تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,584 |
تعداد دریافت فایل اصل مقاله | 97,221,239 |
بررسی تأثیر فاز گرم ENSO بر سیلاب های لحظه ای در دو اقلیم ایران | ||
تحقیقات آب و خاک ایران | ||
مقاله 145، دوره 49، شماره 6، بهمن و اسفند 1397، صفحه 1433-1442 اصل مقاله (821.25 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2018.251296.667841 | ||
نویسندگان | ||
مهدی عباسی1؛ شهاب عراقی نژاد* 2؛ کیومرث ابراهیمی3 | ||
1دانش آموخته کارشناسی ارشد، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران ، کرج، ایران | ||
2دانشیار، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران ، کرج، ایران | ||
3استاد، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران ، کرج، ایران | ||
چکیده | ||
با توجه به تلفات جانی و خسارتهای اقتصادی سیلاب، بررسی و تحلیل این پدیده حدی از اهمیت بسزایی برخوردار است. تحقیقات بسیاری تأثیر سیگنالهای اقلیمی را بر شدت، مدت و زمان وقوع سیلاب نشان داده است. در این مقاله با استفاده از شاخص نینوی اقیانوسی (ONI)، تأثیر فاز مثبت النینو نوسانات جنوبی اقیانوس آرام بر وقوع سیلابها در حوضه گرگانرود ـ قرهسو بعنوان اقلیم مرطوب و مدیترانهای و همچنین حوضه طشک ـ بختگان ـ مهارلو بعنوان اقلیم خشک و نیمه خشک بررسی شده است. برای این منظور از توزیع حدی گامبل و بررسی تغییرات زمانی در دو فاز خنثی و وقوع النینو استفاده شد. نتایج توزیع گامبل و دبی حداکثر لحظهای، تأثیر النینو را با تعداد ۲۳ واقعه در حوضه گرگانرود ـ قرهسو و ۸ واقعه در حوضه طشک ـ بختگان ـ مهارلو نشان داد. همچنین نتایج نشان داد که تأثیر النینو بر تغییرات زمانی در حوضه گرگان رود ـ قرهسو نسبت به حوضه طشک ـ بختگان ـ مهارلو بیشتر است. بعلاوه اینکه، فاز مثبت ONI بر سیلابهای حداکثر لحظهای حوضه گرگان رود ـ قرهسو نسبت به حوضه طشک ـ بختگان ـ مهارلو تأثیرگذارتر است. | ||
کلیدواژهها | ||
سیلاب حداکثر لحظه ای؛ شاخص نینوی اقیانوسی ONI؛ توزیع گامبل | ||
مراجع | ||
Aalto, R., Maurice-Bourgoin, L., Dunne, T., Montgomery, D. R., Nittrouer, C. A., & Guyot, J. L. (2003). Episodic sediment accumulation on Amazonian flood plains influenced by El Nino/Southern Oscillation. Nature, 425(6957), 493-497. Allen, J. T., Tippett, M. K., & Sobel, A. H. (2015). Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nature Geoscience, 8(4), 278-283. Cayan, D. R., Redmond, K. T., & Riddle, L. G. (1999). ENSO and hydrologic extremes in the western United States*. Journal of Climate, 12(9), 2881-2893. Chiew, F. H., & McMAHON, T. A. (2002). Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability.Hydrological Sciences Journal, 47(3), 505-522. Dezfooli D, Abdollahi B, Hosseini-Moghari S M, Ebrahimi K. (2018). Comparing high-resolution satellite precipitation estimates with gauge measured data, Case study: Gorganrood basin, Iran. Journal of Water Supply: Research and Technology. DOI: 10.2166/aqua.2018.062. Fu, C., James, A. L., & Wachowiak, M. P. (2012). Analyzing the combined influence of solar activity and El Niño on streamflow across southern Canada. Water Resources Research, 48(5). Gumbel, E. J. (1954). Statistical theory of extreme values and some practical applications: a series of lectures (No. 33). US Govt. Print. Office. Kahya, E., & Çağatay Karabörk, M. (2001). The analysis of El Nino and La Nina signals in streamflows of Turkey. International Journal of Climatology,21(10), 1231-1250. Kahya, E., & Dracup, J. A. (1994). The influences of type 1 El Nino and La Nina events on streamflows in the Pacific southwest of the United States.Journal of Climate, 7(6), 965-976. Kovats, R. S. (2000). El Niño and human health. Bulletin of the World Health Organization, 78(9), 1127-1135. Lee[A1] , J. H., & Julien, P. Y. (2017). Influence of the El Niño/Southern Oscillation on South Korean streamflow variability. Hydrological Processes. Meidani, E., & Araghinejad, S. (2014). Long-lead streamflow forecasting in the southwest of Iran by sea surface temperature of the Mediterranean Sea. Journal of Hydrologic Engineering, 19(8), 05014005. Munoz, S. E., & Dee, S. G. (2017). El Niño increases the risk of lower Mississippi River flooding. Scientific Reports, 7(1), 1772. Nazemosadat, M. J., & Ghasemi, A. R. (2004). Quantifying the ENSO-related shifts in the intensity and probability of drought and wet periods in Iran. Journal of Climate, 17(20), 4005-4018. Orlove, B. S., Chiang, J. C., & Cane, M. A. (2000). Forecasting Andean rainfall and crop yield from the influence of El Niño on Pleiades visibility. Nature, 403(6765), 68-71. Power, S., Delage, F., Chung, C., Kociuba, G., & Keay, K. (2013). Robust twenty-first-century projections of El [thinsp] Nino and related precipitation variability. Nature, 502(7472), 541-545. Rimbu, N., Dima, M., Lohmann, G., & Stefan, S. (2004). Impacts of the North Atlantic Oscillation and the El Nino–Southern Oscillation on Danube river flow variability. Geophysical Research Letters, 31(23). Shin, H. S. (2002). Do el Niño and La Niña have influences on South Korean hydrologic properties. In Proceedings of the 2002 Annual Conference, Japan Society of Hydrology and Water Resources (pp. 276-282). Varikoden, H., Al-Shukaili, H. S. A., Babu, C. A., & Samah, A. A. (2016). Rainfall over Oman and its teleconnection with El Niño Southern Oscillation. Arabian Journal of Geosciences, 9(8), 1-8. Webb, R. H. (1992). El Nino/Southern Oscillation and streamflow in the western United States. El Nino: Historical and Paleoclimatic Aspects of the Southern Oscillation, H. E Diaz and V. Markgraf, Eds., Vol. 44. Zubair, L. (2003). El Niño–southern oscillation influences on the Mahaweli streamflow in Sri Lanka. International Journal of Climatology, 23(1), 91-102. | ||
آمار تعداد مشاهده مقاله: 519 تعداد دریافت فایل اصل مقاله: 317 |