تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,094,844 |
تعداد دریافت فایل اصل مقاله | 97,200,646 |
ارزیابی رویکرد پیشپردازش میانگین متحرک در تدقیق پیشبینی جریان ورودی به سدها توسط مدل رگرسیون بردار پشتیبان | ||
تحقیقات آب و خاک ایران | ||
مقاله 20، دوره 50، شماره 1، فروردین و اردیبهشت 1398، صفحه 247-258 اصل مقاله (3.95 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2018.250803.667838 | ||
نویسندگان | ||
مهدی عباسی1؛ شهاب عراقی نژاد* 2؛ کیومرث ابراهیمی3 | ||
1فارغالتحصیل کارشناسی ارشد گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
2دانشیار، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
3استاد، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
پیشبینی دقیق هیدرولوژیکی یک ابزار کلیدی در برنامهریزیهای منابع آب است. از اینرو در این مقاله با بهرهگیری از مدلهای رگرسیون بردار پشتیبان (SVR)، رگرسیون چند متغیرهی خطی (MLR)و خود همبستهی میانگین متحرک (ARMA)، جریان ورودی به سدهای بختیاری و رودبار لرستان پیشبینی شده است. به منظور پیشپردازش دادههای ورودی مدلها از رویکرد میانگین متحرک استفاده شد. برای ارزیابی کارایی مدلها از معیارهای ارزیابی نش ـ ساتکلیف (NSE)، جذر میانگین مربعات خطا (RMSE)، ضریب همبستگی (R) و دیاگرام تیلور استفاده شد. نتایج نشان داد که استفاده از روش پیشپردازش میانگین متحرک باعث بهبود عملکرد مدلهای مورد استفاده شده است. بطوری که مقادیر NSE مربوط به مدل SVR با پیشپردازش میانگین متحرک در پیشبینی جریان ورودی به سدهای بختیاری و رودبار لرستان نسبت به مدل SVR بدون پیشپردازش به ترتیب ۴/۱۳ و ۶/۶ درصد بهبود داشته است. | ||
کلیدواژهها | ||
پیش بینی سری زمانی؛ بردار پشتیبان رگرسیونی؛ میانگین متحرک | ||
مراجع | ||
Belayneh, A., Adamowski, J., Khalil, B. and Ozga-Zielinski, B. (2014). "Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models," Journal of Hydrology, vol. 508, pp. 418-429. Adnan, R. M., Yuan, X., Kisi, O., & Yuan, Y. (2017). Streamflow Forecasting Using Artificial Neural Network and Support Vector Machine Models. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 29(1), 286-294. Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723. Chiang, J. L., & Tsai, Y. S. (2012). Reservoir drought prediction using support vector machines. In Applied Mechanics and Materials (Vol. 145, pp. 455-459). Trans Tech Publications. Choy, K. Y., & Chan, C. W. (2003). Modelling of river discharges and rainfall using radial basis function networks based on support vector regression. International Journal of Systems Science, 34(14-15), 763-773. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. Foroughi, F., Araghinejad, S. (2017). Long-lead streamflow forecasting using singular spectrum analysis in the Karkheh basin. Iranian Journal of Soil and Water Research, 48(2), 309-321. doi: 10.22059/ijswr.2017.62633. (in Farsi) Gong, Y., Zhang, Y., Lan, S., & Wang, H. (2016). A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida. Water Resources Management, 30(1), 375-391. Guo, J., Zhou, J., Qin, H., Zou, Q., & Li, Q. (2011). Monthly streamflow forecasting based on improved support vector machine model. Expert Systems with Applications, 38(10), 13073-13081. Jamali, B., Ebrahimi, K. (2010). water quality time series forecasting using linear models random case study: Sefid Rud river. Agricultural Engineering Research, 12 (3), 31-44. doi: 10.22092/jaer.2011.100317. (in Farsi) Kisi, O. (2015). Streamflow forecasting and estimation using least square support vector regression and adaptive neuro-fuzzy embedded fuzzy c-means clustering. Water resources management, 29(14), 5109-5127. Lin, J. Y., Cheng, C. T., & Chau, K. W. (2006). Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal, 51(4), 599-612. Modaresi F., Araghinejad S., Ebrahimi K. (2017a). Assessment of Ordered Weighted Averaging Strategies in Combination of Streamflow Forecasting Models. jwmseir. 10 (35):15-25. URL: http://jwmsei.ir/article-1-469-fa.html (in Farsi) Modaresi, F., Araghinejad, S., & Ebrahimi, K. (2017b). A Comparative Assessment of Artificial Neural Network, Generalized Regression Neural Network, Least-Square Support Vector Regression, and K-Nearest Neighbor Regression for Monthly Streamflow Forecasting in Linear and Nonlinear Conditions. Water Resources Management, 1-16. Modaresi, F., & Araghinejad, S. (2014). A comparative assessment of support vector machines, probabilistic neural networks, and K-nearest neighbor algorithms for water quality classification. Water resources management, 28(12), 4095-4111. Nieto, P. G., García-Gonzalo, E., Fernández, J. A., & Muñiz, C. D. (2014). Hybrid PSO–SVM-based method for long-term forecasting of turbidity in the Nalón river basin: A case study in Northern Spain. Ecological Engineering, 73, 192-200 Peña-Guzmán, C., Melgarejo, J., & Prats, D. (2016). Forecasting Water Demand in Residential, Commercial, and Industrial Zones in Bogotá, Colombia, Using Least-Squares Support Vector Machines. Mathematical Problems in Engineering, 2016. Seyam, M., Othman, F., & El-Shafie, A. (2017). Prediction of Stream Flow in Humid Tropical Rivers by Support Vector Machines. In MATEC Web of Conferences (Vol. 111, p. 01007). EDP Sciences. Sivapragasam, C., Liong, S. Y., & Pasha, M. F. K. (2001). Rainfall and runoff forecasting with SSA–SVM approach. Journal of Hydroinformatics, 3(3), 141-152. Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192. Vapnik, V., Golowich, S. E., & Smola, A. J. (1997). Support vector method for function approximation, regression estimation and signal processing. In Advances in neural information processing systems (pp. 281-287). Wang, W., Nie, X., & Qiu, L. (2010, October). Support vector machine with particle swarm optimization for reservoir annual inflow forecasting. In Artificial Intelligence and Computational Intelligence (AICI), 2010 International Conference on (Vol. 1, pp. 184-188). IEEE. Wen, X., Si, J., He, Z., Wu, J., Shao, H., & Yu, H. (2015). Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions. Water Resources Management, 29(9), 3195-3209. Yu, X., Liong, S. Y., & Babovic, V. (2004). EC-SVM approach for real-time hydrologic forecasting. Journal of Hydroinformatics, 6(3), 209-223. Yu, X., Zhang, X., & Qin, H. (2018). A data-driven model based on Fourier transform and support vector regression for monthly reservoir inflow forecasting. Journal of Hydro-environment Research, 18, 12-24. | ||
آمار تعداد مشاهده مقاله: 467 تعداد دریافت فایل اصل مقاله: 400 |