is activated in the mutation process for the 

machine selection part as illustrated by the flow chart shown in Figure 

6. The applied notation in Figure 6 is as follows: 

Mk: the machine that processes Oik in the given chromosome; 

P (Oik): the set of machines that can be selected to perform Oik; 

PN (Oik): the set of machines that are more capable according to 

operational memory for performing Oik.  

According to this figure, the chance of changing the machine 

assigned to perform Oik is increased. It would be changed with the 

probability of 0.5 during the random mutation or with the same 

probability through the influence of operational memory. 

Active scheduling 

Ho et al. (2007) made use of active schedule. Active solutions include 

simultaneously zero-tardiness and optimal solutions. Thus, they prove 

to be extremely responsive. Figure 7 presents the flowchart for 

decoding an OOMS to obtain an active FJSP schedule. According to 

Ho et al. (2007), first a time gap is computed to complete the schedule 

with inserting a new operation. In case that insertion is not possible, the 

operation is added to the end of the currently scheduled operations.  
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Figure 6. Activating the operational memory in mutation process 
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Figure 7. Decoding an OOMS to obtain an active FJSP schedule (Ho et al. 2007) 

Transformer module 

As shown in figure 1, this module adapts a process planning problem to 

be solved by the modules population generator, EA, and SL. The 

relations among modules in this figure without considering the 

transformer module have been applied in pure job shop scheduling 

context by researchers in the existing literature. In fact, this module 

generates a feasible sequence for each job with respect to its operation 

network as an input to population generator module. We propose a 

procedure, i.e. Transformation, for this adaptation. Performance of this 

procedure revolves around a matrix called transformation matrix (TM) 

formed prior to the performance of the Transformation procedure.  
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The size of TM is (K+1)(k) or (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 + 1) ×
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠). Each column of the matrix is related to one 

of the operations. The first row of this matrix is named blank and it 

means the cells of this row are initially equal to 0. Each of the next rows 

is related to one operation. The following rule is applied to determine 

the value of an entry in one of these rows:  

The entry in the (k+1)th row and gth column is determined as 𝑇𝑀𝑘+1,𝑔 

. This cell is equal to 1 if operation 𝑘 precedes operation , otherwise it 

is set to 0. 

We use transformation procedure to generate feasible operation 

sequences for the jobs. This procedure receives TM as an input. The 

output of the procedure is a feasible operation sequence for the job. 

Transformation procedure is described in Figure 8. 

Figure 8. Transformation procedure 

As an example and for more detailed explanation, consider the 

operation network of an arbitrary job, shown in Figure 9, which consists 

of four operations .  

Procedure: Transformation  
 Input data 
         Transformation Matrix; 
          Let ni be the number of operations in job i; 
  For k=1 to ni do 

Begin 
If there are no columns in TM with all 

entries equal to 0, it means this is 
infeasible, then stop; 

              
Else select a column in TM whose all 

entries are equal to 0 
(if there are 2 or more columns with 
this property, pick one at random);  
 Set the corresponding entry in the 
blank to 1; 
If there is an entry in the 
corresponding row of TM with its 
value set to 1, change its value to 0; 
The operation which corresponds to 
the selected column is the output;                                           
   

End 
End  
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1

3

2 4

 
Figure 9. The operation network of an arbitrary job 

Based on Figure 9 and the rule given above, Transformation Matrix 

will be 

[
 
 
 
 
0 0 0 0

0 1 0 0

0 0 0 1

0 1 0 0

0 0 0 0]
 
 
 
 

 

Entries in the first row of this matrix, blank, are set to 0. Columns 1, 

2, 3, and 4 correspond to operations 1, 2, 3, and 4 respectively. 

Moreover, rows 2, 3, 4, and 5 correspond to operations 1, 2, 3, and 4, 

respectively. Now, Transformation procedure is applied to this matrix. 

All the entries in columns 1 and 3 are 0. Suppose column 3 (operation 

3) is picked. TM1,3 is, then, set to 1. Then the 4th row (which 

corresponds to operation 3) will be considered; since 𝑇𝑀4,2 = 1, it will 

be set to 0. The output of this procedure will be operation 3 and 

Transformation Matrix will be 

[
 
 
 
 
0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0]
 
 
 
 

 

The same way is followed until all operations are considered. There 

will be two possible outcomes when Transformation procedure is applied 

to this Transformation Matrix: 1 → 3 → 2 → 4  or 3 → 1 → 2 →
4 which are both feasible operation sequences according to Figure 9. 
Experiments and results 
To show the quality of our algorithm, all the problems that were solved 

by Moon et al. (2008) and Shao et al. (2009) are tested. We, then, 

compare the results and show that our proposed approach is superior to 

previous methods or is at least as efficient as they are.  

Our proposed approach was coded in C#.net on a 2.00 GHz Intel 

Dual CPU desktop computer with a 1.00 GB RAM. 
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The computation times for all experiments were very little such that 

in the scale of one second, we cannot distinguish between them. 

Experiment 1  

A problem with five jobs and five machines was used for the first 

experiment. We named this problem Prob1, 1. To complete each job, 

operations with different predefined orders are required. Let Oik (1 ≤
𝑖 ≤ 5 , 1 ≤ 𝑘 ≤ 4 ) be the kth operation for the ith job. Figure 10 shows 

the operation precedencies for jobs. The operational routings of each 

job and machine options are shown in Table 2. 

 

Figure 10. Operation precedencies for jobs 

Table 2. The operational routing of each job  

Job Operations 

Machine options for 

operations 

(Operation, 

Machine, Time) 

Sequence 

options 

1 1,2 
(1, 1, 5), (1, 2, 3) 

(2, 2, 5) 
1-2 

2 1,2 
(1, 3, 6), (1, 4, 5) 

(2, 5, 4) 
1-2 

3 1,2,3 

(1, 2, 4), (1, 1, 5) 

(2, 3, 2), (2, 4, 3) 

(3, 2, 5) 

1-2-3 

1-3-2 

3-1-2 

4 1,2 
(1, 3, 4) 

(2, 4, 5) 
1-2 

5 1,2,3,4 

(1, 1, 4), (1, 2, 3) 

(2, 1, 2), (2, 2, 4) 

(3, 3, 5) 

(4, 3, 4), (4, 5, 3) 

1-2-3-4 

1-3-2-4 

3-1-2-4 
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Best makespan obtained by Moon et al. (2008) for this problem was 

16; but our proposed approach yielded a better makespan, i.e. 14. Figure 

11 shows the schedule output by Gantt chart for this problem.  
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Figure 11. Gantt chart for experiment 1 

Our result and Figure 11 show that the best sequence of operations 

is selected to perform each job and our proposed architecture 

significantly improves the makespan of the schedule. 

Experiment 2  

Like Moon et al. (2008), in Table 3 several samples were implemented 

by adjusting genetic parameters (Popsize, Maxgen, Pc and Pm) to 

various values. Pc and Pm are the probability of cross-over and 

mutation. 

Table 3. Experimental results under various job sizes 

Proble
m name 

1 2 3 4 5 pc pm 6 

Prob2, 1 8 20 5 

50 
50 
10

0 
10

0 
15

0 

100
0 
100

0 
150

0 
150

0 
200

0 

0.
4 

0.
5 

0.
4 

0.
5 

0.
4 

0.
1 

0.
5 

0.
1 

0.
5 

0.
1 

27 
27 
27 
27 
27 

Prob2, 2 
1

6 
40 5 

50 
50 
10

0 
10

100
0 
100

0 
150

0.
4 

0.
5 

0.

0.
1 

0.
5 

0.

50 
50 
50 
50 
50 
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0 
15

0 

0 
150

0 
200

0 

4 
0.

5 
0.

4 

1 
0.

5 
0.

1 

Prob2, 3 
3

2 
80 5 

50 
50 
10

0 
15

0 
15

0 

100
0 
150

0 
150

0 
200

0 
300

0 

0.
4 

0.
4 

0.
4 

0.
4 

0.
4 

0.
1 

0.
1 

0.
1 

0.
1 

0.
1 

10
0 

10
0 

10
0 

10
0 

10
0 

Prob2, 4 
6

4 
16

0 
5 

50 
50 
10

0 
15

0 
15

0 

100
0 
150

0 
150

0 
200

0 
300

0 

0.
4 

0.
4 

0.
4 

0.
4 

0.
4 

0.
1 

0.
1 

0.
1 

0.
1 

0.
1 

20
3 

20
3 

20
3 

20
3 

20
3 

1: Job; 2: Operation; 3: Machine; 4: pop_size; 5: max_gen; 6: Makespan 

In Table 2, the first problem had eight jobs, twenty operations, and 

five machines. Just like the previous experiment, let Oik (1 ≤ 𝑖 ≤
8 , 1 ≤ 𝑘 ≤ 4 ) be the kth operation for the ith job. Figure 12 shows the 

operation precedencies for jobs. The operational routings of each job 

and machine options are shown in Table 4. 

 
Figure 12. Operation precedencies for jobs 
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Table 4. The operational routing of each job  

Job Operations Machine options for operations 

(Operation, 

Machine, Time) 

Sequence 

options 

1 1, 2 (1, 1, 5), (1, 2, 3) 

(2, 2, 7) 

1-2 

2 1, 2 (1, 3, 6) 

(2, 4, 3), (2, 5, 4) 

1-2 

3 1, 2,3 (1, 1, 7) 

(2, 2, 4), (2, 3, 6) 

(3, 3, 7), (3, 4, 7) 

1-2-3 

2-1-3 

2-3-1 

4 1 (4, 5, 10) 1 

5 1, 2,3,4 (1, 1, 4), (1, 2, 5), (1, 3, 8) 

(2, 4, 5) 

(3, 4, 6), (3, 5, 5) 

(4, 5, 4) 

1-2-3-4 

1-3-2-4 

2-1-3-4 

2-3-1-4 

3-2-1-4 

3-1-2-4 

6 1, 2 (1, 2, 2), (1, 3,6) 

(2, 3, 8) 

1-2 

7 1, 2 (1, 3, 3), (1, 4, 8) 

(2, 4, 7), (2, 5, 4) 

1-2 

8 (1, 2, 3, 4) (1, 1, 3), (1, 3, 5) 

(2, 3, 7) 

(3, 4, 9), (3, 5, 6) 

(4, 5, 3) 

1-2-3-4 

1-3-2-4 

3-1-2-4 

 

When applied to this problem, our approach resulted in 27 as the 

value of the minimized makespan. Figure 13 depicts the schedule output 

by Gantt chart for this problem. 
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Figure 13. A Schedule on 5 machines for the first problem in Table 2 

 

Based on the reasoning given in Moon et al. (2008) and with respect 

to Table 2, since this result had no variation considering various settings 

of genetic parameters, our approach generates the best makespan in a 

robust manner. This result is supported by other computations in 

various environments. Moreover, we realized that the presented 

architecture had an effective performance while generating the best 

makespan under different conditions. 

Experiment 3  

For the third experiment, we applied our approach to a problem, Prob3, 

1, which has been previously taken into account in Moon et al. (2008). 

This problem consisted of five jobs and five machines. Also, the 

operational routing of each job and the alternative sequences are shown 

in Table 5. 

Our approach could obtain 33 for makespan, which is the same value 

that was obtained by Moon et al. (2008). This result is illustrated in 

Figure 14. 
Table 5. The operational routing of each job (Moon et al, 2008) 

Job Operations 

Machine options for operations 

(Operation, 

Machine, Time) 

Sequence 

options 

1 1,2,3,4 

(1, 1, 5), (1, 2, 3) 

(2, 2, 7) 

(3, 3, 6) 

(4, 4, 3), (4, 5, 4) 

1-2-2-3 

2 1,2,3,4 
(1, 1, 7) 

(2, 2, 4), (2, 3, 6) 
1-2-2-3 
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(3, 3, 7), (3, 4, 7) 

(4, 5, 10) 

3 1,2,3,4 

(1, 1, 4), (1, 2, 5), (1, 3, 8) 

(2, 4, 5) 

(3, 4, 6), (3, 5, 5) 

(4, 5, 4) 

1-2-2-3 

4 1,2,3,4 

(1, 2, 2), (1, 3, 6) 

(2, 3, 8) 

(3, 3, 3), (3, 4, 8) 

(4, 4, 7), (4, 5, 4) 

1-2-2-3 

5 1,2,3,4 

(1, 1, 3), (1, 3, 5) 

(2, 3, 7) 

(3, 4, 9), (3, 5, 6) 

(4, 5, 3) 

1-2-2-3 
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Figure 14. A Schedule on 5 machines for Prob3, 1 in Moon et al. (2008) 

Experiment 4 

The problem Prob4, 1 in Shao et al. (2009) considers eight machines 

with six jobs which have flexible routings. The approach presented in 

Shao et al. (2009) yielded a value of 162 as the makespan, and our 

proposed architecture resulted in the same value. 
Experiment 5  

The problem, Prob5, 1, in Shao et al. (2009) considers six machines 

with five jobs requiring 21 operations to be completed. Our approach 

and the one given in Shao et al. (2009) both obtained 28 as the value of 

the minimized makespan. 
Experiment 6 

This problem is also taken from Shao et al. (2009). A problem with four 

jobs and three machines, Prob6, 1, was used for this experiment. Best 
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makespan obtained by our proposed architecture was 1100 which is 

equal to the value given in Shao et al. (2009). 
Comparative results between the approaches 

We applied our proposed architecture to all the problems mentioned in 

Moon et al. (2008) and Shao et al. (2009). Gained results imply that our 

proposed approach is efficient and also superior to the approach given 

in Moon et al. (2008). According to the obtained results, it can be 

concluded that the performance of our architecture is as efficient as the 

presented approach in Shao et al. (2009). Table 6 and Table 7 give the 

comparative results between the approaches along with the percentage 

improvements in the results. A percentage improvement is given by  
(𝑉𝑎𝑙𝑢𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑝𝑟𝑖𝑜𝑟 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ )–(𝑉𝑎𝑙𝑢𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝐼𝑃𝑃𝐿𝐸𝐺𝐴)

(𝑉𝑎𝑙𝑢𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑝𝑟𝑖𝑜𝑟 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ )
× 100   

 

Table 6. Comparative results between IPPLEGA and the proposed approach in Moon et 

al. (2008) 

 Solution (Makespan)  % Improvements 

   

Problem 

Name 

IPPLEGA  Moon et al. 

(2008) 

 

Prob1, 1  14  16  12.5% 

Prob2, 1  27  34  20.59% 

Prob2, 2  50  63  20.63% 

Prob2, 3  100  114  12.28% 

Prob2, 4  203  227  10.57% 

Prob3, 1  33  33  0% 

Table 7. Comparative results between IPPLEGA and the proposed approach in Shao et 

al. (2009) 

 Solution (Makespan)  % Improvements 

   

Problem 

Name 

IPPLEGA  Shao et al. 

(2009) 

 

Prob4, 1  162  162  0% 

Prob5, 1  28  28  0% 

Prob6, 1  1100  1100  0% 

 
Conclusions and future works  
This paper presented an architecture named IPPLEGA. The goal we 

aimed to reach by developing IPPLEGA was to obtain the optimal 

machine assignments and operation sequences and to find a schedule so 

that the makespan is minimized. IPPLEGA consists of some memories 

and a class of scheduling methods, i.e. active scheduling. This 
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architecture helped us to improve results obtained by GA. Our devised 

approach led us to the results that successfully dominate the solutions 

given by previous methods or, at least, are as good as the results 

obtained by prior approaches. The experimental results have also 

pointed out that combining memories and active scheduling can be an 

efficient method while aiming to solve IPPS through GA. 

An interesting research topic would include other evolutionary 

algorithms. Another direction for the future research would be considering 

other objective functions. It is interesting in the world of standardization to 

investigate the efficiency of the variants of design schemes with their 

corresponding routings integrated with scheduling decisions.  
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