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1 Introduction

Nonparametric tests are statistical tests used to analyze data for which an underlying
probability distribution is not assumed [19, 23, 35]. They have advantages over their
parametric counterparts because they have fewer underlying assumptions (e.g. data nor-
mality, equal variance, etc). A particular class of nonparametric tests is composed of
median tests. These procedures are commonly based on, for example, crispness of the
observations and the hypotheses of interest.
But, in the real world, different elements in environmental sciences may be imprecisely
observed or defined. In many studies we are faced with the problem of handling impreci-
sion, e.g., in cluster analysis of ecological data [45, 43], or in fuzzy rule-based classification
models when the soil quality has to be defined based on soil microbial biomass [48]. Also
in habitat suitability models, the information is usually only verbally described, so linguis-
tic fuzzy models are employed [49, 50], and in ecosystem management, fuzzy rule-based
models for decision support are used [1]. Fuzzy data have also been treated in statistics
for a long time [51, 52, 53]. More recently, fuzzy data referred to meteorological variables
were analyzed in [12]. Another example of imprecise variable in an environmental con-
text is introduced and analyzed in [7], and [17]. In many situations, we may also not be
able to make precise formulation of the underlying hypotheses. For such cases, it is more
appropriate to model the imprecise hypotheses using fuzzy quantities [7, 22, 54].
To achieve suitable statistical methods dealing with imprecise data and imprecise hy-
potheses, we need to model the imprecise information and extend the usual approaches to
imprecise environments. The introduction of the fuzzy set theory in the area of statistics
encouraged many researchers to look for the generalizations of statistical procedures to
the fuzzy environments. After introducing fuzzy set theory, specially in parametric statis-
tical inferences, there have been a lot of attempts for developing fuzzy statistical methods
[2, 3, 5, 6, 8, 13, 18, 33, 38, 53]. But, as the authors know, there have been few studies
on nonparametric statistical approaches in fuzzy environment. Concerning the purposes
of this paper, let us briefly review some of the literature on this topic.
Kahranam et al. [31] proposed some algorithms for fuzzy nonparametric rank-sum tests
based on fuzzy random variables. Grzegorzewski [24] introduced a method to inference
about the median of a population using fuzzy random variables. He [25] demonstrated also
a straightforward generalization of some classical nonparametric tests for fuzzy random
variables based on a metric in the space of fuzzy numbers. Moreover, he [26, 28] studied
some nonparametric median fuzzy tests based on the necessity index of strict dominance
suggested by Dubois and Prade [15] for fuzzy observations showing a degree of possibility
and a degree of necessity for evaluating the underlying hypotheses. Grzegorzewski [27]
also proposed a modification of the classical sign test to cope with fuzzy data which was
so-called bi-robust test, i.e. a test which is both distribution-free and which does not
depend so heavily on the shape of the membership functions used for modeling fuzzy
data. Using a fuzzy partial ordering on closed intervals, Denoeux et al. [14] extended
the nonparametric rank-sum tests based on fuzzy data. For evaluating the hypotheses
of interest at a crisp or a fuzzy significance level, they employed the concepts of fuzzy
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p-value and degree of rejection of the null hypothesis quantified by a degree of possibility
and a degree of necessity. Hryniewicz [30] investigated the fuzzy version of the Goodman-
Kruskal γ-statistic described by ordered categorical data. Lin et al. [39] considered the
problem of two-sample Kolmogorov-Smirnov test for continuous fuzzy intervals based
on a crisp test statistic. Taheri and Hesamian [46] introduced a fuzzy version of the
Goodman-Kruskal γ-statistic for two-way contingency tables when the observations were
crisp but the categories were described by fuzzy sets. In this approach, a method was
also developed for testing of independence in the two-way contingency tables. Taheri
and Hesamian [47] also extended the Wilcoxon signed-rank test to the case where the
available observations are imprecise and underlying hypotheses are crisp. They generalized
the concept of critical value to the case when the significance level is given by a fuzzy
number. For more on statistical methods with fuzzy observations, the reader is referred
to the relevant literatures, for example [3, 53].
The present paper aims to develop the sign test test for fuzzy random variables in which
the underlying hypotheses are imprecise. To do this, after introducing a new concept
of fuzzy random variable, we define fuzzy median and fuzzy sample median. Then, we
introduce the concepts of fuzzy test statistic. For making a decision rule to reject or to
accept the null hypothesis, we employ an index called credibility degree with a nominal
crisp significance level which provides a fuzzy test function. A real-data problem in
life-time testing is used to illustrate the applicability of the introduced method in fuzzy
environment.
This paper is organized as follows: In the next section, we briefly review the classical
sign test. In the same section, some definitions from fuzzy numbers and some results
from credibility theory are also presented. In Section 3, we propose a new definition of
fuzzy random variable. In Section 4, we generalize the concept of fuzzy median and fuzzy
sample median for fuzzy random variables. We also extend a well-known large sample
property of sample median to fuzzy environments. Then, by introducing the concepts of
fuzzy test statistic, we provide an approach to test the imprecise hypothesis when the
available data are observations of fuzzy random variables. A numerical example is also
provided in this section to clarify the discussions made in this paper and to show the
applicability of the proposed method in fuzzy environment. Finally, a brief conclusion is
provided in Section 5.

2 Preliminaries

2.1 Sign test: a brief review

Suppose we have a random sample X1, X2, . . . , Xn, with observed value x1, . . . , xn, from
a continuous and symmetric random variable X with median MX . A null hypothesis
about the population median is written as H0 : MX = M0, where M0 is a known real
number. If r(.) is the rank of an observation, the modified sign statistic [19] can be written



124 M. Shams / JAC 50 issue 2, December 2018, PP. 121 - 139

symbolically as

T+ =
n∑
i=1

r(|di|)I[di > 0], (1)

where di = xi −M0, and I is the indicator function,

I[ρ] =

{
1 if ρ is true,
0 if ρ is false.

The sampling distribution of T+ under the assumption of H0 : MX = M0 is given, for
example, in [19]. The appropriate rejection regions at the significance level δ to test
the null hypothesis H0 : MX = M0 are shown at Table 1. For a large sample size, the
appropriate rejection region can be found by using normal approximation [19].

Table 1: Rejection regions for sign test

H1 : Rejection Region

1) MX > M0 T+ ∈ {Cδ, Cδ + 1, . . . , n(n+ 1)/2}, where PH0(T
+ ≥ Cδ) = δ

2) MX < M0 T+ ∈ {0, 1, . . . , C ′

δ}, where PH0(T
+ ≤ C

′

δ) = δ

3) MX 6= M0 T+ ∈ ({0, 1, . . . , C ′

δ/2} ∪ {n(n+ 1)/2− C ′

δ/2, . . . , n(n+ 1)/2})

In Section 4, we will extend the sign test to the case when the available observations as
well as hypotheses are provided as fuzzy quantities, rather than crisp quantities.

2.2 Fuzzy numbers

A fuzzy set Ã of the universal set X is defined by its membership function µÃ : X→ [0, 1].

In this paper, we consider R (the real line) as the universal set. We denote by Ã[α] =

{x ∈ R : µÃ(x) ≥ α} the α-level set (α-cut) of the fuzzy set Ã of R, for every α ∈ (0, 1],

and Ã[0] is the closure of the set supp(Ã) = {x ∈ R : µÃ(x) > 0}. A fuzzy set Ã of R is

called a fuzzy number if for every α ∈ [0, 1], the set Ã[α] is a non-empty compact interval,
µÃ(x) is continuous at any x ∈ R, and there exists a unique x∗ ∈ R such that µÃ(x∗) = 1.

Such an interval will be denoted by Ã[α] = [ÃLα, Ã
U
α ], where ÃLα = inf{x : x ∈ Ã[α]} and

ÃUα = sup{x : x ∈ Ã[α]}. We denote by F(R), the set of all fuzzy numbers of R.
The imprecision or vagueness can be treated by means of a particular kind (family) of
fuzzy numbers, the LR-fuzzy numbers. These are very useful in practice since they can
be characterized by means of three real numbers: the center, the left spread, and the right
spread. The term LR is due to the left (L) and the right (R) shape of the membership
function referred to the fuzzy set [38, 53]. A special type of LR-fuzzy numbers is the
so-called triangular fuzzy numbers. By a triangular fuzzy number, we mean the fuzzy
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number fully determined by the triple (al, a, ar)T of crisp numbers with al < a < ar, and
the shape functions L(x) = R(x) = max{0, 1− |x|}, x ∈ R. The membership function of

triangular fuzzy number Ã = (al, a, ar)T is given by

µÃ(x) =


0 x < al,
x−al
a−al al ≤ x < a,
ar−x
ar−a a ≤ x ≤ ar,

0 x > ar.

In the following, we introduce an index to compare the fuzzy number Ã ∈ F(R) and crisp
value x ∈ R. The index is used for making fuzzy decision rule (here fuzzy test function)
to accept or to reject the null hypothesis with some degree.
Definition 1[[40]] Let Ã ∈ F(R) and B ⊆ R. The index

D : F(R)× R −→ [0, 1],

which is defined by

D(Ã ∈ B) =
Pos (Ã ∈ B) +Nec (Ã ∈ B)

2
(2)

=
supy∈B µÃ(y) + 1− supy/∈B µÃ(y)

2
,

shows the credibility degree that “Ã belongs to B”.
Remark 1 It is worth noting that

1. if B1 ⊆ B2, then D(Ã ∈ B1) ≤ D(Ã ∈ B2).

2. D(Ã /∈ B) = 1−D(Ã ∈ B).

3. D(Ã ∈ B) = 1 if and only if supp(Ã) ⊆ B.

Remark 2 It is readily seen that if fuzzy number Ã reduces to the crisp number a, then
D(Ã ∈ B) = I[a ∈ B].

Remark 3 Let Ã ∈ F(R) and α ∈ (0, 1], then

Ãα = sup{x ∈ R : D(Ã ∈ [x,∞)) ≥ α}, (3)

is called the α-optimistic value of Ã. It is clear that Ãα is a non-increasing function of
α ∈ (0, 1] [40].

Remark 4 For a given fuzzy number Ã, it is easy to verify that

Ãα =

{
(Ã)U2α for 0.0 < α ≤ 0.5,

(Ã)L2(1−α) for 0.5 ≤ α ≤ 1.0.
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and therefore, the α-cuts of Ã is equivalent to

Ã[α] = [Ã(1−α
2
), Ãα

2
], α ∈ (0, 1].

Example 1 Suppose that Ã = (al, a, ar)T is a triangular fuzzy number, and let x ∈ R,
then

D(Ã ∈ [x,∞)) =


1 if x ≤ al,
2a−al−x
2(a−al) if al < x ≤ a,
ar−x

2(ar−a) if a < x < ar,

0 if x ≥ ar.

In addition, it is easy to verify that

Ãα =

{
ar − 2α(ar − a) for 0.0 < α ≤ 0.5,
2a− al − 2α(a− al) for 0.5 ≤ α ≤ 1.0.

For example, let Ã = (−2, 0, 1)T , then

D(Ã ∈ [x,∞)) =


1 if x ≤ −2,
2−x
4

if −2 < x ≤ 0,
1−x
2

if 0 < x < 1,
0 if x ≥ 1,

and

Ãα =

{
1− 2α for 0.0 < α ≤ 0.5,
2− 4α for 0.5 ≤ α ≤ 1.0.

Now, we propose a method to order fuzzy numbers, used in Section (5) for defining the
hypotheses of interest which is defined as follows:
Definition 2[[54]] Let Ã, B̃ ∈ F(R), then

1. Ã = (6=)B̃, if Ãα = (6=)B̃α for any α ∈ (0, 1].

2. Ã ≺ B̃, if Ãα < B̃α for any α ∈ (0, 1].

3. Ã � B̃, if Ãα > B̃α for any α ∈ (0, 1].

3 Fuzzy random variables

In the context of random experiments whose outcomes are not numbers (or vectors in
Rp) but they are expressed in inexact terms, the concept of fuzzy random variable turns
out to be useful. In this regard, different notions of fuzzy random variable have been
introduced and investigated in the literature [9, 16, 20, 21, 32, 33, 36, 37, 41, 42, 44]. In
this paper, based on Remark 2.2, we introduce a new notion of fuzzy random variable.
Definition 3 Suppose that a random experiment is described by a probability space
(Ω,A,P), where Ω is a set of all possible outcomes of the experiment, A is a σ-algebra of
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subsets of Ω and P is a probability measure on the measurable space (Ω,A). The fuzzy-

valued mapping X̃ : Ω → F(R) is called a fuzzy random variable if for any α ∈ [0, 1],

the real-valued mapping X̃α : Ω → R is a real-valued random variable on (Ω,A,P).
Throughout this paper, we assume that all random variables have the same probability
space (Ω,A,P) The following example illustrates the notions in the definition 3.

Example 2 Let X̃ = Θ̃⊕Ξ, where Ξ is a (usual) normal random variable with mean 0 and

variance σ2, i.e. Ξ ∼ N(0, σ2), and Θ̃ is a constant fuzzy set. This notion of fuzzy random

variable is the definition of normality for fuzzy random variables and X̃ is called the normal
(Gaussian) fuzzy random variable in the literature [41, 16]. As an especial case, suppose

Θ̃ is a triangular fuzzy number, i.e. Θ̃ = (θl, θ, θr)T with known θ, θl, and θr. Therefore,

X̃ = (Ξ + θl,Ξ + θ,Ξ + θr)T and for each ω, X̃(ω) = (Ξ(ω) + θl,Ξ(ω) + θ,Ξ(ω) + θr)T is

an observation of X̃. Now, we have

X̃α =

{
Ξ + θr − 2α(θr − θ) for 0.0 < α ≤ 0.5,
Ξ + 2θ − θl − 2α(θ − θl) for 0.5 ≤ α ≤ 1.0.

Therefore, it is clear that X̃α is a random variable for each α ∈ (0, 1] which is distributed
as

X̃α ∼
{
N(θr − 2α(θr − θ), σ2) for 0.0 < α ≤ 0.5,
N(2θ − θl − 2α(θ − θl), σ2) for 0.5 ≤ α ≤ 1.0.

So, according to Definition 3, X̃ is a fuzzy random variable.
Definition 4 Two fuzzy random variables X̃ and Ỹ are said to be independent if X̃α

and Ỹα are independent, for all α ∈ [0, 1]. In addition, we say that two fuzzy random

variables X̃ and Ỹ are identically distributed if X̃α and Ỹα are identically distributed, for
all α ∈ [0, 1]. Similar arguments can be used for more than two fuzzy random variables and

we say that X̃1, . . . , X̃n is a fuzzy random sample if X̃i’s are independent and identically
distributed fuzzy random variables. We denote by x̃1, . . . , x̃n the observed values of fuzzy
random sample X̃1, . . . , X̃n. We also say that the fuzzy random variable X̃ is continuous
if for every α ∈ [0, 1], the crisp random variable X̃α is continuous. In this paper, we

assume that the fuzzy random variable X̃ is continuous.
In addition, we say that the fuzzy random variable X̃ is symmetric if for every α ∈ (0, 1],

X̃α is symmetric.

4 Fuzzy median and fuzzy sample median

In this section, we extend the concepts of population median for fuzzy random variables
and median of fuzzy random samples. Let us recall that MX ∈ R is the median of the
continuous random variable X if

MX = inf{x : FX(x) ≥ 0.5},
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where FX denotes the distribution function of X. Now, using Zadeh’s extension principle
[34] we may generalize this notion to the fuzzy environment.

Definition 5 The fuzzy median of fuzzy random variable X̃ is defined as fuzzy set M̃X̃

with the following membership function

µM̃
X̃

(y) = sup{α ∈ [0, 1] : y ∈ [(M̃X̃)Lα, (M̃X̃)Uα ]}, (4)

where
(M̃X̃)Lα = inf

β≥α
inf{x : FX̃β(x) ≥ 0.5},

(M̃X̃)Uα = sup
β≥α

inf{x : FX̃β(x) ≥ 0.5},

Remark 5 Since X̃α is decreasing in α ∈ (0, 1], therefore the α-cuts of the fuzzy median

M̃X̃ reduce as follows

(M̃X̃)Lα = inf{x : FX̃1
(x) ≥ 0.5},

(M̃X̃)Uα = inf{x : FX̃α(x) ≥ 0.5}.

Thus, it is clear that the membership function of M̃X̃ reduces as

µM̃
X̃

(y) = sup{α ∈ [0, 1] : y = (M̃X̃)Uα}. (5)

Example 3 Consider Example 3. It is easy to see that the fuzzy median of the fuzzy
random variable X̃ is given by

(M̃X̃)Uα =

{
θr − 2α(θr − θ) for 0.0 < α ≤ 0.5,
2θ − θl − 2α(θ − l) for 0.5 ≤ α ≤ 1.0.

For instance, by assuming Θ̃ = (−2, 0, 2)T , we obtain

(M̃X̃)Uα = 2− 4α, α ∈ (0, 1].

which is a triangular fuzzy number as M̃X̃ = (−2,−2, 2)T . Now our task is to obtain

a fuzzy point estimator (for more, see [24]) of the fuzzy median M̃X̃ . Let us recall that
based on a crisp random sample X1, X2, . . . , Xn, the sample median is defined as

mn =

{
X(n+1

2
) if n is odd,

X(n/2)+X(n/2+1)

2
if n is even.

(6)

where X(1), X(2), . . . , X(n) denote order statistics of the sample. Therefore, similar to fuzzy
median, we may define a fuzzy estimator of the median.
Definition 6 A fuzzy sample median m̃n from the fuzzy random sample X̃1, X̃2, . . . , X̃n

is a fuzzy set with the following membership function

µm̃n(y) = sup{α ∈ [0, 1] : y ∈ [(m̃n)Lα, (m̃n)Uα ]}, (7)
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where
(m̃n)Lα = inf

β≥α
gn(β), (m̃n)Lα = sup

β≥α
gn(β),

in which

gn(β) =

{
(X̃β)(n+1

2
) if n is odd,

(X̃β)(n/2)+(X̃β)(n/2+1)

2
if n is even.

It is easy to check that the membership function of the fuzzy sample median reduces as
follows

µm̃n(y) = sup{α ∈ [0, 1] : y = (m̃n)Uα}, (8)

where

(m̃n)Uα =

{
(X̃α)(n+1

2
) if n is odd,

(X̃α)(n/2)+(X̃α)(n/2+1)

2
if n is even.

From the classical statistical inferences, we know that if the sample is drawn from the dis-
tribution with the uniquely determined median (e.g. X is a continuous random variable),
then the sample median mn converges to the population median MX with probability one
(briefly, mn → MX w.p.1) [19]. Now we will discuss this large sample properties of the
fuzzy random sample. Here we extend this property for fuzzy random variables.
Definition 7 For the sequence {X̃n}∞n=1 of fuzzy random variables and fuzzy number Z̃,

we say X̃n → Z̃ w.p.1, if

P(|(X̃n)α − Z̃α| → 0) = 1, for all α ∈ (0, 1]. (9)

Remark 6 If the fuzzy random variables {X̃n}∞n=1 and Z̃ reduce to the crisp random
variables {Xn}∞n=1 and Z, then it is easy to verify that the above equality reduces to
P(Xn → Z) = 1, which is the definition of convergence w.p.1 of ordinary (non fuzzy)
random variables. Definition 4, therefore, is a generalization of convergence w.p.1 to the
case of fuzzy random variables. Now we may prove a following theorem.

Theorem 4.1. Let X̃ be a continuous fuzzy random variable. Then m̃n → M̃X w.p.1,
i.e.

P(|(m̃n)α − (M̃X̃)α| → 0) = 1, for every α ∈ (0, 1]. (10)

Proof. Note that from Remark 2.2, we have (m̃n)α = (m̃n)U2α (similarly, (M̃X̃)α = (M̃X̃)U2α)
for every α ∈ (0, 1]. Therefore, Equation (10) reduces as follows

P(|(m̃n)U2α − (M̃X̃)U2α| → 0) = 1, for every α ∈ (0, 1]. (11)

Now, for any fixed α ∈ (0, 1], we know that (m̃n)U2α is the point estimator of (M̃X̃)U2α in

which P(|(m̃n)U2α − (M̃X̃)U2α| → 0) = 1, which completes the proof.
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Remark 7 It is mentioned that Grzegorzewski [24] also proposed a notion of fuzzy median
and a fuzzy estimator for the fuzzy median based on a concept of fuzzy random variables.
Then he discussed the problem of crisp hypothesis testing concerning the (crisp) median
in the presence of imprecise observations. But in this work, the underlying hypotheses
are considered as fuzzy sets rather than crisp. To do this, applying a new definition
of fuzzy random variables, we propose a method to rank fuzzy numbers to define fuzzy
hypotheses. On the other hand, introducing a notion of convergence w.p.1., Grzegorzewski
[24] discussed the statistical large sample property of the fuzzy sample median. His work
is relied on the α-cuts of fuzzy random variables. While we used a different method to
that of Grzegorzewski’s method [24], since it was essentially based on a different notion
of fuzzy random variables.

5 Sign test for fuzzy random variables

In this section, we extend the sign test to the case when the underlying hypotheses and
the available observations are imprecise rather than crisp.

5.1 Fuzzy hypotheses

Definition 8 Let X̃ be a continuous and symmetric fuzzy random variable.

1. Left one-sided fuzzy hypotheses: We define the hypothesis that M̃X̃ and M̃0

are identical against the alternative that M̃X̃ is smaller than M̃0 as

{
H̃0 : M̃X̃ = M̃0 ≡ H̃0 : (M̃X̃)α = (M̃0)α, ∀α ∈ (0, 1],

H̃1 : M̃X̃ ≺ M̃0 ≡ H̃1 : (M̃X̃)α < (M̃0)α, ∀α ∈ (0, 1].
(12)

2. Right one-sided fuzzy hypotheses: We define the hypothesis that M̃X̃ and M̃0

are identical against the alternative that M̃X̃ is larger than M̃0 as

{
H̃0 : M̃X̃ = M̃0 ≡ H̃0 : (M̃X̃)α = (M̃0)α, ∀α ∈ (0, 1],

H̃1 : M̃X̃ � M̃0 ≡ H̃1 : (M̃X̃)α > (M̃0)α, ∀α ∈ (0, 1].
(13)

3. Two-sided fuzzy hypotheses: We define the hypothesis that M̃X̃ and M̃0 are

identical against the alternative that M̃X̃ is different from M̃0 as

{
H̃0 : M̃X̃ = M̃0 ≡ H̃0 : (M̃X̃)α = (M̃0)α, ∀α ∈ (0, 1],

H̃1 : M̃X̃ 6= M̃0 ≡ H̃1 : (M̃X̃)α 6= (M̃0)α, ∀α ∈ (0, 1].
(14)
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5.2 Fuzzy test statistic

Suppose that we have a fuzzy sample X̃1, X̃2, . . . , X̃n from a population related to the
continuous and symmetric fuzzy random variable X̃. In this section, to provide a proce-
dure for testing the fuzzy hypothesis about the fuzzy median of the fuzzy random variable
X̃. For this, we will construct a fuzzy test statistic and a critical region as follows
Definition 9 Consider the problem of the sign test H̃0 : M̃X̃ = M̃0 based on the fuzzy

sample X̃1, X̃2, . . . , X̃n. The fuzzy sign test statistic T̃+ is defined to be a fuzzy set with
the following membership function

µT̃+(t) = sup
{
α ∈ [0, 1] : t ∈ {(T̃+)Lα, (T̃

+)Lα + 1, . . . , (T̃+)Uα}
}
, (15)

where

(T̃+)Lα = inf
β≥α

n∑
i=1

r(|(X̃i)β − (M̃0)β|)I[(X̃i)β > (M̃0)β],

(T̃+)Uα = sup
β≥α

n∑
i=1

r(|(X̃i)β − (M̃0)β|)I[(X̃i)β > (M̃0)β].

In the following, we denote by t̃+, the observed fuzzy test statistics.
Remark 8 It should be mentioned that, if the fuzzy random sample X̃1, X̃2, . . . , X̃n

reduce to the crisp observations X1, X2, . . . , Xn (hence the fuzzy median M̃X̃ reduces to
crisp number MX), then for every α ∈ (0, 1]

(T̃+)Lα = (T̃+)Uα =
n∑
i=1

r(|Xi −M0|)I[Xi > M0], (16)

which is the classical sign statistic T+.

5.3 Critical region

In the classical hypothesis tests, the usual approach for accepting or rejecting the null
hypothesis of interest is to compare the observed test statistic with a related critical
value. For instance, assume we wish to test the hypothesis H0 : MX = M0 against
H1 : MX < M0. At a given significance level δ, note that the common method rejects
H0 if T+ ≤ C

′

δ, where PH0(T
+ ≤ C

′

δ) = δ [19]. Now, suppose that we wish to test the

fuzzy hypothesis H̃0 : M̃X̃ = M̃0 against H̃1 : M̃X̃ < M̃0. Therefore, using the Resolution
Identity [55], we may extend the concept of critical value for fuzzy random variables as a
fuzzy set given as follows

µC̃′
δ
(t) = sup

α∈[0,1]
αI(t ∈ {(C̃ ′

δ̃
)Lα, (C̃

′

δ̃
)Lα + 1, . . . , (C̃

′

δ̃
)Uα}), (17)

in which

(C̃
′

δ̃
)Lα = inf

β≥α

{
x : PHβ

0
(T+

β ≤ x) = δ}, (C̃
′

δ̃
)Uα = sup

β≥α

{
x : PHβ

0
(T+

β ≤ x) = δ},
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where

Hβ
0 : (M̃X̃)β = (M̃0)β, T

+
β =

n∑
i=1

r(|(X̃i)β − (M̃0)β|)I[(X̃i)β > (M̃0)β].

But from Definition 3, note that the sample distribution of T+
β under null hypothesis Hβ

0

is the same as the ordinary sample distribution of T+ under H0, i.e. for each x ∈ R,

PHβ
0
(T+

β ≤ x) = PH0(T
+ ≤ x), (18)

Therefore, the membership function of the fuzzy critical value reduces to

µC̃′
δ
(t) = I[t = C

′

δ],

which is the classical critical value. Therefore, at a given significance level δ ∈ (0, 1], the
critical region is reminded as the classical case. Similar arguments can be stated for two
cases (1) and (3) (Table 1).

5.4 Method of decision making

In the classical testing problem a decision rule is made to accept or to reject the null
hypothesis, by investigating if the observed fuzzy test statistic belongs to the critical
region or not. But, in the proposed method, the test statistics is defined as a fuzzy set.
Therefore, we need a index to evaluate a degree that a discrete fuzzy set Ã belongs to the
set B ⊆ R. Here, we apply an index D for making decision to accept or reject the null
fuzzy hypothesis H̃0 : M̃X̃ = M̃0.

Definition 10 Consider the problem of testing the sign test H̃0 : M̃X̃ = M̃0 versus

an alternative hypothesis given in Table 1 based on the fuzzy sample X̃1, . . . , X̃n. At
significance level δ ∈ (0, 1], the fuzzy test function is defined as fuzzy set ϕ̃δ[X̃1, . . . , X̃n],
with the following membership function

ϕ̃δ[X̃1, . . . , X̃n](t) =

{
D(t̃+ ∈ Rδ) t=rejet H̃0,

D(t̃+ /∈ Rδ) t=accept H̃0,
(19)

Therefore, based on the fuzzy random sample, the hypothesis H̃0 is accepted against the
hypothesis H̃1 with credibility degree of acceptability D(T̃+ /∈ Rδ), and it is rejected with

credibility degree of D(T̃+ ∈ Rδ). With other words, in fuzzy test function ϕ̃δ[X̃1, . . . , X̃n],

D(T̃+ /∈ Rδ) is called the credibility degree that H̃0 is accepted and D(T̃+ ∈ Rδ) is called

the credibility degree that H̃0 is rejected.
Remark 9 At a nominal significance level δ, we can interpret degrees of accept or reject
the fuzzy null hypothesis as follows:

1. if D(T̃+ /∈ Rδ) > 0.5, then the fuzzy random sample support H̃0 more than H̃1,
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Table 2: Credbility degrees of rejection of the fuzzy null hypothesis for sign test

Case H̃1 : Rejection degree of H̃0

a) M̃
X̃
� M̃0 D(t̃+ ∈ {Cδ, Cδ + 1, . . . , n(n+ 1)/2})

b) M̃
X̃
≺ M̃0 D(t̃+ ∈ {0, 1, . . . , C ′

δ})

c) M̃
X̃
6= M̃0 D

(
t̃+ ∈ ({0, 1, . . . , C ′

δ/2} ∪ {n(n+ 1)/2− C
′

δ/2, . . . , n(n+ 1)/2})
)

2. if D(T̃+ ∈ Rδ) > 0.5, then the fuzzy random sample support H̃1 more than H̃0,

3. if D(T̃+ ∈ Rδ) = D(T̃+ /∈ Rδ) = 0.5, then the fuzzy random sample equally support

H̃0 and H̃1.

Remark 10 It is mentioned that Kahraman et al. [31], Grzegorzewski [24, 26, 27], and
Hesamian and Taheri [47] considered the problem of sign test for fuzzy observations when
the underlying hypotheses are crisp. But in this paper, we considered the fuzzy hypotheses
about the median rather than crisp hypotheses. In addition, Hesamian and Taheri [29] also
proposed a method to investigate imprecise hypothesis about the population median based
on a concept of imprecise observation (i.e. a vague concept of a ordinary observations,
for more see [14]). Using this idea, they proposed a fuzzy null hypothesis about the crisp

population median MX as “H̃0 : MX is about M̃0”, where M̃0 is a fuzzy number. While
the proposed method is relied on a concept of fuzzy random variable, i.e., we extend
the concept of fuzzy median for fuzzy random variables. Then we proposed a notion of
fuzzy hypothesis as “H̃0 : M̃X̃ = M̃0”. Introducing a notion of convergence w.p.1, we
also discussed the large sample property between the fuzzy population median and fuzzy
sample median.
To demonstrate the application of the proposed method, we provide a practical example
using a real data set given in [54].
Example 4 A tire and rubber company is interested in the quality of a tire it has recently
developed. Only 24 new tires were tested because the tests were destructive and took
considerable time to complete. Six cars, all the same model and brand, were used to test
the tires. Car model and brand were alike so that the car effects were not considered.
The tire lifetimes are taken to be triangular fuzzy numbers as shown in Table 2.
Suppose that we wish to test the following fuzzy hypotheses{

H̃0 : M̃X̃ = M̃0 = (30000, 32000, 34000)T ,

H̃1 : M̃X̃ � M̃0.

To compute the observed fuzzy test statistic t̃+, we should calculate its α-cuts o for every
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Table 2. Data set in Example 5.4.

x̃1 = (33262, 33978, 34889)T x̃13 = (32093, 32617, 33255)T
x̃2 = (32585, 33052, 33787)T x̃14 = (31720, 32611, 33497)T
x̃3 = (32806, 33418, 33908)T x̃15 = (31977, 32455, 33034)T
x̃4 = (33065, 33463, 34131)T x̃16 = (31943, 32466, 33212)T
x̃5 = (30743, 31624, 32460)T x̃17 = (32169, 33070, 33968)T
x̃6 = (32415, 33127, 34072)T x̃18 = (32900, 33543, 34335)T
x̃7 = (32687, 33224, 33908)T x̃19 = (30327, 30881, 31455)T
x̃8 = (32185, 32597, 33186)T x̃20 = (31187, 31565, 32237)T
x̃9 = (33423, 34036, 34771)T x̃21 = (33208, 34053, 34876)T
x̃10 = (31639, 32584, 33542)T x̃22 = (30945, 31838, 32739)T
x̃11 = (31511, 32290, 33064)T x̃23 = (31934, 32800, 33445)T
x̃12 = (33060, 33844, 34449)T x̃24 = (33464, 34157, 34974)T

α ∈ (0, 1]. For example, at level of α = 0.6, from Equation (15), we obtain

(t̃+)L0.6 = inf
β≥0.6

n∑
i=1

r(|(x̃i)β − (M̃0)β|)I[(x̃i)β > (M̃0)β] = 287,

(t̃+)U0.6 = sup
β≥0.6

n∑
i=1

r(|(x̃i)β − (M̃0)β|)I[(x̃i)β > (M̃0)β] = 300.

So (t̃+)[0.5] = [274, 300]. By continuing this procedure for other values of α, the fuzzy
test statistics is obtained as “about 300” with the following membership function

t̃+ =

{
1

300
,

0.88

299
,

0.79

298
,

0.75

296
,

0.52

32
,

0.66

295
,

0.65

294
,

0.64

293
,

0.63

292
,

0.62

291
,
0.61

289
,

0.60

287
,

0.59

286
,

0.58

284
, ,

0.57

283
,

0.56

282
,

0.52

281
,

0.51

279
,

0.5

278
,

0.49

275
,

0.49

272
,

0.47

270
,

0.46

267
,

0.41

264
,

0.44

261
,

0.43

258
,

0.41

255
,

0.40

253
,

0.39

252
,

0.38

250
,

0.37

248
,

0.36

246
,

0.35

243
,

0.34

241
,

0.33

237
,

0.32

231
,

0.31

228
,

0.30

221
,

0.29

219
,

0.28

211
,

0.27

206
,

0.26

205
,

0.25

199
,

0.24

197
,

023

194
,

0.22

192
,

0.21

187
,

0.20

183
,

0.19

178
,

0.18

172
,

0.17

169
,

0.16

166
,

0.15

155
,

0.14

150
,

0.13

149
,

0.12

141
,

0.11

135
,

0.10

132
,

0.09

126
,

0.08

123
,

0.07

116
,

0.05

112
,

0.04

111
,

0.03

104
,

0.02

101
,

0.01

93

}
,

By considering the significance level δ = 0.05, from Equation (19), finally the fuzzy test
function is obtained as follows

ϕ̃δ[X̃1, . . . , X̃24](t) =

{
D(t̃+ ∈ Rδ) = 0.865 t=rejet H̃0,

D(t̃+ /∈ Rδ) = 0.135 t=accept H̃0,
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where, Rδ = {208, 209, . . . , 300}. Therefore, the fuzzy hypothesis of H̃0 is rejected with
credibility degree of 0.865.

6 Conclusion

In this paper, we proposed a new method for sign test when data are observations of
fuzzy random variables and underlying hypotheses about the population’s median are
imprecise quantities, rather than crisp. To do this, after introducing a new notion of fuzzy
random variable, the concepts of fuzzy median and fuzzy sample median were extended for
fuzzy random variables. Then, we stated and proved an essential large sample property
of the fuzzy sample median. In addition, a sign test statistic was extended to fuzzy
environment. Finally, for providing a fuzzy test function, the degree that the observed
fuzzy test statistic belongs to the critical region were evaluated using an index called
credibility degree. It is also worth noting that our approach could be applied for the
generalization of other nonparametric statistical median-based tests for fuzzy random
variables such as sign test for paired samples, two-sample median test, Kruskall-Wallis
rank-sum test, Mann-Whitney-Wilcoxon rank-sum test, etc.
The study of developing the power of test and effect of vagueness on the results of the
test is also a potential subject for further research.
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