تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,399 |
تعداد دریافت فایل اصل مقاله | 97,220,913 |
تعیین سهم سازندهای زمینشناسی در تولید رسوب معلق با استفاده از روش منشایابی رسوب (حوزه آبخیز زیارت استان گلستان) | ||
تحقیقات آب و خاک ایران | ||
مقاله 153، دوره 50، شماره 2، خرداد و تیر 1398، صفحه 379-387 اصل مقاله (766.86 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2018.254423.667874 | ||
نویسندگان | ||
کاظم نصرتی* 1؛ محمدرضا زارع2؛ سعیده جلالی1 | ||
1گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران | ||
2گروه فیزیک، دانشگاه مالک اشتر، تهران، ایران | ||
چکیده | ||
روش منشایابی رسوب بهعنوان روشی موفق و مؤثر برای تعیین سهم منابع رسوب در تولید رسوب در طول دو دههی اخیر به اثبات رسیده است. حوزه آبخیز زیارت در استان گلستان، یکی از منابع تأمین آب شهر گرگان است. واحدهای اصلی زمینشناسی این حوضه شامل شیست گرگان، رسوبات آبرفتی دوره کواترنر، سازند شمشک و خوش ییلاق است که میتوانند نقش مهمی در فرسایش و تولید رسوب داشته باشند. برای منشایابی رسوب، 14 نمونه از رسوب معلق رواناب خروجی حوضه (رسوب تولیدی) و 43 نمونه از واحدهای زمینشناسی (منبع رسوب) از عمق 5-0 سانتیمتری جمعآوری و عناصر ژئوشیمایی و سزیوم ۱۳۷ به عنوان ردیاب در نمونهها اندازهگیری شد. با استفاده از آزمون کروسکال- والیس و تحلیل تشخیص ترکیب بهینه ردیابها مشخص شد. بر این اساس، ردیابهای کربن آلی، سزیوم137 و مس بالاترین توان جداسازی منابع رسوب را داشتند. نتیجهی مدل چندمتغیرهی ترکیبی منشایابی رسوب نشان داد، سازند شمشک، نهشته های آبرفتی رودخانه ، خوش ییلاق و شیست گرگان به ترتیب 2/42 ، 9/31 ،7/23 و 6/1 درصد در تولید رسوب سهم دارند. | ||
کلیدواژهها | ||
منشایابی رسوب؛ ردیاب ژئوشیمیایی؛ حوزه آبخیز زیارت؛ سزیم 137 | ||
مراجع | ||
Alewell C., Birkholz A., Meusburger K., Schindler Wildhaber Y., (2016).Quantitative sediment source attribution with compound-specific isotope analysis in C3-lant dominated catchment (central Switzerland). Journal of Biogeosciences 13. 1587-1597. Barthod L.R.M., Liu K., Lobb D.A., Ownes P.N., Martines N., Koiter A.J., Petticrew E.L.,(2015). Selecting color-based tracers and classifying sediment sources in the assessment of sediment dynamic using sediment sources fingerprinting Journal of Environment Quality 44, 1605-1616. Carter, J., Owens, P N., Walling, D, E., and Leeks, Graham J. L. (2003). Fingerprinting suspended sediment sources in a large urban river system. Journal of Science of The Total Environment, 314: 513-534. Chun L., Zhongwu L., Xiaofeng Ch., JijunHe., Xiaodong Ni ., LinLiu., HaibingXiao., Danyang W., Hao Pe ., Guangming Z. (2018). Soil carbon and nitrogen sources and redistribution as affected by erosion and deposition processes: A case study in a loess hilly-gully catchment, China. Journal of Agriculture, Ecosystems & Environment 253, Pages 11-22. Collins A.L., Pulley S., Foster I.D.L., Gellis A., Porto P., Horowitz A.J.M (2017). Sediment source fingerprinting as an aid to catchment management : A review of the current state of knowledge and a methodological decision-tree for end-users. Journal of environment management. 194: 86-108. Collins A.L., Zhang Y.S., Hickinbotham R., Bailey G., Darlington S., Grenfell S.E., Evan R., Blackewll M., (2013a). Contemporary fine-grained bed sediment sources across the river wensum demonstration test catchment UK. Journal of Hydrolgy. Process 27. 857-884. Collins A.L., Walling D.E., Leeks G.J.L (1997) . Source type ascripition for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Journal of CATENA, 29:1-27. Collins A.L., Walling D.E.,. ( 2004:). Documenting catchment suspended sediment sources:problems, approaches and prospects, Progress in Physical Geography,. 28:, 159-196. Collins, A., & Walling, D. (2007). Sources of fine sediment recovered from the channel bed of lowland groundwater-fed catchments in the UK. Journal of Geomorphology, 88:120-138 Collins, A. L., Williams, L. J., Zhang, Y. S., Marius, M., Dungait, J. A. J., Smallman, D. J., Naden, P. S. (2013b). Catchment source contributions to the sediment-bound organic matter degrading salmonid spawning gravels in a lowland river, southern England. Journal of Science of The Total Environment, 456: 181-195. Cooper, R., Krueger, T., Hiscock, K, M., and Rawlins, Barry G. (2015) . High-temporal resolution fluvial sediment source fingerprinting with uncertainty: a Bayesian approach. Journal of Earth Surface Processes and Landforms, 40: 78-92. Cooke, D. R., Hollings, P., Wilkinson, J. J., & Tosdal, R. M. (2014). Geochemistry of Porphyry Deposits. In H. D. H. K. Turekian (Ed.), Treatise on Geochemistry (Second Edition)). Consultant engineering pazhhab-sharg, technical report of Ziarat basin flood and sediment control project – abstract study- phase 1. (2010). (in farsi) Devereux, O, H., Prestegaard, K. L., Needelman, B. A., and Gellis, Allen C. (2010) . Suspended-sediment sources in an urban watershed, Northeast Branch Anacostia River, Maryland. Journal of Hydrological Processes, 24:1391-1403. D Haen K, Verstraeten G., Dusar B,. Degryse B., Heax J., Walkens M. (2012) . Unravelling changing sediment sources in a Mediterranean mountain catchment Bayesian fingerprinting approach. Journal of HydrologicalProcesses. 27:896-927. Evrard, O., Laceby P.J., Huon S., Lefevre I., Sengtaheuanghoung O., Ribolz O.,(2016).Combinig multiple fallout radionuclides (137Cs., 7Be., 210Pbex) to investigate temporal sediment source dynamics in tropical ephemeral river systems. Journal of Soils Sediments 16, 1130-1144. Feiznia S., Ahmadi H., Moazzami M., Fahmi H. (2009) Investigation and determination of sediment source proportion by using soil natural tracers( case study: Abolfars khuzestan). Journal of watershes and grasland – iran natural source. 63: pp, 503-514.(in farsi) Fox, J. F., & Papanicolaou, A. N. (2008) . An un-mixing model to study watershed erosion processes. Journal of Advances in Water Resources, 31: 96-108. Gellis A.C. Hupp C.R., Pavich M.J., Landwehr J.M., Banks W.S.L., Hubbard B,E., Langland M.J., Ritchie J.C., Reuter J.M., (2009). Sources transport and storage of chespeake bay watershed U.S. Journal of Geology .Survey. Science. Investigation. Rep.2008-5186,95. Gingele F.X. and De Deckker P., (2005). Clay mineral geochemical and Sr-Nd isotopic fingerprinting of sediments in the Murray-Darling fluvial system southeast Australia Aust. Journal of Earth Science 52. 956-974. Hessami. D. (2001). Sediment tracing input to Zarivar Kordestan province to determine formation sedimentation and erosion, Master science thesis, university Tehran. (in farsi) Kouhpeyma A., Moazzami M., Feiznia S., Ghadimi H. (2009). Determination of source sediment relative proportion based of sediment fingerprinting. 8th international conference of river engineering. Ahwaz- shahid Chamran university. (In farsi) Lindsey, David A, Langer, William H, & Van Gosen, Bradley S. (2007). Using pebble lithology and roundness to interpret gravel provenance in piedmont fluvial systems of the Rocky Mountains, USA. Sedimentary Geology, 199(3), 223-232. Journal of Massoudieh, A., Gellis, A., Banks, W. S., and Wieczorek, M, E,. (2013) . Suspended sediment source apportionment in Chesapeake Bay watershed using Bayesian chemical mass balance receptor modeling. Journal of Hydrological Processes, 27: 3363-3374. Nosrati, K. Govers, G. Ahmadi, H. Sharifi, F. Amoozegar, M, Merckx, R. and Vanmaercke, M. (2011) . An exploratory study on the use of enzyme activities as sediment tracers: biochemical fingerprints? International Journal of Sediment Research, 26: 136-151. Nosrati K., Ahmadi F., Nazari Samani A.A., Sarvati M.R. (2015). Determin role of land use in suspended sediment and bed load yield based on sediment fingerprinting in Taleghani watershed, Khorramabad. Iranian Journal of Natural Resources.68:4:pp765-751. Nosrati k, Govers G, Semmenes B.X, and Ward E,J., (2014). A mixing model to incorporate uncertainty in sediment fingerprinting. Journal of CATENA, 217: 173-180. Palazon L., Latorre B., Gaspar L., Blake,HB., Smith H.G. Navas A. (2015). Comparing catchment sediment fingerprinting procedures using an autoevaluation approach with virtual sample mixture Journal of Science Total Environment 532,456-466. Sadeghi S.H., Najafi S., Riyahi Bakhtiari A. (2017) Sediment contribution from different geologic formations and land uses in an Iranian small watershed, case study. International Journal of Sediment Research. 32, Issue 2, June 2017, Pages 210-220 Samadi Arghini, H, Feiznia. S, Nazari Samani A.A. (2013). Using magnetic properties to investigating effect geology units in sediment yield. Journal of Iranian Journal of Watershed Management Science and Engineerin, 25(2):46-39 (in Persian with English abstract). Smith H.G. and Blake W.H. (2014). Sediment fingerprinting in agricultural catchments: a critical re-examination of source sediment discrimination and data correction. Journal of Geomorphology 204. 177-191. Walling, DE, Collins, AL, & Sichingabula, HM. (2003). Using unsupported lead-210 measurements to investigate soil erosion and sediment delivery in a small Zambian catchment. Geomorphology, 52(3), 193-213. Wallbrink, P.J., Murray, A.S., Olley, J.M., Olive, L.J., (1998). Determining the sources and transit times of suspended sediment in the Murrumbidgee River, New South Wales, Australia, using fallout 137C and 210Pb. Water Resources Research 34 (4), 879–887. Wilkinson, Scott N., Hancock, Gary J., Bartley, Rebecca, Hawdon, Aaron A., & Keen, Rex J. (2013). Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, Burdekin River basin, Australia. Journal of Agriculture, Ecosystems & Environment, 180(0), 90-102. Wilkinson S., Wallbrinkb P.J., Hancockb G.,.BlakecdR.A., .ShakesbyeS...Doerr F. (2009). Fallout radionuclide tracers identify a switch in sediment sources and transport-limited sediment yield following wildfire in a eucalypt forest. Journal of GEOMORPHOLOGY.110- 3,4. PP 140-151 | ||
آمار تعداد مشاهده مقاله: 410 تعداد دریافت فایل اصل مقاله: 338 |