تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,727 |
تعداد دریافت فایل اصل مقاله | 97,230,894 |
حذف تولوئن از هوای اتمسفری با استفاده از جاذب نانو کربن فعال | ||
نشریه محیط زیست طبیعی | ||
مقاله 4، دوره 72، شماره 1، فروردین 1398، صفحه 45-58 اصل مقاله (1.78 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jne.2019.257086.1515 | ||
نویسندگان | ||
شهناز تیموری1؛ سید علیرضا میرحسینی1؛ حمید شیرخانلو* 2 | ||
1دانشکده محیط زیست و انرژی، دانشگاه آزاد اسلامی واحد علوم تحقیقات، تهران، ایران | ||
2پژوهشگاه صنعت نفت- پژوهنده ارشد | ||
چکیده | ||
مقدمه: کاربرد وسیع تولوئن در صنایع شیمیایی باعث شده که مطالعات مختلفی در خصوص کنترل و کاهش بخارات تولوئن از هوا صورت گیرد. هدف ازاین مطالعه ، بررسی امکان حذف تولوئن هوا با استفاده از جاذب نانو کربن فعال به عنوان جایگزینی مناسب برای کربن فعال تجاری می باشد. ابتدا جاذب نانو کربن فعال با سایز مشخص سنتز شده و برای حذف تولوئن از هوا، در دو سیستم استاتیک و دینامیک مورد بررسی و ارزیابی قرار گرفت. از میکروسکوپ الکترونی برای شناسایی مورفولوژی سطح جاذب ها و از دستگاه گاز کروماتوگرافی با آشکارساز یونیزاسیون شعله برای تعیین غلظت اولیه و نهایی تولوئن در هوا استفاده گردید. برای بهینه نمودن میزان جذب تولوئن توسط نانو کربن فعال، تاثیر عواملی همچون دما، رطوبت، غلظت تولوئن، مقدار جاذب و زمان تماس بررسی شد. میزان ظرفیت جذب نانو کربن فعال و کربن فعال تجاری برای حذف تولوئن هوا در دمای محیطی به ترتیب 6/207 و 2/185میلی گرم بر گرم و راندمان جذب آنها به ترتیب 4/98 و 2/44 درصد در سیستم دینامیک بدست آمد. ظرفیت جذب جاذب در رطوبت ثابت، با افزایش مدت زمان تماس و دما به ترتیب افزایش وکاهش می یابد. بر اساس نتایج جذب تولوئن هوا ، نانو کربن فعال سنتز شده دارای سطح بیشتری نسبت به کربن فعال بوده و در شرایط بهینه ظرفیت و راندمان جذب بیشتری دارد. همچنین با توجه به مقدار مصرفی و تکرار پذیری جاذب، استفاده این روش از نظر اقتصادی مقرون به صرفه می باشد | ||
کلیدواژهها | ||
تولوئن هوا؛ کربن فعال؛ نانوکربن فعال؛ جذب؛ بازجذب | ||
مراجع | ||
An, J., Zhu, B., Wang, H., Li, Y., Lin, X. and Yang, H., 2014. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmospheric environment, 97, pp.206-214. Bari, M.A., Kindzierski, W.B. and Spink, D., 2016. Twelve-year trends in ambient concentrations of volatile organic compounds in a community of the Alberta Oil Sands Region, Canada. Environment international, 91, pp.40-50. Baudic, A., Gros, V., Sauvage, S., Locoge, N., Sanchez, O., Sarda-Estève, R., Kalogridis, C., Petit, J.E., Bonnaire, N., Baisnée, D. and Favez, O., 2016. Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity. Atmospheric Chemistry and Physics, 16(18), pp.11961-11989. Carlos-Wallace, F.M., Zhang, L., Smith, M.T., Rader, G. and Steinmaus, C., 2015. Parental, in utero, and early-life exposure to benzene and the risk of childhood leukemia: a meta-analysis. American journal of epidemiology, 183(1), pp.1-14. Chen, Y.C., Chiang, H.C., Hsu, C.Y., Yang, T.T., Lin, T.Y., Chen, M.J., Chen, N.T. and Wu, Y.S., 2016. Ambient PM2. 5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment. Environmental pollution, 218, pp.372-382. Gangupomu, R.H., Sattler, M.L. and Ramirez, D., 2016. Comparative study of carbon nanotubes and granular activated carbon: physicochemical properties and adsorption capacities. Journal of hazardous materials, 302, pp.362-374. Hamadanian, M., Tavangar, Z. and Naseh, S., 2016. The modification of benzene adsorption on zigzag single-wall carbon nanotubes by carboxylation. Materials Research Express, 3(12), pp.125010. Harbison, R.D., Bourgeois, M.M. and Johnson, G.T., 2015. Hamilton and Hardy's industrial toxicology. John Wiley & Sons. Huang, Z., Kong, S., Xing, X., Mao, Y., Hu, T., Ding, Y., Li, G., Liu, D., Li, S. and Qi, S., 2018. Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year. Atmospheric Chemistry and Physics, 18(7), pp.4567-4679. Hussein, A., Al Anbari, R., and Hassan, M., 2018.و Toluene concentrations reduction by using photocatalytic coating methods for cementitious materials. MATEC, web of conferences, 162, 05003. Liu, Q., Shi, J. and Jiang, G., 2012. Application of graphene in analytical sample preparation. TrAC Trends in Analytical Chemistry, 37, pp.1-11. MinKim, Ji., HoonKim, ji., YeonLee, c., WookJerng, D., SeonAhn, Ho., 2018. Toluene and acetaldehyde removal from air. Journal of Hazardous Materials, 344(15), pp. 458-465. Mohammed, J., Nasri, N.S., Zaini, M.A.A., Hamza, U.D. and Ani, F.N., 2015. Adsorption of benzene and toluene onto KOH activated coconut shell based carbon treated with NH3. International Biodeterioration & Biodegradation, 102, pp.245-255. National Institute for Occupational Safety and Health (NIOSH; 2016). Manual of analytical methods, method 1501. Ncibi, M.C. and Sillanpää, M., 2015. Mesoporous carbonaceous materials for single and simultaneous removal of organic pollutants: activated carbons vs. carbon nanotubes. Journal of Molecular Liquids, 207, pp.237-247. Nowak, D.J., Hirabayashi, S., Doyle, M., McGovern, M. and Pasher, J., 2018. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban Forestry & Urban Greening, 29, pp.40-48. Pearce, N., Blair, A., Vineis, P., Ahrens, W., Andersen, A., Anto, J.M., Armstrong, B.K., Baccarelli, A.A., Beland, F.A., Berrington, A. and Bertazzi, P.A., 2015. Evaluating carcinogenic hazards to humans. Environmental health perspectives, 123(6), p.507. Rashidi.A. M., Kazemi, D., Izadi, N., Pourkhalil, M., Jorsaraei, A., 2016. Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage. Korean Journal of Chemical Engineering, 33 (2), pp. 616-622. Shirkhanloo, H., Osanloo, M. and Qurban Dadras, O., 2015. Nobel Method for Toluene Removal from Air Based on Ionic Liquid Modified Nano-Graphen. International Journal of Occupational Hygiene, 6(1), pp.1-5. Stenehjem, J.S., Kjærheim, K., Bråtveit, M., Samuelsen, S.O., Barone-Adesi, F., Rothman, N., Lan, Q. and Grimsrud, T.K., 2015. Benzene exposure and risk of lymphohaematopoietic cancers in 25 000 offshore oil industry workers. British journal of cancer, 112(9), pp.1603-1614. Su, F., Lu, C. and Hu, S., 2010. Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 353, pp.83-91. Taneepanichsku, N., Loonsamrong, W., Tungsaringkarn, T., Gelaye, B. and Williams, M.A., 2018. Occupational exposure to BTEX compounds among enclosed multi-storey car park workers in central Bangkok area. Indoor and Built Environment,27(5), pp.622-629. Tham, Y., Latif, P. A., Abdullah, A., Shamala, A. and Taufiq-yap, Y., 2015. Performances of toluene removal by activated carbon derived from durian shell. Bioresource technology, 102, pp.724-728. World Health Organization (WHO). 2016. Indoor Air Pollution and Health. Geneva Switzerland. Yi, Z., Yao, J., Zhu, M., Chen, H., Wang, F. and Liu, X., 2016. Kinetics, equilibrium, and thermodynamics investigation. Springer plus,. 5(1), pp. 1160-1174. Zhang, B.T., Zheng, X., Li, H.F. and Lin, J.M., 2013. Application of carbon-based nanomaterials in sample preparation: a review. Analytica chimica acta, 784, pp.1-17. Zhen-Zhen, X., Lin W., Ge C., Lei, S. and Yi-Bo Z., 2016. Adsorption properties of regenerative materials for removal of low concentration of toluene. Journal of the Air & Waste Management Association, 66(12), pp. 1224-1236. | ||
آمار تعداد مشاهده مقاله: 547 تعداد دریافت فایل اصل مقاله: 773 |