
 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable…

Integrated Process Planning and Active Scheduling in a

Supply Chain-A Learnable Architecture Approach
*2, Mostafa Zandieh2, Ashkan Ayough1Esmaeel Moradi

1. School of Industrial Engineering and Management, Oklahoma State University, Stillwater, USA

2. Department of Industrial Management, Management and Accounting Faculty, Shahid Beheshti

University, Tehran, Iran

(Received: August 19, 2018; Revised: March 11, 2019; Accepted: April 7, 2019)

Abstract
Through the lens of supply chain management, integrating process planning decisions

and scheduling plans becomes an issue of great challenge and importance. Dealing

with the problem paves the way to devising operation schedules with minimum

makespan; considering the flexible process sequences, it can be viewed as a

fundamental tool for achieving the scheme, too. To deal with this integration, the

modeling approach to problem with MIP structure is common in the literature. These

models take precedence constraints into consideration to select machines and to

determine sequences. In order to obtain viable sequences, we employed a proposed

transformation matrix (TM). We also took advantage of an evolutionary search, called

Learnable genetic Architecture (LEGA). Based on LEGA, we developed an integrated

process planning and scheduling learnable genetic algorithm (IPPSLEGA). Our

approach was evaluated with problems with various sizes. The experimental results

show that our proposed architecture outperforms prior approaches, or it performs, at

least, as efficiently as they do.

Keywords
Supply chain management, Process planning, Scheduling, Transformation matrix,

Evolutionary search.

* Corresponding Author, Email: m_zandieh@sbu.ac.ir

Iranian Journal of Management Studies (IJMS) http://ijms.ut.ac.ir/

Vol. 12, No. 2, Spring2019 Print ISSN: 2008-7055

 pp. 307-333 Online ISSN: 2345-3745

 DOI: 10.22059/ijms.2019.255363.673086

308 (IJMS) Vol. 12, No. 2, Spring2019

 Introduction
A supply network works via several interrelated entities which are

orchestrated as a unified process to turn inputs into predefined

demanded outputs from downstream layers of the networks (Beamon,

1998). Considering supply chain, activities involving planning and

scheduling are very complicated and must be done through the entire

supply chain and also within the enterprise. Thus, in order to achieve

global optimal solutions, one needs to focus on more coordinated and

integrated planning processes.

Process planning gives insight to how an item is manufactured. It

connects design, manufacturing, and scheduling. It also takes

alternative resources into account. Generally, customer orders intended

for processing might have a flexible process sequence and can be

scheduled based on different resources. In Hankins et al. (1984), it is

shown that taking advantage of several alternative resources can reduce

order–to-delivery times and result in better resource exploitation. Nasr

and Elsayed (1990) studied the problem in which each operation could

have more than one routing. Their heuristics were meant to deliver an

efficient schedule. Brandimarte and Calderini (1995) designed a two-

stage tabu search for planning and scheduling. Based on simulated

annealing, a method was developed by Palmer (1996) for solving

integrated problems. However, in these studies, no rule was employed

to sequence an operation. A primal-dual approach was introduced by

Guinet (2001) to find the solution for a model of networked production

planning. Zhang et al. (2003) purported to present a novel method for

integrating these two decisions in a batch production system. Wong et

al. (2006) developed an agent-based modeling focusing on negotiations

for this integrated problem. Moon et al. (2002) developed a model to

sequence and schedule the process in an integrated manner to achieve

more flexibility and minimize the total tardiness. Cochran et al. (2003)

developed an evolutionary algorithm in which two different populations

serve solutions for each stage of bi-objective scheduling problem

independently. Tan and Khoshnevis (2004) modeled the integrated

problem as an MIP. Moon et al. (2008) designed a genetic algorithm

(GA) for PPS to minimize the makespan. Shao et al. (2009) developed

a new model to determine PPS decisions jointly, rather than

sequentially, and promoted it to IPPS. They presented a genetic

algorithm with improved representation to facilitate making these

decisions simultaneously.

 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable… 309

Leung et al. (2010) proposed the agent-based structure and

implemented the ACO algorithm on the platform in which multiple

agents operate. They showed that in terms of robustness, an agent-based

view of the problem is better than a centralized one. Li et al. (2012)

developed an active learning genetic algorithm through learning from

excellent individuals/peers to improve the efficiency and quality of the

optimization of the IPPS problem. In this study, the cross-over operator

was used as the learning operator. Wang et al. (2014) developed a graph

based on the ant colony and improved the prematurity of the algorithm

through some modifications in attraction process and compared their

algorithm with two other types of ACO. Comparing their results with

test beds by Leung et al. (2010), they showed improvements in some

beds, but not all of them. Zhang et al. (2015) introduced a genetic

algorithm in which a chromosome shows the sequence of operation

performed on all machines. They showed their GA outperforms the

algorithms of other studies in most of the test beds. Zhang and Wong

(2016) presented a graph model for IPPS including a network of

operation sequences which are evaluated by the mapping rule. The

suggested generic framework in their study gives different constructive

heuristic methods. Petrovic´ et al. (2016) proposed a particle swarm

optimization algorithm equipped with ten different chaotic maps, which

was labeled as cPSO to avoid local optima trap. Their multi-objective

model is to optimize a blend of five objectives, among which the

balancing utilization of machines is less studied in IPPS literature. Xia

et al. (2016) developed a hybrid GAVNS to solve the dynamic IPPS

problem. They presented a 6-step procedure to deal with IPPS decisions

in the more realistic environment with relevant disturbances. While the

majority of researchers have studied IPPS in the job shop environment,

some have studied other environments i.e., Reconfigurable

Manufacturing Systems (RMS) and process industries. In the RMS

environment, the multi-configuration nature of machines makes setup

planning a critical issue, so that it should be incorporated in process

planning. Mohapatra et al. (2013) addressed the adaptive setup planning

through cross-machine setup. Bensmaine et al. (2014) developed a

heuristic which used availability time and selection index and applied

it to a simple simulated instance. There exists a study in process

industries done by Shah et al. (2012) that deals with process and

scheduling decisions in multi-period mode with a given supply chain

network. Here, the purpose of process planning is to assign tasks to

sites, and the starting time of processing batches is determined by

310 (IJMS) Vol. 12, No. 2, Spring2019

scheduling. Multi-period modeling used in this study requires authors

to consider inventory and transportation decisions. The multi-objective

studies on IPPS have been stemmed from the work done by Li et al.

(2012). One might classify objectives in such studies into four general

classes: makespan and/or flow, machine work/load, tardiness, and the

costs of machining or production. To solve these multi-objective

problems, researchers have designed GA- and PSO-based algorithms

(Li et al. 2012, Mohapatra et al. 2013, Ausaf et al. 2015, Petrovic´ et al.

2016, Luo et al. 2017). In the work done by Ausaf et al. (2015), the

authors developed a heuristic algorithm which employed dispatching

rules to find satisfactory solutions regarding all classes of objectives,

except for the cost. The GA algorithms in the foregoing studies are

equipped with some supplement or compliment property, shown in the

last column of Table 1. These features help algorithms in conquering

the intractability of the problem. Table 1 summarizes the most related

IPPS studies in the last five years.

In our work, the model determines three decisions, i.e. the selection

of resource as well as the sequencing and scheduling of operation to

optimize the total processing time. We also developed an integrated

process planning learnable genetic algorithm (IPPLEGA), to tackle the

IPPS decisions. IPPLEGA is a development of the learnable genetic

architecture (LEGA) presented by Ho et al. (2007), which has been

successfully evaluated for solving a number of benchmarks for the

Flexible Jobshop scheduling problems (Mesghouni et al. 1997; Chen et

al. 1999; Kacem et al. 2002a; Kacem et al. 2002b Brandimarte, 1993)

and active learning-based GA presented by Xinyu Li et al (2012).

Moreover; in the IPPLEGA we took advantage of a proposed

transformation matrix (TM). This evolutionary search is based on TM

and able to achieve a satisfactory solution to the model efficiently. The

main contribution of the solution method of this study is adapting the

application of LEGA in making joint decisions in IPPS by means of

introducing innovative module, which is called as “Transformation”.

This module manages the relationships of three LEGA modules

effectively to solve the IPPS.

The rest of the paper is presented by the following briefly-introduced

sections: Section 2 defines the studied problem; section 3 describes an

integrated mathematical model dealing with process planning and

scheduling; in section 4 the proposed architecture, IPPLEGA, is

introduced; section 5 reports computational results, and the conclusion

of this study is given in section 6.

 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable… 311

Problem definition
The set of processes required for turning all types of inputs into final

products can be performed under predefined precedence constraints.

Process planning is about identifying operations and sequences based

on counterpart routes so that, producing an order is accomplished

effectively. IPPS involves determining the best schedules along with

process plans with respect to precedence constraints, set of operations,

given processing times, and the counterpart routes.

Table 1. IPPS researches during recent five years

Author

(Year)

Environ

ment

Other

Decisions
Objectives

Algorit

hm/

Feature

Lian et

al. (2012)
Job shop Makespan(S)

ICA/

Operation-

based

representati

on

Shah et

al. (2012)

Process

industry

Produ

ction

/inventory

planning

Total Production/

inventory cost (S)

Lagran

gian

decomposit

ion /

Diagonal

Quadratic

approximat

ion

Li et al.

(2012)
Job shop Makespan(S)

GA/

active

learning

Li et al.

(2012)
Job shop

Makespan/MMW/TMW

(M)

GA-

TS/ Nash

Equilibriu

m solutions

for

generations

Mohapa

tra et al.

(2013)

RMS

Adapt

able setup

planning

Machining

cost/Makespan/Machine

utilization

(M)

NSGA-

II/ Fuzzy

set theory

for

selecting

Pareto

solutions

Wang et

al. (2014)
Job shop Makespan(S)

ACO/

graph

based

A.Bens

maine et al.

(2014)

RMS

time

of

Availabilit

y /

selection

Makespan(S)

Heurist

ic/ Discrete

event

simulator

312 (IJMS) Vol. 12, No. 2, Spring2019

Author

(Year)

Environ

ment

Other

Decisions
Objectives

Algorit

hm/

Feature
index

Zhang

et al. (2015)
Job shop Makespan(S)

GA/

object-

coding

Ausaf et

al. (2015)
Job shop

Makespan/MML/TML/T

FT/MFT/TT

(M)

Heurist

ic-PBOA/

Dispatchin

g rules/

External

archive

Zhanga

and Wong

(2016)

Job shop Makespan(S)

constru

ctive

heuristic/

Generic

framework

Petrovic

´ a et al.

(2016)

Job shop

Production time,

production cost, makespan,

machine utilization and mean

flow time(M)

cPSO/

Chaotic

maps

Xia et

al. (2016)
Job shop Makespan(S)

GAVN

S/

Luo et

al. (2017)
Job shop

Makespan/TT/TFT/MM

W/TMW(M)

MOGA

-IE/

Immune

principle -

External

archive

RMS: Reconfigurable Manufacturing Systems

(M): Multi-objective

(S): Single objective

 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable…313

This problem can be described like this: A set of n jobs must be

processed using m machines with alternative operation andcounterpart

sequences. It is necessary in a process plan representation to include

representation of constraints that limit the decisions to pre-defined

precedencies. A pre-determined process sequence governs the manner

in which all jobs must be processed. The decision of machine selection

is made in the process planning. In our scheme, every job needs a

number of operations performable on some pre-defined machines with

non-equal processing times. Each machine can perform a number of

operations and has finite capacities with different capabilities. The time

to complete all customer orders can be usually considered as the

summation of process times and some kind of non-value added times

including idle and transportation times. When there are several jobs to

complete, makespan is the required time to finish all of them.

Model for IPPS
We used an MIP model presented by Moon et al. (2008) which

minimizes the makespan. Relations (1) - (8) are adapted from Moon et

al. (2008).

 Minimize 𝐹 = max
∀𝑖,𝑘 and 𝑗

 {𝑥𝑖𝑘𝑗}

subject to

𝑥𝑖𝑔𝑞 − 𝑥𝑖𝑘𝑗 + 𝑀(1 −

𝑌𝑖𝑔𝑞) ≥ 𝑝𝑖𝑔𝑞

∀(𝑘, 𝑔) ∈
𝑅𝑖, 𝑖, 𝑗 and 𝑞,

(1)

𝑥𝑖𝑔𝑞 − 𝑥𝑖𝑘𝑗 + 𝑀(1 −

𝑑𝑖𝑘𝑔) ≥ 𝑝𝑖𝑔𝑞

∀(𝑘, 𝑔) ∈
𝐵𝑖, 𝑖, 𝑗 and 𝑞,

(2)

𝑥ℎ𝑔𝑗 − 𝑥𝑖𝑘𝑗+≥ 𝑝ℎ𝑔𝑗 −

𝑀(1 − 𝑣𝑘𝑔𝑗)
∀(𝑘, 𝑔) ∈

𝐺𝑗 , 𝑖, 𝑗, 𝑞 and 𝑖 ≠ ℎ,
(3)

∑ 𝑌𝑖𝑘𝑗
𝐻
𝑗=1 = 1 ∀𝑖 and 𝑘, (4)

𝑥𝑖𝑘𝑗 ≤ 𝑀𝑦𝑖𝑘𝑗 ∀𝑖 , 𝑘, 𝑎𝑛𝑑 𝑗 (5)

𝑥𝑖𝑘𝑗 ≥

{
𝑝𝑖𝑘𝑗 for 𝑖, 𝑘 ∈ 𝐵𝑖, 𝑗

 0 for all other 𝑖, 𝑘

 (6)

314 (IJMS) Vol. 12, No. 2, Spring2019

𝑦𝑖𝑘𝑗 ∈ {0,1} ∀𝑖, 𝑘, and 𝑗 (7)

𝑣𝑘𝑔𝑗 ∈ {0,1} ∀𝑗, 𝑘, and 𝑔 (8)

For which the following notations stand:
Prime sets:

Jobs: indexed by i, h with the size of I

Operations: indexed by k, g with the size of K and Ki

Machines: indexed by j, q with the size of H
Derived sets:

Precedencies: defined for any job as the pairs of its operations indexed

by 𝑹𝒊 = {𝒓𝒌𝒈|∀𝒈 = 𝟏,… , 𝑱𝟏𝒊} with the size of J1i

Non-Precedencies: defined for any job as the pairs of its operations,

indexed by 𝑹𝒊 = {𝒓𝒌𝒈|∀𝒈 = 𝟏,… , 𝑱𝟏𝒊} with the size of 𝑱𝟐𝒊 which

counts the pairs of operations with no precedence relations

Machines - Operations: defined for any machine as the operations

which can be processed on it, indexed by Gj
Parameter and variables:

Jobs - Operations - Machines:

The processing time shown by pikj;

The completion time of an operation of each job on each machine

calculated by 𝒙𝒊𝒌𝒋;

A binary variable to determine whether an operation of a job is

performed on a machine or not calculated by 𝒚𝒊𝒌𝒋;

Jobs – Operations - Operations:

Quantifying the precedence requirement of each pair of operations

of any job as a binary number by 𝒅𝒊𝒌𝒈 ;

Machine - Operations - Operations:

A binary variable to determine the sequence of operations on any

machine calculated by 𝒗𝒌𝒈𝒋;

 Constraint (1) forces the model to comply with the given
precedence relations for the operations of each job. Whenever 𝒀𝒊𝒈𝒒 is
not equal to 1, the left side of this relation will be sufficiently large and
the value of relation is true. Constraint (2) ensures that operations of a
job cannot be simultaneously performed, even on different machines.
Relation (3) guarantees that a machine can process just one operation
of any job. Constraint (4) results in assigning just one machine to each
operation. Relation (5) sets the completion time of each operation on
each machine to zero if no such an assignment is adjusted. Constraints
(6) – (8) set problem variables as integer or binary ones.

 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable… 315

Integrating learning population evolution and process planning
Integrating well-devised knowledge-based encoding, learning

methodology and initialization results in improving the quality of the

algorithm solution and its efficiency (Ho et al. 2007). In order to solve

flexible job-shop problem (FJSP), Ho et al. (2007) proposed an

architecture called LEGA. Three modules constitute LEGA, namely a

Population Generator module, Evolutionary Algorithm (EA) module

and a Schemata Learning (SL) module. These modules require a

feasible operation sequence in order to solve a problem. To do this, we

added a new module, i.e. Transformer module, to the structure of LEGA

(see Figure 1). Transformer module provides an appropriate sequence

for these modules. Sections 4.1, 4.2, 4.3, and 4.4 provide information

on the modules mentioned above.

Population Generator

Module

Evolutionary Algorithm

Module

Schemata Learning

Module

Transformer Module
send

send

modify

traininitialize

Figure 1. IPPLEGA architecture

 Module 1: Population Generator

A heuristic algorithm known as composite dispatching rules (CDR) is

employed to produce proper initial solutions to elaborate the scheduling

suitable flexible job-shop problem. CDR was proposed by Ho et al.

(2007) and its effectiveness was evaluated on several benchmarks

proposed by Mesghouni et al. (1997) and Kacem et al. (2002b).

With respect to CDR, note that three basic dispatching rules, namely

SPT, LPT and FIFO, are applied. Thus, with one random set of n jobs

to be scheduled, we will be able to generate three different schedules.

Module 2: Schemata learning
Two distinguished memories, i.e. chromosomal memory and operational

memory, were used by Ho et al. (2007) and yielded solutions with high

quality for different instances of FJSP. Therefore, we took these two

memories into consideration. Additionally, obtained results show that the

316 (IJMS) Vol. 12, No. 2, Spring2019

use of chromosomal and operational memories in our proposed architecture

can lead to better solutions.

The main purpose of incorporating chromosomal memory in our

work is to ensure the survival of high quality chromosomes into the next

generation. In order to achieve this goal, a similarity template is

operationalized during the crossover process. A predefined number of

solutions with better fitness function values are selected in the current

generation so that the similarity template of these chromosomes are

inherited and the current population is influenced. Each chosen

chromosome is evaluated based on its desirability against other

chromosomes in chromosomal memory. The first k (a predefined value)

chromosomes in term of similarities will be moved to the current

generation. We use the following equation to calculate the similarity in

term of Hamming distance:
𝑺 (𝑪𝟏, 𝑪𝟐) = ∑ 𝑶𝒑𝒕𝟏(𝒊) ⊗ 𝑶𝒑𝒕𝟐(𝒊) + ∑ 𝑴𝒄𝒉𝟏(𝒋) ⊗ 𝑴𝒄𝒉𝟐(𝒋)𝐦

𝐣=𝟏
𝐧
𝐢=𝟏

where C1 and C2 are two chromosomes. Each chromosome has two

main parts, i.e. operation order and machine order. By positioning each

operator and machine, the chromosome gives a unique solution. By

comparing the positions one by one and finding the same operation in

the operation part and the machine in the machine part, the function

returns 1, otherwise the returned value is 0. The smaller value of S

indicates the closer chromosomes. Operational memory includes a set

of machines which are technically capable to process a particular

operation of a job. The structure of operation memory is an array of

bites. As a matter of fact, this memory keeps track of more proper

machines for processing the operations. In order to add any other

machine to the operational memory, Ho et al. (2007) considered the

processing time; but in this work, we took the end-time into

consideration. As an example, assume that the set of machines to

perform one particular operation of job i is {𝑴𝟐, 𝑴𝟒, 𝑴𝟓}. Moreover,

assume that in a generation, this operation is processed on M2, M5.

Figure 2 shows the operational memory for this operation. Furthermore,

to reduce the computational time, memories are updated every q (a

predefined value) generation.

 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable… 317

Figure 2. Operation memory for a particular operation

Module 3: Evolutionary algorithm (EA)

The third module of IPPLEGA architecture contains a genetic

algorithm. In order to have high-quality solutions, we also used active

scheduling in this module. The details of GA are illustrated below.

Encoding

Previous chromosomal representations for solving the FJSP include a

parallel machine and a parallel job representation by Mesghouni et al.

(1997), A–B string representation proposed by Chen et al. (1999), and

an assignment table introduced by Kacem et al. (2002b). An important

drawback of these representations is that after each crossover and

mutation, we will have infeasible solutions most of the time.

The chromosomal representation designed by Ho et al. (2007), i.e.

OOMS, guarantees feasible chromosomes in the randomized crossover

and mutation procedures. Moreover, this representation helps to

construct active schedules while running the decoding algorithm.

OOMS consists of two components, namely the operation order and the

machine selection. In this paper, the representation of operation order

is according to Cheng et al. (1996), Bierwirth (1995), and Varela et al.

(2003). In Ho et al. (2007) an individual is generated by substituting

each operation with its job index. As an example, consider four

operations O11, O12, O31, and O32, and let {𝑶𝟑𝟏, 𝑶𝟏𝟐, 𝑶𝟑𝟐, 𝑶𝟏𝟏} be a

possible schedule. The resulting process sequence will be {𝟑, 𝟏, 𝟑, 𝟏}.
Figure 3 illustrates this example.

Figure 3. An operation part of a chromosome

318 (IJMS) Vol. 12, No. 2, Spring2019

The machine selection part of a chromosome is built up by binary

values. For instance, Let O11, O12, O31, and O32 be our operations.

M1, M3, and M5 are three machines meant to perform the operations.

Suppose that O11, O31, and O32 can be processed on M1 and M3, and

O12 can be processed on all machines. If O11 is processed on M3, O12

is processed on M5, M1 performs the O31, and O32 is assigned to M3.

Machine selection part is shown in Figure 4.

Figure 4. A machine selection part of a chromosome

Crossover operator
To encode a solution, the applied chromosome consists of two parts.

Therefore, in this study, to apply crossover to operation order part, we

used a two-point crossover, in line with Varela et al. (2003),. For

instance, assume that we have these two chromosomes: (2 1 2 1 1) and

(1 1 1 2 2). Supposed we have (2 1 1) as a randomly selected substring

from (2 1 2 1 1). So, O22, O12, and O13 are realized from the substring.

Then, after omitting the corresponding positions of the elements in the

second chromosome, we have (1 1 1 2 2). Finally, a new offspring is

generated by inserting the substring to the second chromosome at the

same position in the first chromosome: (1 2 2 1 1). Machine selection

part of the chromosome is crossed-over by generating two random

numbers between 2 and the length of machine selection part minus one.

Two partial parts of the chromosomes between these two loci are then

exchanged. Figure 5 depicts an example in which r1 = 2 and r2 = 4.

1 01001100010

1 01010101000

parent 1

parent 2

r1

r2

1 01010101000

1 01001100010

child 1

child 2

Figure 5. An example of mutation operator on machine selection part

 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable… 319

Mutation operator

Mutation explores the solution space via being incorporated on

operation and machine parts of a chromosome. Operation order part is

mutated, by inverting a substring of a chromosome. This substring is

determined by generating two random numbers between 2 and the

length of operation order part minus one. For instance, if we consider

(3 1 2 2 1) and assume 1 and 3 as the generated random positions, the

chromosome will be mutated as (2 1 3 2 1).

The operational memory is activated in the mutation process for the

machine selection part as illustrated by the flow chart shown in Figure

6. The applied notation in Figure 6 is as follows:

Mk: the machine that processes Oik in the given chromosome;

P (Oik): the set of machines that can be selected to perform Oik;

PN (Oik): the set of machines that are more capable according to

operational memory for performing Oik.

According to this figure, the chance of changing the machine

assigned to perform Oik is increased. It would be changed with the

probability of 0.5 during the random mutation or with the same

probability through the influence of operational memory.

Active scheduling

Ho et al. (2007) made use of active schedule. Active solutions include

simultaneously zero-tardiness and optimal solutions. Thus, they prove

to be extremely responsive. Figure 7 presents the flowchart for

decoding an OOMS to obtain an active FJSP schedule. According to

Ho et al. (2007), first a time gap is computed to complete the schedule

with inserting a new operation. In case that insertion is not possible, the

operation is added to the end of the currently scheduled operations.

320 (IJMS) Vol. 12, No. 2, Spring2019

Figure 6. Activating the operational memory in mutation process

 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable… 321

Figure 7. Decoding an OOMS to obtain an active FJSP schedule (Ho et al. 2007)

Transformer module

As shown in figure 1, this module adapts a process planning problem to

be solved by the modules population generator, EA, and SL. The

relations among modules in this figure without considering the

transformer module have been applied in pure job shop scheduling

context by researchers in the existing literature. In fact, this module

generates a feasible sequence for each job with respect to its operation

network as an input to population generator module. We propose a

procedure, i.e. Transformation, for this adaptation. Performance of this

procedure revolves around a matrix called transformation matrix (TM)

formed prior to the performance of the Transformation procedure.

322 (IJMS) Vol. 12, No. 2, Spring2019

The size of TM is (K+1)(k) or (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 + 1) ×
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠). Each column of the matrix is related to one

of the operations. The first row of this matrix is named blank and it

means the cells of this row are initially equal to 0. Each of the next rows

is related to one operation. The following rule is applied to determine

the value of an entry in one of these rows:

The entry in the (k+1)th row and gth column is determined as 𝑇𝑀𝑘+1,𝑔

. This cell is equal to 1 if operation 𝑘 precedes operation , otherwise it

is set to 0.

We use transformation procedure to generate feasible operation

sequences for the jobs. This procedure receives TM as an input. The

output of the procedure is a feasible operation sequence for the job.

Transformation procedure is described in Figure 8.

Figure 8. Transformation procedure

As an example and for more detailed explanation, consider the

operation network of an arbitrary job, shown in Figure 9, which consists

of four operations .

Procedure: Transformation
 Input data
 Transformation Matrix;
 Let ni be the number of operations in job i;
 For k=1 to ni do

Begin
If there are no columns in TM with all

entries equal to 0, it means this is
infeasible, then stop;

Else select a column in TM whose all

entries are equal to 0
(if there are 2 or more columns with
this property, pick one at random);
 Set the corresponding entry in the
blank to 1;
If there is an entry in the
corresponding row of TM with its
value set to 1, change its value to 0;
The operation which corresponds to
the selected column is the output;

End
End

 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable… 323

1

3

2 4

Figure 9. The operation network of an arbitrary job

Based on Figure 9 and the rule given above, Transformation Matrix

will be

[

0 0 0 0

0 1 0 0

0 0 0 1

0 1 0 0

0 0 0 0]

Entries in the first row of this matrix, blank, are set to 0. Columns 1,

2, 3, and 4 correspond to operations 1, 2, 3, and 4 respectively.

Moreover, rows 2, 3, 4, and 5 correspond to operations 1, 2, 3, and 4,

respectively. Now, Transformation procedure is applied to this matrix.

All the entries in columns 1 and 3 are 0. Suppose column 3 (operation

3) is picked. TM1,3 is, then, set to 1. Then the 4th row (which

corresponds to operation 3) will be considered; since 𝑇𝑀4,2 = 1, it will

be set to 0. The output of this procedure will be operation 3 and

Transformation Matrix will be

[

0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0]

The same way is followed until all operations are considered. There

will be two possible outcomes when Transformation procedure is applied

to this Transformation Matrix: 1 → 3 → 2 → 4 or 3 → 1 → 2 →
4 which are both feasible operation sequences according to Figure 9.
Experiments and results
To show the quality of our algorithm, all the problems that were solved

by Moon et al. (2008) and Shao et al. (2009) are tested. We, then,

compare the results and show that our proposed approach is superior to

previous methods or is at least as efficient as they are.

Our proposed approach was coded in C#.net on a 2.00 GHz Intel

Dual CPU desktop computer with a 1.00 GB RAM.

324 (IJMS) Vol. 12, No. 2, Spring2019

The computation times for all experiments were very little such that

in the scale of one second, we cannot distinguish between them.

Experiment 1

A problem with five jobs and five machines was used for the first

experiment. We named this problem Prob1, 1. To complete each job,

operations with different predefined orders are required. Let Oik (1 ≤
𝑖 ≤ 5 , 1 ≤ 𝑘 ≤ 4) be the kth operation for the ith job. Figure 10 shows

the operation precedencies for jobs. The operational routings of each

job and machine options are shown in Table 2.

Figure 10. Operation precedencies for jobs

Table 2. The operational routing of each job

Job Operations

Machine options for

operations

(Operation,

Machine, Time)

Sequence

options

1 1,2
(1, 1, 5), (1, 2, 3)

(2, 2, 5)
1-2

2 1,2
(1, 3, 6), (1, 4, 5)

(2, 5, 4)
1-2

3 1,2,3

(1, 2, 4), (1, 1, 5)

(2, 3, 2), (2, 4, 3)

(3, 2, 5)

1-2-3

1-3-2

3-1-2

4 1,2
(1, 3, 4)

(2, 4, 5)
1-2

5 1,2,3,4

(1, 1, 4), (1, 2, 3)

(2, 1, 2), (2, 2, 4)

(3, 3, 5)

(4, 3, 4), (4, 5, 3)

1-2-3-4

1-3-2-4

3-1-2-4

 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable… 325

Best makespan obtained by Moon et al. (2008) for this problem was

16; but our proposed approach yielded a better makespan, i.e. 14. Figure

11 shows the schedule output by Gantt chart for this problem.

3

2

1

4

5

5 10 15

o11
M

ac
hi

ne
 n

um
be

r

Time

o51 o52

o33 o31 o12

o53 o41 o32

o21 o42

o22 o54

Makespan

14

Figure 11. Gantt chart for experiment 1

Our result and Figure 11 show that the best sequence of operations

is selected to perform each job and our proposed architecture

significantly improves the makespan of the schedule.

Experiment 2

Like Moon et al. (2008), in Table 3 several samples were implemented

by adjusting genetic parameters (Popsize, Maxgen, Pc and Pm) to

various values. Pc and Pm are the probability of cross-over and

mutation.

Table 3. Experimental results under various job sizes

Proble
m name

1 2 3 4 5 pc pm 6

Prob2, 1 8 20 5

50
50
10

0
10

0
15

0

100
0
100

0
150

0
150

0
200

0

0.
4

0.
5

0.
4

0.
5

0.
4

0.
1

0.
5

0.
1

0.
5

0.
1

27
27
27
27
27

Prob2, 2
1

6
40 5

50
50
10

0
10

100
0
100

0
150

0.
4

0.
5

0.

0.
1

0.
5

0.

50
50
50
50
50

326 (IJMS) Vol. 12, No. 2, Spring2019

0
15

0

0
150

0
200

0

4
0.

5
0.

4

1
0.

5
0.

1

Prob2, 3
3

2
80 5

50
50
10

0
15

0
15

0

100
0
150

0
150

0
200

0
300

0

0.
4

0.
4

0.
4

0.
4

0.
4

0.
1

0.
1

0.
1

0.
1

0.
1

10
0

10
0

10
0

10
0

10
0

Prob2, 4
6

4
16

0
5

50
50
10

0
15

0
15

0

100
0
150

0
150

0
200

0
300

0

0.
4

0.
4

0.
4

0.
4

0.
4

0.
1

0.
1

0.
1

0.
1

0.
1

20
3

20
3

20
3

20
3

20
3

1: Job; 2: Operation; 3: Machine; 4: pop_size; 5: max_gen; 6: Makespan

In Table 2, the first problem had eight jobs, twenty operations, and

five machines. Just like the previous experiment, let Oik (1 ≤ 𝑖 ≤
8 , 1 ≤ 𝑘 ≤ 4) be the kth operation for the ith job. Figure 12 shows the

operation precedencies for jobs. The operational routings of each job

and machine options are shown in Table 4.

Figure 12. Operation precedencies for jobs

 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable… 327

Table 4. The operational routing of each job

Job Operations Machine options for operations

(Operation,

Machine, Time)

Sequence

options

1 1, 2 (1, 1, 5), (1, 2, 3)

(2, 2, 7)

1-2

2 1, 2 (1, 3, 6)

(2, 4, 3), (2, 5, 4)

1-2

3 1, 2,3 (1, 1, 7)

(2, 2, 4), (2, 3, 6)

(3, 3, 7), (3, 4, 7)

1-2-3

2-1-3

2-3-1

4 1 (4, 5, 10) 1

5 1, 2,3,4 (1, 1, 4), (1, 2, 5), (1, 3, 8)

(2, 4, 5)

(3, 4, 6), (3, 5, 5)

(4, 5, 4)

1-2-3-4

1-3-2-4

2-1-3-4

2-3-1-4

3-2-1-4

3-1-2-4

6 1, 2 (1, 2, 2), (1, 3,6)

(2, 3, 8)

1-2

7 1, 2 (1, 3, 3), (1, 4, 8)

(2, 4, 7), (2, 5, 4)

1-2

8 (1, 2, 3, 4) (1, 1, 3), (1, 3, 5)

(2, 3, 7)

(3, 4, 9), (3, 5, 6)

(4, 5, 3)

1-2-3-4

1-3-2-4

3-1-2-4

When applied to this problem, our approach resulted in 27 as the

value of the minimized makespan. Figure 13 depicts the schedule output

by Gantt chart for this problem.

328 (IJMS) Vol. 12, No. 2, Spring2019

3

2

1

4

5

5 10 15

o81

M
ac

h
in

e
n
u
m

b
er

Time

20 25 30

o51 o31

o32 o61 o11 o12

o71 o21 o82 o62

o52 o22 o53 o33

o83 o41 o72 o54 o84

Makespan

27

Figure 13. A Schedule on 5 machines for the first problem in Table 2

Based on the reasoning given in Moon et al. (2008) and with respect

to Table 2, since this result had no variation considering various settings

of genetic parameters, our approach generates the best makespan in a

robust manner. This result is supported by other computations in

various environments. Moreover, we realized that the presented

architecture had an effective performance while generating the best

makespan under different conditions.

Experiment 3

For the third experiment, we applied our approach to a problem, Prob3,

1, which has been previously taken into account in Moon et al. (2008).

This problem consisted of five jobs and five machines. Also, the

operational routing of each job and the alternative sequences are shown

in Table 5.

Our approach could obtain 33 for makespan, which is the same value

that was obtained by Moon et al. (2008). This result is illustrated in

Figure 14.
Table 5. The operational routing of each job (Moon et al, 2008)

Job Operations

Machine options for operations

(Operation,

Machine, Time)

Sequence

options

1 1,2,3,4

(1, 1, 5), (1, 2, 3)

(2, 2, 7)

(3, 3, 6)

(4, 4, 3), (4, 5, 4)

1-2-2-3

2 1,2,3,4
(1, 1, 7)

(2, 2, 4), (2, 3, 6)
1-2-2-3

 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable… 329

(3, 3, 7), (3, 4, 7)

(4, 5, 10)

3 1,2,3,4

(1, 1, 4), (1, 2, 5), (1, 3, 8)

(2, 4, 5)

(3, 4, 6), (3, 5, 5)

(4, 5, 4)

1-2-2-3

4 1,2,3,4

(1, 2, 2), (1, 3, 6)

(2, 3, 8)

(3, 3, 3), (3, 4, 8)

(4, 4, 7), (4, 5, 4)

1-2-2-3

5 1,2,3,4

(1, 1, 3), (1, 3, 5)

(2, 3, 7)

(3, 4, 9), (3, 5, 6)

(4, 5, 3)

1-2-2-3

3

2

1

4

5

5 10 15

M
ac

h
in

e
n
u
m

b
er

Time

20 25 30

Makespan

33

35

o51 o21

o31 o11 o41 o22 o12

o52 o42 o43 o13

o32 o33 o23 o44 o14

o53 o34 o54 o24

Figure 14. A Schedule on 5 machines for Prob3, 1 in Moon et al. (2008)

Experiment 4

The problem Prob4, 1 in Shao et al. (2009) considers eight machines

with six jobs which have flexible routings. The approach presented in

Shao et al. (2009) yielded a value of 162 as the makespan, and our

proposed architecture resulted in the same value.
Experiment 5

The problem, Prob5, 1, in Shao et al. (2009) considers six machines

with five jobs requiring 21 operations to be completed. Our approach

and the one given in Shao et al. (2009) both obtained 28 as the value of

the minimized makespan.
Experiment 6

This problem is also taken from Shao et al. (2009). A problem with four

jobs and three machines, Prob6, 1, was used for this experiment. Best

330 (IJMS) Vol. 12, No. 2, Spring2019

makespan obtained by our proposed architecture was 1100 which is

equal to the value given in Shao et al. (2009).
Comparative results between the approaches

We applied our proposed architecture to all the problems mentioned in

Moon et al. (2008) and Shao et al. (2009). Gained results imply that our

proposed approach is efficient and also superior to the approach given

in Moon et al. (2008). According to the obtained results, it can be

concluded that the performance of our architecture is as efficient as the

presented approach in Shao et al. (2009). Table 6 and Table 7 give the

comparative results between the approaches along with the percentage

improvements in the results. A percentage improvement is given by
(𝑉𝑎𝑙𝑢𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑝𝑟𝑖𝑜𝑟 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ)–(𝑉𝑎𝑙𝑢𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝐼𝑃𝑃𝐿𝐸𝐺𝐴)

(𝑉𝑎𝑙𝑢𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑝𝑟𝑖𝑜𝑟 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ)
× 100

Table 6. Comparative results between IPPLEGA and the proposed approach in Moon et

al. (2008)

 Solution (Makespan) % Improvements

Problem

Name

IPPLEGA Moon et al.

(2008)

Prob1, 1 14 16 12.5%

Prob2, 1 27 34 20.59%

Prob2, 2 50 63 20.63%

Prob2, 3 100 114 12.28%

Prob2, 4 203 227 10.57%

Prob3, 1 33 33 0%

Table 7. Comparative results between IPPLEGA and the proposed approach in Shao et

al. (2009)

 Solution (Makespan) % Improvements

Problem

Name

IPPLEGA Shao et al.

(2009)

Prob4, 1 162 162 0%

Prob5, 1 28 28 0%

Prob6, 1 1100 1100 0%

Conclusions and future works
This paper presented an architecture named IPPLEGA. The goal we

aimed to reach by developing IPPLEGA was to obtain the optimal

machine assignments and operation sequences and to find a schedule so

that the makespan is minimized. IPPLEGA consists of some memories

and a class of scheduling methods, i.e. active scheduling. This

 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable… 331

architecture helped us to improve results obtained by GA. Our devised

approach led us to the results that successfully dominate the solutions

given by previous methods or, at least, are as good as the results

obtained by prior approaches. The experimental results have also

pointed out that combining memories and active scheduling can be an

efficient method while aiming to solve IPPS through GA.

An interesting research topic would include other evolutionary

algorithms. Another direction for the future research would be considering

other objective functions. It is interesting in the world of standardization to

investigate the efficiency of the variants of design schemes with their

corresponding routings integrated with scheduling decisions.

References
Ausaf, M. F., Gao, L., & Li, X. (2015). Optimization of multi-objective integrated

process planning and scheduling problem using a priority based optimization

algorithm. Frontiers of Mechanical Engineering, 10(4), 392–404.

Beamon, B. M. (1998). Supply chain design and analysis: Models and methods.

International Journal of Production Economics 55, 281–294.

Bensmaine, A., Dahane, M., & Benyoucef, L. (2014). A new heuristic for integrated

process planning and scheduling in reconfigurable manufacturing systems.

International Journal of Production Research, 52(12), 3583-3594.

Bierwirth, C. (1995). A generalized permutation approach to job shop scheduling with

genetic algorithms. OR Spektrum, 17,87-92.

Brandimarte, P., (1993). Routing and scheduling in a flexible job shop by tabu search.

Annals of Operations Research, 22, 158-183.

Brandimarte, P., & Calderini, M. (1995). A heuristic bi-criterion approach to

integrated process plan selection and job shop scheduling. International Journal

of Production Research 33, 161–181.

Chen, H., Ihlow, J., & Lehmann, C. (1999). A genetic algorithm for flexible job-shop

scheduling. Proceedings of the IEEE International Conference on Robotics and

Automation 2, 1120-1125.

Cheng, R., Gen, M., & Tsujimura, Y. (1996). A tutorial survey of job shop scheduling

problems using genetic algorithms. I. representation. Computers and Industrial

Engineering, 30(4), 983-997.

Cochran, J. K., Horng, S., & Fowler, J. W. (2003). A multi-population GA to solve

multi-objective scheduling problems for parallel resources. Computers and

Operations Research 30, 1087–1102.

Guinet, A. (2001). Multi-site planning: A transshipment problem. International

Journal of Production Economics, 74,21–32.

Hankins, S. L., Wysk, R. A., & Fox, K. R. (1984). Using a CATS database for

alternative machine loading. Journal of Manufacturing Systems, 3, 115–120.

Ho, N. B., Tay, J. C., & Lai, E. M. (2007). An effective architecture for learning and

https://link.springer.com/journal/11465

332 (IJMS) Vol. 12, No. 2, Spring2019

evolving flexible job-shop schedules. European Journal of Operational Research,

179, 316–333.

Kacem, I., Hammadi, S., & Borne, P. (2002a). Approach by localization and

multiobjective evolutionary optimization for flexible job-shop scheduling

problems. IEEE Transactions on Systems, Man and Cybernetics, 32(1), 1-13.

Kacem, I., Hammadi, S., & Borne, P. (2002b). Pareto-optimality approach for flexible

job-shop scheduling problems: Hybridization of evolutionary algorithms and

fuzzy logic. Mathematics and Computers in Simulation, 60, 245-276.

Mesghouni, k., Hammadi, S., & Borne, P. (1997). Evolution programs for job-shop

scheduling. Proceedings of the IEEE International Conference on Computational

Cybernetics and Simulation, 1, 720–725.

Leung, C. W., Wong, T. N., Mak, K. L., & Fung, R. Y. K. (2010). Integrated process

planning and scheduling by an agent-based ant colony optimization. Computers

and Industrial Engineering, 59(1), 166-180.

Li, X., Gao, L., & Shao, X. (2012). An active learning genetic algorithm for integrated

process planning and scheduling, Expert Systems with Applications, 39(8), 6683-

6691.

Lian, K., Zhang, C., Gao, L., & Li, X. (2012). Integrated process planning and

scheduling using an imperialist competitive algorithm. International Journal of

Production Research, 50(15), 4326-4343.

Luo, G., Wen, X., Li, H., Ming, W., & Xie, G. (2017). An effective multi-objective

genetic algorithm based on immune principle and external archive for multi-

objective integrated process planning and scheduling. The International Journal

of Advanced Manufacturing Technology, 91(9–12), 3145–3158.

Mohapatra, P., Benyoucef. L., & Tiwari, M.K. (2013). Integration of process planning

and scheduling through adaptive setup planning: A multi-objective approach.

International Journal of Production Research, 51, 23-24.

Moon, C., Kim, J., & Hur, S. (2002). Integrated process planning and scheduling with

minimizing total tardiness in multi-plants supply chain. Computers and Industrial

Engineering, 43,331–349.

Moon, C., Lee, Y. H., Jeong, C. S., & Yun, Y. (2008). Integrated process planning

and scheduling in a supply chain. Computers and Industrial Engineering, 54,

1048-1061.

Nasr, N., Elsayed, A. (1990). Job shop scheduling with alternative machines.

International Journal of Production Research, 28, 1595–1609.

Palmer, G. J. (1996). A simulated annealing approach to integrated production

scheduling. Journal of Intelligent Manufacturing, 7, 163–176.

Petrović, M., Vuković, N., Mitić, M., & Miljković, Z. (2016). Integration of process

planning and scheduling using chaotic particle swarm optimization algorithm.

Expert Systems with Applications, 64, 569-588.

Shah, N. K., & Ierapetritou, M. G. (2012). Integrated production planning and

scheduling optimization of multisite, multiproduct process industry. Computers

and Chemical Engineering, 37, 214-226.

Shao, X., Li, X., Gao, L., & Zhang, C. (2009). Integration of process planning and

scheduling-A modified genetic algorithm-based approach. Computers and

Operations Research, 36, 2082-2096.

Tan, W., & Khoshnevis, B. (2004). A linearized polynomial mixed integer

https://link.springer.com/journal/170
https://link.springer.com/journal/170
https://link.springer.com/journal/170/91/9/page/1

 Integrated Process Planning and Active Scheduling in a Supply Chain-A Learnable… 333

programming model for the integration of process planning and scheduling.

Journal of Intelligent Manufacturing, 15, 593–605.

Varela, R., Vela, C. R., Puente, J., & Goméz, A. (2003). A knowledge based

evolutionary strategy for scheduling problems with bottlenecks. European Journal

of Operational Research, 145(1), 57-71.

Wang, J., Fan, X., Zhang, C., & Wan, S. (2014). A Graph-based Ant Colony

Optimization Approach for Integrated Process Planning and Scheduling. Chinese

Journal of Chemical Engineering, 22(7), 748-753.

Wong, T. N., Leung, C. W., Mak, K. L., & Fung, R. Y. K. (2006). An agent-based

negotiation approach to integrate process planning and scheduling. International

Journal of Production Research, 44(7), 1331-1351.

Xia, H., Li, X., & Gao, L. (2016). A hybrid genetic algorithm with variable

neighborhood search for dynamic integrated process planning and scheduling,

Computers and Industrial Engineering, 102, 99-112.

Zhang, L., & Wong, T. N. (2015). An object-coding genetic algorithm for integrated

process planning and scheduling. European Journal of Operational Research,

244(2), 434-444.

Zhang, L., & Wong, T. N. (2016). Solving integrated process planning and scheduling

problem with constructive meta-heuristics. Information Sciences 340–341, 1-16.

Zhang, Y. F., Saravanan, A. N., & Fuh, J. Y. H. (2003). Integration of process

planning and scheduling by exploring the flexibility of process planning.

International Journal of Production Research, 41(3), 611-628.

