تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,099,357 |
تعداد دریافت فایل اصل مقاله | 97,206,866 |
ارزیابی کارایی مدل سری CMIP5 در شبیه سازی و پیش بینی پارامترهای اقلیمی بارندگی، دما و سرعت باد (مطالعۀ موردی: استان یزد) | ||
پژوهش های جغرافیای طبیعی | ||
مقاله 13، دوره 50، شماره 3، مهر 1397، صفحه 593-609 اصل مقاله (1.13 M) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2018.248177.1007156 | ||
نویسندگان | ||
مریم میراکبری1؛ طیبه مصباح زاده* 2؛ محسن محسنی ساروی2؛ حسن خسروی3؛ قاسم مرتضایی فریزهندی4 | ||
1دانشجوی دکتری بیابانزدایی، گروه احیای مناطق خشک و کوهستانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران | ||
2استادیار گروه احیای مناطق خشک و کوهستانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران | ||
3استاد گروه احیای مناطق خشک و کوهستانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران | ||
4دانشیار پژوهشکدة مطالعات توسعة جهاد دانشگاهی تهران | ||
چکیده | ||
ایران جزو کشورهایی است که ضریب تأثیرپذیری آن از تغییرات اقلیمی بالاست. امروزه، تغییرات پارامترهای اقلیمی به وسیلة مدلهای گردش کلی جو بررسی میشود. نسخههای گوناگونی از این مدلها منتشر شده است؛ آخرین نسخة آن مدلهای سری CMIP5 است. مدلهای CMIP5، که در گزارش پنجم ارزیابی تغییر اقلیم (AR5) استفاده شدهاند، از عدم قطعیت پایینتر و وضوح بیشتری نسبت به مدلهای قبل برخوردارند. در این مطالعه، تغییرات پارامترهای اقلیمی بارندگی، دمای متوسط، و سرعت باد حداکثر به وسیلة مدل CanESM2 بهعنوان یکی از مدلهای مورداستفاده در تهیة گزارش پنجم ارزیابی تحت سه سناریوی RCP و براساس روش ریزمقیاسنمایی SDSM بررسی شد. نتایج نشان داد میانگین بارندگی طبق سناریوهای RCP2.6 و RCP 8.5 بهترتیب 28/62 و 69 میلیمتر خواهد بود که نسبت به دورة مشاهداتی بهترتیب 18/9 و 2/17درصد افزایش و براساس سناریوی RCP 4.5، 39/58 میلیمتر بوده است که نسبت به دورة مشاهداتی 81/0درصد کاهش خواهد داشت. میانگین دمای متوسط طبق سناریوهای RCP2.6، RCP4.5، و RCP8.5 بهترتیب 59/20، 03/21، و 10/22 درجة سانتیگراد خواهد بود که نسبت به دورة مشاهداتی بهترتیب 5/4، 7/6، و 8/12درصد افزایش دارد. همچنین، سرعت حداکثر باد تحت سناریوهای RCP2.6، RCP4.5، و RCP8.5 بهترتیب 9/4، 4/4، و 3/5درصد نسبت به دورة مشاهداتی افزایش خواهد داشت. | ||
کلیدواژهها | ||
ارزیابی آماری؛ سری CMIP5؛ روند تغییرات؛ CanESM2؛ SDSM | ||
مراجع | ||
آقاخانی افشار، ا.؛ حسنزاده، ی.؛ بسالتپور، ع.؛ پوررضا بیلندی، م. (1395). ارزیابی سالیانة مؤلفههای اقلیمی حوضة آبخیز کشفرود در دورههای آتی با استفاده از گزارش پنجم هیئت بینالدول تغییر اقلیم، نشریة پژوهشهای حفاظت آب و خاک، 23(6): 217-233. احمدوند کهریزی م. و روحانی ح. (1395). تأثیرات حفاظتی تیر اقلیم براساس ریزمقیاسسازی دمای پیشبینیشده در قرن 21 (مطالعة موردی: دو ایستگاه اراز کوسه و نوده در استان گلستان)، اکوهیدرولوژی، 3(6): 597-609. برزگری، ف. و ملکینژاد، ح. (1395). بررسی و مقایسة تغییرات اقلیمی مناطق دشتی و کوهستانی در دورة 2010 تا 2030 (مطالعة موردی: حوضة آبخیز دشت یزد اردکان)، فیزیکوزمین، 42(1): 171-182. جهانبخش اصل، س.؛ خورشیددوست، ع.؛ عالینژاد، م. و پوراصغر، ف. (1395). تأثیر تغییر اقلیم بر دما و بارش با درنظرگرفتن عدم قطعیت مدلها و سناریوهای اقلیمی، هیدروژئومورفولوژی، 7: 107-122. صیاحی، ث.؛ شهبازی، ع. و خادمی، خ. (1395). پیشبینی اثر تغییر اقلیم بر رواناب ماهانة حوضة دزآب استفاده از مدل IHACRES، دوفصلنامة علوممهندسیآب، 15(7): 7-18. نگارش، ح.؛ فلاح، ح. و خسروی، م. (1390). تجزیه و تحلیل ناهنجارهای اقلیمی مؤثر بر فرایند بیابانزایی در منطقة خضرآباد یزد، مجلة جغرافیا و برنامهریزی محیطی، ۳: 94-71. Ahmadvand, M. and Rouhani, H. (2016). Climate change protection effects based on downscaling of the predicted temperature in the 21st century (case study: Araz Koseh and Navadeh in Golestan Province), Ecohydrology, 3(4): 597-609. Alves, JMB.; Vasconcelos Junior, FC.; Chaves, RR.; Silva, EM.; Servain, J.; Costa, AA.; Sombra, SS. and Barbosa, ACB. (2016). Evaluation of the AR4 CMIP3 and the AR5 CMIP5 model and projections for precipitation in Northeast Brazil, Frontiers in Earth Science, 4(44): 1-22. Aizen, E.M.; Aizen, V.B.; Melack, J.M.; Nakamura, T. and Ohta, T. (2001). Precipitation and atmospheric circulation patterns at mid-latitudes of Asia, International Journal of Climatology, 21(5): 535-556. Almazroui, M.; Nazrul Islam, M., Saeed, F.; Alkhalaf, A. and Dambul, R. (2017). Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR5 Global Climate Models over the Arabian Peninsula, Atmospheric Research, 194: 202-213. Aghakhani Afshar, A.; Hassanzadeh, Y.; Besalatpour, A. and Pourreza-Bilondi, M. (2017). Annual assessment of Kashafrood watershed basin climate components in future periods by using fifth report of intergovernmental panel on climate change, Water and Soil Conservation, 6: 217-233. Barzegari, F. and Malekinejad, H. (2016). Prediction and comparison of Climate Changes in Mountainous and Palin Regions During 2010-2030 (Case Study: Yazd- Ardakan Watershed), Earth and Space Physics, 42(1): 171-182. Dastorani, M.T.; Massah Bavani, A.R.; Poormohammadi, S. and Rahimian, M.H. (2011). Assessment of potential climate change impacts on drought indicators (Case study: Yazd station, Central Iran), Desert, 1: 159-167. Dibike, Y.B. and Coulibaly, P. (2005). Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models, Hydrology, 307(1-4): 145-163. Frey, K.E. and Smith, L.C. (2003). Recent temperature and precipitation increases in West Siberia and their association with the Arctic Oscillation. Polar Research, 22 (2): 287-300. Fiseha, B.M.; Melesse, A.M.; Romano, E.; Volpi, E. and Fiori, A. (2012). Statistical Downscaling of Precipitation and Temperature for the Upper Tiber Basin in Central Italy, International Journal of Water Sciences, 1(3): 1-14. Feng, S.; Hu, Q.; Huang, W.; Ho, C.H.; Li, R. and Tang, Z. (2014). Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations, Global and Planetary Change, 112: 41-52. Gahanbakhsh Asl, S.; Khorshid Dost, A.; Ali Nejad, M. and Poor Asghar, F. (2017). He Impact of Climate Change on Temperature and Precipitation Considering the Uncertainty of Models and Climate Scenario, Hydrogeomorphology, 7: 107-122. Gagnon, S.; Singh, B.; Rousselle, J. and Roy, L. (2005) An application of the statistical downscaling model (SDSM) to simulate climatic data for streamflow modelling in Québec, Canadian Water Resources, 30(4): 297-314. Gebremeskel, S.; Liu, Y.B.; de Smedt, F.; Hoffmann, L. and Pfister, L. (2005). Analysing the effect of climate changes on streamflow using statistically downscaled GCM scenarios, International Journal River Basin Management, 2(4): 271-280. Hassan, Z.; Shamsudin, S. and Harun, S. (2014). Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature, Theoretical and Applied Climatology, 116(1-2): 243-257. Huang, J.; Zhang, J.; Zhang, Z.; Xu, C.; Wang, B. and Yao, J. (2011). Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method, Stochastic Environmental Research Risk Assessment, 25(6):781-792. Hay, LE.; Wilby, RL. and Leavesley, GH. (2000). A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United StatesAmerican Water Resources Association, 36(2): 387-397. IPCC (2013). Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, Cambridge. IPCC (2014). Summary for policymakers, In: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., astrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., and White, L.L. (Eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA p. 1-32. Kumar Bal, P.; Ramachandran, A.; Geetha, R.; Bhaskaran, B.; Thirumurugan, P.; Indumathi, J. and Jayanthi, N. (2016). Climate change projections for Tamil Nadu, India: deriving high-resolution climate data by a ownscaling approach using PRECIS, Theoretical Applied, Climatology, 123: 523-535. Kharin, V.V.; Zwiers, F.W.; Zhang, X. and Wehner, M. (2013). Changes in temperature and precipitation extremes in the CMIP5 ensemble, Climate Change, 119: 345-357. Liu, L.; Liu, Z.; Ren, X.; Fischer, T. and Xu, Y. (2011). Hydrological impacts of climate change in the Yellow River Basin for the 21st century using hydrological model and statistical downscaling model, Quaternary International, 244(2): 211-220. Liu, Z.; Mehran, A.; Phillips, T.J.; Aghakouchak, A.; Res, C.; Liu, Z.; Mehran, A.; Phillips, T.J. and Aghakouchak, A. (2014). Seasonal and regional biases in CMIP5 precipitation simulations, Climate Research, 60(1): 35-50. Miao, C.Y.; Duan, Q.Y.; Sun, Q.H. and Li, J.D. (2013). Evaluation and application of Bayesian multi-model estimation in temperature simulations, Progress in Physical Geograph, 37: 727-744. Mahmood, R. and Babel, S.M. (2012). Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India, Theoretical and Applied Climatology, PP. 1-18. Mehran, A.; Aghakouchak, A. and Phillips, T.J. (2014). Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations, Journal of Geophysical Research: Atmospheres, 119(4): 1695-1707. Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; Meehl, G.A.; Mitchell, J.F.; Nalicenovic, N.; Riahi, K.; Smith, S.J.; Stouffer, R.J.; Thomson, A.M.; Weyant, J.P. and Wilbanks, T.J. (2010). The next generation of scenarios for climate change research and assessment, Journa of Nature, 463: 747-756. Negaresh, H. and Khosravi, M. (2011). The Analysis of Climatical Abnormalities Influencing on Desertification Process in Khezer Abad Region of Yazd, Geography and Environmental Planning, 3: 71-79. Nourein Mohammed, I.; Beverley, A. and Wemple, B. (2015). The use of CMIP5 data to simulate climate change impacts on flow regime within the Lake Champlain Basin, Journal of Hydrology: Regional Studies, 3: 160-186. Pattnayak, K.C.; Kar, S.C.; Dalal, M. and Pattnayak, R. K. (2017). Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries, Global and Planetary Change, 152: 152-166. Rui, Li and Geng, S. (2013). Impacts of climate change on agriculture and adaptive strategies in China, Integrative Agriculture, 12(8): 1402-1408 Sayahi, S.; Shahbazi, A. and Khademi, KH. (2016). Prediction of the effect of climate change on the monthly runoff of the basin Dez using IHACRES, Journal of Water Science Engineering, 15(7): 7-18. Tabari, H.; Marofi, S.; Aeini, A.; HosseinzadehTalaeea, P. and Mohammadi, K. (2011). Trend analysis of reference evapotranspiration in the western half of Iran, Agricultural and Forest Meteorology, 151(2):128-136. Tabari, H.; Abghari, H. and Hosseinzadeh Talaee, P. (2013). Impact of the North Atlantic Oscillation on stream flow in Western Iran, Hydrol, Process. DOI: 10.1002/hyp.9960. Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E. and Edmonds, J.A. (2011). RCP4.5: A pathway for stabilization of radiative forcing by 2100, Climatic Change, 109(1): 77-94. Van Vuuren, D.P.; Edmonds, J.; Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J. and Rose, S.K. (2011). The representative concentration pathways: An overview, Climatic Change, 109(1): 5-31. Wilby, R.L.; Dawson, C.W. and Barrow, E.M. (2002). SDSM - A decision support tool for the assessment of regional climate change impacts, Environmental Modelling & Software, 17(2): 147-159. Wetterhall, FA.; Bárdossy, D.; Chen, SH. and Xu, C-Y. (2006). Daily precipitation-downscaling techniques in three Chinese regions, Water Resources Research 42(aa):W11423. Wilby, RL.; Whitehead, PG.; Wade, AJ.; Butterfield, D.; Davis, RJ. and Watts, G. (2006). Integrated modelling of climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK. Hydrology, 330(1-2): 204-220. Xu, C.H. and Xu, Y. (2012). The Projection of Temperature and Precipitation over China under RCP Scenarios using a CMIP5 Multi-Model Ensemble, Atmospheric and Oceanic Science Letters, 5(6): 527-533. | ||
آمار تعداد مشاهده مقاله: 1,510 تعداد دریافت فایل اصل مقاله: 894 |