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A B S T R A C T 

 

The classification of mineralized areas into different groups based on mineral grade and prosperity is a practical problem in the area of optimal 
risk, time, and cost management of exploration projects. This paper presents a new approach for optimizing the grade classification model of 
an orebody. The machine learning technique was integrated with a metaheuristic algorithm called Harmony Search (HS) to obtain a proper 
model for the spatial distribution of the grade classes, while improving the computational cost of the traditional classification methods. The 
HS is an algorithm inspired by the simulation of the process where a composer tries to harmonize a piece of music. By interpolating the 
dataset of Cu and Mo concentrations in the surface rock samples taken from the Kooh-Panj mineral prospect, the grid data of the two elements 
were extracted. Five popular indices were used to estimate the true number of groups in the dataset, which in turn determined two classes as 
the optimal number of groups. Harmony Search Learning (HSL) was used to classify the grid dataset of Cu and Mo. A comparison of the 
results of the proposed approach with those of the conventional k-means clustering suggested that the use of the HSL method significantly 
reduced the cost function of the problem (up to 13%). The comparison of the mineralization class derived from the HSL and k-means 
clustering with the borehole locations proved that the results of the HSL were more successful in the accurate estimation of the economic 
mineralization class identified by the exploratory excavations. In this respect, the HSL technique significantly improved the k-means 
performance by 25%. Furthermore, the results of the HSL were more consistent with the lithological units and the alteration zones involved 
in ore-forming processes. The use of HS-based learning technique rectified the disadvantages arising from the typical clustering methods 
regarding the entrapment in local optimums. It also led to the extraction of weak mineralization signals, numerically laid in boundary 
conditions. This approach can be extended to more than two geochemical variables and can be a valuable tool for the classification of 
mineralized areas to design and optimally manage mineral exploration projects. 
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1. Introduction 

One of the most critical strategies concerning the interpretation of 
geological phenomena related to minerals, on one hand, and the plan 
for designing the mining operation, on the other hand, is the 
identification of homogenous spatial domains, which introduce specific 
geochemical attributes such as hydrothermal alterations or 
mineralization zones. A conventional method for detecting such spatial 
dependencies includes the comparison of univariate geochemical maps 
and the investigation of their compliance with the geological structures 
in the region. If the number of elements is low, the given approach is 
accompanied by uncertainty; however, if the number is high, the case 
gets complicated [1]. The available tools for the simultaneous 
investigation of such variables include the machine learning methods. 
The unsupervised aspect of these methods is known as clustering or 
unsupervised classification. The main objective of such analyses is the 
classification of multivariate observations into a number of multivariate 
homogenous groups, i.e. mapping the observations onto spaces called 
centroid of the group. These centroids represent the information of the 
entire group, offering an appropriate viewpoint about the spectrum of 
data [2]. 

In geochemical data mining, a cluster analysis is a fundamental 

method in discovering valuable knowledge such as spatial distribution 
of geo-objects, their geochemical characteristics, the distinction among 
mineralization targets, and the relationship between geophysical and 
geochemical anomalies [3]. The main idea of mineral data classification 
is that the geochemical dataset is a mixture of different processes and 
phenomena, and machine learning can classify the data into different 
groups, each of which is related to a specific mechanism. The data of 
each process is usually located in a particular region with individual 
grade allocations and may be associated with specific geological and 
structural properties. When such a classification is made, designing the 
detailed exploration operations and planning for mining operations are 
carried out with higher reliability [2]. 

Due to the lack of big training datasets and unavailability of a priori 
knowledge about the statistical nature of the processes involved in 
mineral concentration, unsupervised learning methods play a significant 
role in discovering knowledge from the exploration datasets. Given the 
different types of data and applications, various kinds of unsupervised 
classification methods have been developed, which can generally be 
categorized as partitioning and hierarchical methods [4]. The 
hierarchical methods are commonly used for analyzing exploration 
datasets and investigating inter-elemental relationships, while the 
partitioning methods seek to classify the observations (samples) and 
investigate the spatial distribution of classes and their dependence on 
the geology of the region [1]. The hierarchical methods have high 
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computational complexity, whereas the partitioning-based methods are 
more commonly used for big datasets as well as pattern recognition 
applications [5]. In the same vein, to analyze the mineral data, the 
partitioning methods have proved their greater information worth, 
compared to the classification of variables, and have widely been used 
in various fields, including anomaly separation from background [6–9], 
recognition of volcanic occurrence patterns [10], classification of joints 
and fractures [11–14], recognition of hydrothermal alterations [15], and 
identification of environmental pollutions [6, 16]. 

There are various classification techniques in the category of the 
partitioning approaches, such as Gustafson-Kessel [17], fuzzy c-means 
(FCM) [18], Self-Organizing Map (SOM) [19], and Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) [20]. 
Nevertheless, the most practical method in this group is the k-means 
clustering technique [21]. In this method, the samples are assigned to 
one of the clusters based on the minimum distance from the centers. 
Thus, 𝑘  number of clusters is formed, each containing a number of 
samples. Thereafter, by calculating the cluster means, the new center of 
each cluster is updated, and this process continues until the results 
converge to the best classification. The k-means technique has been 
widely used for geochemical data processing. Meshkani et al. (2011) [22] 
used this method for classifying Pb-Zn deposits on a regional scale. Clare 
and Cohen (2001) [9] as well as Abbaszadeh et al. (2014) [7] employed 
the k-means clustering analysis for the separation of geochemical 
anomalies from background. Shi and Zeng (2014) [16] used this method 
to map chemical contaminations zoning. Ghannadpour et al. (2013, 
2015) [23, 24] and Ghannadpour and Hezarkhani (2015) [25] employed 
this method to interpret the geochemical behavior of trace elements in 
a porphyry deposit. Caciagli (2015) [26] used the k-means technique to 
separate geological processes and geochemical modeling of these 
processes in an epithermal gold deposit. Abbaszadeh et al. (2015) [15] 
detected the hydrothermal alterations using k-means clustering. 
Zaremotlagh and Hezarkhani (2016) [27] used this approach as a 
preprocessing method to classify the REE geochemical data in an iron 
mine. Morshedy (2016) [28] examined the capabilities of this method 
for spatial zoning of iron grades. Hood and Cracknell (2017) [29] used 
the k-means analysis to classify the altered rocks in a Cu-Au mine. 
Mohammadi et al. (2018) [30] employed this technique for multivariate 
estimation of Au concentrations. Zhou et al. (2018) [31] used the k-
means method to identify the potential zones of mineralization out of 
stream sediment geochemical data. 

Given the mixing effect of the geochemical datasets, the traditional 
cluster analysis methods have numerous limitations regarding the 
processing of big and complex datasets [3]. Partitioning-based 
classification methods have extensive applications due to their speed 
and simplicity in knowledge discovery of mineral datasets. However, the 
initial conditions of the problem (the initial position of the cluster 
centers) have a great impact on the performance of the algorithm, 
causing convergence of the final solutions to a local optimum and 
inability to find the global optimum. This problem is primarily reflected 
in geochemical datasets more due to the high dimensions of features and 
samples, generating incorrect and unreal results [9, 32–35]. Over the 
recent years, researchers have tried to use metaheuristic algorithms to 
overcome the entrapment of clustering responses in local optimums. 
However, some of these algorithms have downsides, including low-
quality results and lower convergence speed such as the genetic 
algorithm, while some have a complex structure and lower convergence 
rate such as particle swarm optimization. This research aims to optimize 
the classification process of the surface geochemical samples using a 
metaheuristic algorithm so that the results can represent the real classes 
in the mineralization area. For this purpose, the Harmony Search (HS) 
algorithm was used to optimize the unsupervised learning process in the 
geochemical dataset. The HS algorithm was first introduced by Geem et 
al. (2001) [36], inspired by the improvisation of musicians. Although the 
algorithm has been recently introduced and applied, it has been 
extensively utilized in solving many optimization problems, including 
optimization of fundamental problems, optimization of the economical 
load of dispatching problems in power systems, optimization of water 
distribution networks, improvement of control systems, etc. [37]. The 

results of Harmony Search Learning (HSL) were compared with the 
results obtained from the conventional k-means clustering both 
quantitatively, in terms of improving the cost function and 
intensification of population contrast, and qualitatively, considering the 
spatial distribution of classes. 

2. Study area and dataset 

The techniques discussed in this paper were implemented on a 
geochemical dataset collected from the Kooh-Panj porphyry Cu-Mo 
deposit. This deposit is located on the Urmia-Dokhtar Magmatic Arc 
(UDMA), southwest of Kerman Province, Iran. UDMA has a calc-
alkaline affinity, and it is the host of many Iranian porphyry copper 
deposits such as Sarcheshmeh, Meiduk, and Darrehzar [38]. The Kooh-
Panj area is mainly covered with volcanic units, including andesite-
dacite, andesite agglomerate, tuff, and andesitic dikes, as well as diorite 
and quartz diorite (Fig. 1) [39–41]. Six major hydrothermal alteration 
zones can be identified horizontally and vertically around the quartz 
diorite porphyry stoke of the Kooh-Panj deposit. These zones from the 
oldest and deepest to the youngest and most superficial are potassic, 
potassic overlapped with sericitic, propylitic, argillic, sericitic, and 
advanced argillic [38]. The porphyry Cu-Mo mineralization is the most 
important mineral occurrence in the Kooh-Panj area, hosted by the 
quartz diorite porphyry body [40]. 

 
Fig. 1. Simplified geology and alteration map of the Kooh-Panj porphyry Cu-Mo 

mineralization area [38]. 

 
Table 1. Descriptive statistics of Cu and Mo data in the samples taken from the 

Kooh-Panj deposit area. 

 Cu Mo 

Sample size 612 612 

Unit ppm ppm 

Mean 111.47 6.90 

Standard deviation 171.21 15.06 

Coefficient of variation 0.15 0.21 

Skewness 4.97 3.61 

Kurtosis 29.56 15.03 

Minimum 5.90 0.075 

1st quartile 43.52 0.50 

Median 59.95 0.95 

3rd quartile 100.65 4.50 

Maximum 1400.00 110.00 

Fig. 2 displays the scatter plot and histograms of Cu-Mo. As seen, the 
two elements were relatively correlated (the Pearson product-moment 
correlation coefficient was 𝑟 = 0.50), and their frequency distribution 
pattern was almost the same (strongly skewed distributions with a 
positive sign). To produce the continuous final map, the Cu and Mo 
datasets were separately interpolated using the Kriging method, in a 
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regular grid with 100 × 100 nodes (cell dimension of 25 m × 25 m). As 
an output, a dataset containing 10000 geochemical square cells was 
obtained in terms of the concentrations of Cu and Mo. It should be 
noted that there were seven exploratory boreholes in this area, indicated 
with DH codes in Fig. 1. Data from these drills included Cu and Mo 
analyses in 1550 core samples, merely used in the evaluation of the 
research results. 

The surface geochemical observations in the Kooh-Panj 
mineralization area were used as the dataset of this study. The dataset 
contained 612 rock samples, chemically analyzed for 43 geochemical 
elements, by using a combination of ICP-OES and ICP-MS methods. 
These samples were taken from a 2400 m × 2400 m square area with a 
grid spacing of 100 m. The primary mineralization elements (Cu and 
Mo) were selected as the target elements of the study. Initially, 
preprocesses operations such as the estimation of censored data and 
outlier corrections were performed on the dataset. The statistical 
summary of both elements is described in Table 1. 
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Fig. 2. Scatter plot and frequency distribution of Cu and Mo data in samples 

taken from the Kooh-Panj deposit area. 

3. Harmony Search Learning (HSL) 

k-means clustering, traditionally used for classifying geochemical 
data, tries to appoint multivariate observations into 𝑘 predetermined 
groups, so that each group contains 𝑛𝑘 observations with the centroid 
of each cluster as 𝑥𝑘 [42]. The classification begins with a random set of 
𝑘 observations as the group centroids. Each observation is allocated to 
the closest center depending on the distance to the centroids (mostly 
the Euclidean distance). Now, each 𝑥𝑘 is transferred to the cluster mean 
in the feature space of the data, and then the appointment of each 
member to the new centroid is reviewed. This process continues until 
the new centers are not displaced. The mathematical expression of this 
convergence is stated as within-group distance 𝑤 , which should be 
minimized as [9]: 

𝑤 = ∑ ∑ dist2(𝑥𝑖𝑘 , 𝑥𝑘)

𝑛𝑘

𝑖=1

𝑘

 (1) 

This function ensures the maximum similarity of the samples to the 
centroid of the relevant class and the maximum discrimination among 
the components of distinct classes. The k-means problem is strongly 
influenced by the multivariate geometry of the geochemical dataset [9]. 
Thus, in this research, the HSL algorithm was used to explore the global 
optimum solution and to achieve reliable results. 

Similar to the optimization problem trying to find a global optimum 
based on the objective function of the problem, performing music seeks 
to find a beautiful harmony based on aesthetic sciences. In the music 
sciences, harmony refers to auxiliary frequencies, which add to the 
dominant frequencies of the song and sometimes to the beautification. 
A composer always tries to achieve the best aesthetic state of the song 
by improvising different harmonies. He performs this using his harmony 
memory repository, which is created as a result of listening to different 

pieces. For this purpose, he tries to achieve the optimal form of music 
by applying minor changes to various harmonies in his memory. In this 
way, every musician plays each pitch of music within a possible range, 
all forming a harmony vector altogether. If all pitches aesthetically 
produce an acceptable harmony, this experience is stored in the memory 
of the composer, allowing them to create a better harmony in the future. 
Likewise, in the engineering optimization problems, each decision 
variable is first assigned a certain value within a permissible range, 
developing a solution vector altogether. If all the variables produce an 
acceptable solution based on the objective function, this experience is 
stored in the variable memory and the probability of achieving better 
responses in future iterations increases [43]. 

In terms of aesthetics, the piece played with a specific musical 
instrument can be assessed using three parameters, including frequency 
(pitch), resonance (quality), and oscillation range (loudness). The 
resonance is mainly specified as a waveform, by the harmonic content 
of harmony and through modulating sound signals. Nevertheless, the 
generated harmonies are mainly dependent on the pitch of the sound or 
the frequency spectrum of different instruments. Different notes have 
various frequencies. For example, the note A4 has the principal 
frequency of 𝑓0 = 440 Hz. Therefore, when adjusting the pitch, we tried 
to change the frequency [43]. When composers create a piece of music, 
they have three options as follows [37]: 

1) Playing a famous piece, exactly as it is in his memory; 
2) Playing a song similar to a famous piece, with some minor 

modifications; 
3) Creating a new piece with new notes. 

Formulating the three above items is an optimization process, 
developed by Geem et al. (2001) [36] through the following steps: 

1. Generating Harmony Memory (HM): random vectors of 
{𝑥1

𝑖 , 𝑥2
𝑖 , … , 𝑥𝑛

𝑖 },   𝑖 = 1, … , HMS, each of which used as a solution for the 
problem, are stored in a HM matrix: 

HM = [
𝑥1

1 ⋯ 𝑥𝑛
1

⋮ ⋱ ⋮
𝑥1

HMS ⋯ 𝑥𝑛
HMS

] [
𝑤(𝑥1)

⋮
𝑤(𝑥HMS)

] (2) 

where 𝑛 represents the number of variables; 𝑤(∙) shows the objective 
function of the learning problem (Eq. 1) per harmony vector of 
{𝑥1

𝑖 , 𝑥2
𝑖 , … , 𝑥𝑛

𝑖 }, and HMS is the Harmony Memory Size [44]. The HM 
matrix plays the role of famous pieces of music that the composer 
intends to play them exactly the same, and each row of HM is a harmony 
[37]. 

2. Generating a new harmony: with a probability of Harmony 
Memory Consideration Rate (HMCR), the new solution of 
{𝑥1

ˊ , 𝑥2
ˊ , … , 𝑥𝑛

ˊ } is selected from HM matrix. The factor HMCR is defined 
as the probability of selecting the new component 𝑥𝑗

ˊ out of the members 
stored in the HM, and ensures that the best harmonies are not removed 
from the memory during the optimization process. In this way, with the 
probability of 1 − HMCR, the new solution is randomly generated from 
the search space [44]. It is obvious that 0 ≤ HMCR ≤ 1 , so that the 
HMCR → 0, then the new harmonies are randomly selected from the 
search space. On the other hand, as HMCR → 1 , the probability of 
approving a new harmony from HM is high. The value of this parameter 
establishes a balance between the components of exploitation (high 
quality of the solutions taken from HM) and exploration (a search in 
the space of local solutions) [37]. 

3. Frequency modification (pitch adjustment): in the music sciences, 
pitch adjustment denotes changing the structure and content of 
frequencies, which equals the production of neighboring solutions in 
the optimization process. If the new component 𝑥𝑗

ˊ is taken from HM, it 
is mutated with the probability of Pitch Adjustment Rate (PAR) as 
much as 𝑓𝑤 , and is replaced with 𝑥𝑗

ˊˊ = 𝑥𝑗
ˊ + 𝑓𝑤. 𝑢(−1,1) . The 𝑓𝑤 

represents fret width (bandwidth), and describes the maximum changes 
in the pitch adjustment [43]. The term 𝑢(−1,1) expresses the positive 
and negative changes of 𝑓𝑤  in the form of a uniform statistical 
distribution. It is obvious that 0 ≤ PAR ≤ 1, explaining the probability 
of mutations in the elements taken from HM. 
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4. Updating HM: the harmony generated from the previous step is 
compared with the worst harmony of the memory (𝑥worst) in terms of 
the cost function. If 𝑥𝑗

ˊ or 𝑥𝑗
ˊˊ is better than 𝑥worst, then it replaces [44]. 

5. Termination of the optimization: the termination condition of the 
algorithm is usually achieved by a certain amount of iterations (itmax). 
By creating loops in the previous steps, the HS approaches the optimal 
value and improves the solutions [44]. 

Algorithm 1 presents the pseudo-code of the algorithm. In terms of 
computational complexity, although the k-means technique is faster and 
consumes less memory compared to HSL, the optimization due to the 
use of Harmony Search algorithm can lead to a significant improvement 
in the clustering results. 

Algorithm 1. The pseudo-code of the Harmony Search algorithm. 

STEP 1. Initialize the problem 

Load the data related to the optimization problem 

Define the objective function 𝑤     %%  the objective function defined 
in Eq. 1 

Set the HS parameters (HMS, HMCR, PAR, 𝑓𝑤, itmax) 

STEP 2. Initialize the harmony memory 

Construct the vectors of the harmony memory, HM = {𝑥1, 𝑥2, … , 𝑥HMS} 

Identify the worst vector in the HM, 𝑥worst ∈ {𝑥1, 𝑥2, … , 𝑥HMS} 

STEP 3. Improvise a new harmony vector 

𝑥ˊ = 𝜙     %%  new harmony vector 

for 𝑖 = 1, … , 𝑛 do     %%  𝑛 is the number of variables. 

if 𝑅(0,1) ≤ HMCR then     %%  𝑅 is a uniform random number 
generator. 

begin 

𝑥𝑖
ˊ ∈ {𝑥𝑖

1, 𝑥𝑖
2, … , 𝑥𝑖

HMS}     %%  harmony memory consideration 

if 𝑅(0,1) ≤ PAR then 

𝑥𝑖
ˊ = 𝑦𝑖,𝑗±𝑚     %%  𝑥𝑖

ˊ = 𝑦𝑖,𝑗 , pitch adjustment 

end 

else 

𝑥𝑖
ˊ ∈ 𝑿𝑖     %%  random consideration 

end if 

end for 

STEP 4. Update the harmony memory 

if 𝑤(𝑥ˊ) < 𝑤(𝑥worst) then 

Include 𝑥ˊ to the HM 

Exclude 𝑥worst from HM 

STEP 5. Check the termination condition 

while (the termination criterion specified by itmax is not provided) 

Repeat STEP 3 and STEP 4 

 

4. Results and discussion 

A Laptop hardware with an operating system of Windows 7 (32 Bit), 
with 1.66 GHz processor, Core i2, and RAM 2 GB was used to run the 
HSL program on the grid data of Cu and Mo obtained from the Kooh-
Panj deposit. The HSL algorithm was implemented in the MathWorks 
MATLAB environment. For the objective function of the problem (Eq. 
1), an independent module, named fitness, was developed and called as 
a function in the program interface (with the name of HarmonySearch). 
The input dataset included the estimated grades of Cu and Mo in 10000 
geochemical cells with the dimensions of 25 m × 25 m. To prevent any 
deviations in the results, the feature vectors of the input matrix should 
have the same scale [45]. This process was provided through 𝑧𝑖 =
(𝑥𝑖 − 𝑥min) (𝑥max − 𝑥min)⁄  standardization, and the grid data of Cu and 
Mo was scaled between 0 and 1. After a transposition of the input matrix, 
the standardized data was loaded into a 2 × 10000 matrix in the 
HarmonySearch interface. 

The essential parameters of HSL algorithm and their calibrated values 
are provided in Table 2. To implement the HSL, the actual number of 
classes (𝑘) should first be estimated in the current data space. In this 
study, five practical indices were used to determine the number of 
groups in the dataset. These indices combined the available information 
about between-group separation and within-group compactness, and 
determined the optimal number of classes [46]. To implement the 
indices, the Euclidean distance criterion was considered as a measure of 
distance and the generation of the non-similarity matrix. Furthermore, 
the possible scenarios of cluster numbers (upper and lower bounds of 
class numbers) were considered in the interval [2, 10] in order to extract 
the optimal solution from this range. As shown in Table 3, all the 
employed indices detected two classes as the optimal number of clusters 
in the dataset. Meanwhile, the performance of Dindex was based on 
knee points of the index values and peak points of the second differences 
of the index values, whose results are graphically shown in Fig. 3. 
Table 2. The calibrated parameters of the HSL algorithm for classifying the grid 

data of Cu and Mo in the Kooh-Panj deposit area. 

Parameter Value Description 

NC 2 Number of classes (𝑘) 

maxiter 50 Maximum number of iterations (itmax) 

npop 100 Harmony memory size (HMS) 

HMCR 0.90 
Harmony memory consideration rate 

(HMCR) 

PAR 0.20 Pitch adjustment rate (PAR) 

BW 0.95 Bandwidth (𝑓𝑤) 

BW_RF 0.95 
Bandwidth reduction factor (fret width damp 

ratio) 

 
Table 3. The optimal number of groups and the numerical values of the indices performed on the dataset of Cu and Mo in the Kooh-Panj deposit area. 

Index 
Value of the indices 

Optimum number of groups 
𝒌 = 𝟐 𝒌 = 𝟑 𝒌 = 𝟒 𝒌 = 𝟓 𝒌 = 𝟔 𝒌 = 𝟕 𝒌 = 𝟖 𝒌 = 𝟗 𝒌 = 𝟏𝟎 

Duda index [47] 0.989 1.822 1.502 2.180 1.441 1.497 1.297 2.097 1.752 2 

Silhouette coef. [48] 0.813 0.740 0.737 0.689 0.706 0.704 0.615 0.535 0.496 2 

Gap statistic [49] 1.023 0.516 0.438 0.168 0.018 -0.104 -0.149 -0.358 -0.364 2 

Dindex* [50] 0.068 0.054 0.046 0.041 0.039 0.035 0.032 0.030 0.027 2 

Dunn index [51] 0.021 0.005 0.010 0.010 0.010 0.012 0.005 0.003 0.001 2 

The HSL algorithm was run across 50 iterations with a memory size 
of 100 (Table 2). Although choosing a large memory size results in a 
diminished convergence rate, it allows for achieving a more extensive 
range of local solutions. Low HMCR values cause slowness of the 
algorithm convergence because only a limited number of harmonies are 
selected during the optimization process. On the other hand, high rates 
make it possible to choose and use just the harmonies contained in the 
HM. This event, in turn, causes the objective function to be entrapped 
in the local optimum. The suitable range for variations in the HMCR 

has been proposed to be [0.75,0.95] [36], and this study employed 0.90. 
The pitch adjustment rate in the HS is responsible for controlling the 
selection pressure among the exploration and exploitation parameters. 
High values of PAR enhance the variety in HSL algorithm. However, 
excessive growth of this parameter causes the HS to behave as a random 
search method. In this study, a value of 0.2 was used to calibrate PAR. 
The bandwidth parameter 𝑓𝑤 was adjusted as 0.95 of the input range. 
Furthermore, a factor of 0.95 was used as the bandwidth reduction factor 
(fret width damp ratio) to linearly reduce the bandwidth of frequency 
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changes in the subsequent iterations. This value increased the 
convergence rate in the final stages of the algorithm. 

 
Fig. 3. Plots of Dindex values (left) and the second differences Dindex values 

(right) against the cluster numbers of the dataset of Cu and Mo in the Kooh-Panj 
deposit area. 

By running the HSL under the conditions provided in Table 2, 
bivariate pixels of Cu and Mo were classified in Groups A and B. Fig. 4 
indicates the variations in the minimum and mean cost of HSL across 
50 iterations of the algorithm. As can be observed, the algorithm reached 
the stall zone of convergence almost at the 25th iteration. To verify the 
efficiency of HSL-based partitioning, the performance of this technique 
was compared with that of the traditional k-means method. Accordingly, 
through scripting in the MathWorks MATLAB, the value of the cost 
function, mentioned in Eq. 1, was calculated using k-means clustering, 
and the data were partitioned into classes A and B. The summary 
statistics of the classes obtained from the running of the two techniques 
were separately provided for Cu and Mo data in Table 4. The results 

confirmed that each of the subpopulations had different statistical 
properties. As can be seen in Table 4, the classes separated by the HSL 
method had a lower mean and standard deviation values in comparison 
to k-means clustering. Based on the probability distribution function of 
Cu and Mo in populations A and B (Fig. 5), it was evident that, despite 
the reduction and closeness of mean values of the elements in the HSL, 
this method developed greater density contrast compared to the k-
means technique. This suggested a higher resolution of the HSL method 
in classifying mineral grade populations. 

 
Fig. 4. The minimum and mean convergence plots of the cost function of the 
HSL algorithm for classifying the grid data of Cu and Mo in the Kooh-Panj 

deposit area. 

 

Table 4. Statistical parameters of the grid data of Cu and Mo in the classes separated by HSL and k-means methods. 

 Class A  Class B 

 Cu (km) Cu (HSL) Mo (km) Mo (HSL)  Cu (km) Cu (HSL) Mo (km) Mo (HSL) 

Sample size 1060 1701 1060 1701  8940 8299 8940 8299 

Unit ppm ppm ppm ppm  ppm ppm ppm ppm 

Mean 436.49 342.04 39.16 31.14  76.36 67.90 3.31 2.18 

Std 293.24 266.40 17.70 17.59  51.97 37.01 5.18 3.12 

Min 81.25 55.79 9.59 3.30  5.90 5.90 0.075 0.075 

Median 372.70 254.84 34.91 25.66  59.37 57.11 0.89 0.79 

Max 1409.95 1409.95 98.14 98.14  444.37 378.28 28.75 17.41 

 

 

 
Fig. 5. Probability density function plots of the Cu and Mo data in the classes separated by HSL and k-means methods.
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Spatial distribution of the classes obtained from the HSL and k-means 
algorithms is demonstrated in Fig. 6. This figure shows that the 
geochemical cells of each population were spatially distributed in a 
meaningful way. It was expected that clustering the geochemical cells 
into groups A and B categorized the mineralization map of the region 
into two economic and non-economic components, respectively. 

Accordingly, the HSL method significantly expanded the area of 
economic mineralization compared to k-means clustering. This 
subsequently led to the identification of weaker Cu-Mo mineralization 
signals, such as those observed in the marginal regions of the economic 
mineralization zone. 

 
Fig. 6. The Cu-Mo classification map derived from (a) HSL and, (b) k-means clustering in the Kooh-Panj deposit area. The color of the classes is in line with Fig. 5. 

Obviously, by optimizing the classification process, the value of the 
cost function decreases as described in Eq.1. Considering two classes for 
clustering 10000 standardized Cu and Mo data, both the HSL and k-
means methods were run for 20 iterations, and the cost value of each 
technique was recorded in each run. The statistical characteristics of the 
results of these two ways are summarized in Table 5. As can be seen in 
the table, the worst cost of the HSL was still better than the best cost of 
k-means clustering. Furthermore, the mean cost of the HSL was far less 
than that of k-means, explicitly confirming the better performance of 
the HS-based learning method. Regarding the mean costs resulting from 
the two techniques, due to the use of the HSL, the rate of improvement 
in clustering can be estimated to be around 13%. 

Table 5. Statistical characteristics related to the cost values of the Cu and Mo 
data classification using HSL and k-means clustering. 

 k-means HSL 

Number of iterations 20 20 

Minimum cost 673.59 587.73 

Maximum cost 673.87 588.79 

Mean cost 673.70 587.99 

Table 4 also represents population a separated by the HSL and k-
means methods as an economic mineralization class in the Kooh-Panj 
area. To investigate the spatial coherence of this zone with the geological 
units of the Kooh-Panj porphyry system, the spatial distribution map of 
class A was plotted by both HSL and k-means methods, corresponding 
against the geological map of the deposit (Fig. 7). As can be observed in 
the figure, although the centers of the zones identified by both methods 
were similar and corresponded to the diorite unit of the area, the 
economic zone identified by HSL was significantly wider than the 
region detected by k-means. The HSL technique also identified weak 
anomalous signals in the margin of the system. Investigating the 
characteristics shown in Fig. 7 revealed that zone A, derived from HSL, 
covered a wider area of diorite and quartz diorite units altered by 
potassic and argillic zones, compared to the findings obtained k-means. 
Seven exploratory boreholes were drilled in the Kooh-Panj deposit area, 
many of which tended to cut the economic orebody, and others only 
identified the waste. Table 6 listed the excavated boreholes along with 
the detected mineralization class in each borehole. In this study, the 
condition of economic mineralization was that the mean value at the 
upper 50 m of the boreholes had a minimum of Cu ≥ 0.2% and Mo ≥
30 ppm. Accordingly, as can be observed in Fig. 7, the superiority of the 

HSL technique to k-means clustering became evident in identifying the 
mineralization class of DH-4 and DH-7. These boreholes were in the 
boundary conditions regarding the mineral content. The k-means 
method classified both boreholes as non-economic cases, while the HSL 
correctly recognized them as the drilling targets by passing them 
through the local optimum of the problem. As shown in Table 7, for 
proper identification of the deep mineralization class, the k-means and 
HSL methods had a total accuracy of 57% and 71%, respectively. 
Therefore, the use of HS-based learning improved the performance of 
the traditional k-means approach by 25%. 

Table 6. The quality of mineralization detected by the exploratory boreholes 
based on the mean concentrations of Cu-Mo at the upper 50 m level of the 

Kooh-Panj deposit area. 

 DH-1 DH-2 DH-3 DH-4 DH-5 DH-6 DH-7 

Mean of Cu (%) 0.10 0.33 0.25 0.20 0.09 0.26 0.13 

Mineralization class of Cu N* E* E E N E N 

Mean of Mo (ppm) 10.15 34.72 48.77 31.12 25.72 28.20 34.16 

Mineralization class of Mo N E E E N N E 
* E: Economic 
* N: Non-economic 

Table 7. The success rate of the k-means and HSL methods in determining the 
correct non-economic and economic Cu-Mo mineralization zones in the Kooh-

Panj deposit area. 

 Count  

Correct 

detection of 

the k-means 

 

Correct 

detection of 

the HSL 

Non-economic boreholes 

of Cu 
3  2  1 

Non-economic boreholes 

of Mo 
3  1  1 

Success rate   50%  33% 

Economic boreholes of Cu 4  3  4 

Economic boreholes of Mo 4  2  4 

Success rate   62%  100% 

Overall success rate   57%  71% 
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 (a) (b) 

Fig. 7. The economic Cu-Mo mineralization map derived from (a) HSL and, (b) k-means clustering, and its relation to the geological structures in the Kooh-Panj deposit 
area. The symbols are in line with Fig. 1. 

5. Conclusion 

Similar to other metaheuristic algorithms, such as the genetic 
algorithm and the particle swarm optimization, the HS algorithm is also 
a random search method. This algorithm does not require the initial 
range of information, such as the gradient of the objective function. 
Furthermore, unlike other population-based stochastic algorithms, the 
HS uses only one search memory, which leads to its simplification and 
enhances its efficiency to cope with local minimums. The HS algorithm 
has a higher rate of convergence compared to similar algorithms, such 
as the genetic algorithm. Another advantage of this method is that, 
unlike the genetic method which uses two solution vectors in each 
generation,, in order to create a new solution the HS algorithm employs 
all the available solutions in the memory. This feature enhances the 
flexibility of the algorithm in searching for better solutions. 

Despite their extensive use for classifying homogeneous mineral 
fields, traditional machine learning methods, such as k-means 
clustering, involve many disadvantages, which are often due to 
entrapment of the objective function in local optimums. However, 
metaheuristic algorithms are more successful in achieving the global 
optimum as they enjoy intelligent computing. Therefore, hybridizing 
the traditional learning problems with a metaheuristic optimizer 
decreases the entrapment probability of the solutions in the local 
minimum. This can help to achieve real solutions and to discover correct 
spatial relationships in the mineral classification model. Theoretically, 
the application of the HSL for partitioning the Cu-Mo data in the Kooh-
Panj deposit area improved the cost function of the learning problem 
compared to the typical k-means clustering (up to 13%). Practically, the 
use of the HSL also led to more accurate extraction of the mineralization 
patterns in the region. By preventing the objective function from 
approaching the local minimums, this technique was able to identify the 
weak signals of the economic mineralization in the marginal areas of the 
Cu-Mo mineralization zone. Meanwhile, the use of k-means for this 
purpose led to the incomplete modeling of the mineralization zone and 
the loss of the part of the economic mineralization class. The success 
rate of the k-means method in the correct identification of deep 
mineralization classes was improved by 25% using the HSL method. The 
strategy introduced in this research can be expanded to more than two 
geochemical variables. The expansion of HSL and its usage, instead of 

other computational algorithms based on the objective function, can 
lead to the modification of the mineral grade classification model and 
optimal alterations in the exploration design for detailed operations. 
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