
 

An Energy-efficient Mathematical Model for the 

Resource-constrained Project Scheduling Problem: An 

Evolutionary Algorithm 

Amir Hossein Hosseinian, Vahid Baradaran 

Department of Industrial Engineering, Islamic Azad University, Tehran North Branch, Tehran, Iran 

 (Received: July 13, 2018; Revised: November 22, 2018; Accepted: December 2, 2018) 

Abstract 
In this paper, we propose an energy-efficient mathematical model for the resource-

constrained project scheduling problem to optimize makespan and consumption of 

energy, simultaneously. In the proposed model, resources are speed-scaling 

machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective 

fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the 

VIKOR as a multi-criteria decision making (MCDM) method to rank solutions in 

vision-based search procedure. The proposed algorithm is applied to small, medium 

and large size problems to evaluate its performance. Comprehensive numerical tests 

are conducted to evaluate the performance of the MOFOA in comparison to three 

other meta-heuristics in terms of convergence, diversity and computation time. The 

experimental results significantly show that the proposed algorithm can surpass 

other methods in terms of most of the metrics. Besides, the results of meta-heuristics 

are compared with the outputs of GAMS software for small size problems. 
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Introduction 
Energy has always been a crucial necessity for sustaining human life. 

The International Energy Agency (2015) announced that the global 

consumption of energy will increase by 37% in the next twenty years. 

Moreover, the production and consumption of energy lead to the 

emission of greenhouse gases to the atmosphere (Fang et al., 2011; Lu 

et al., 2017). This has led to global concerns. There are several 

energy-efficient strategies for production projects such as using 

energy-efficient machines (resources) for the execution of projects. 

However, a considerable amount of investment is required to use 

energy-efficient machines (Mori et al., 2011). Scheduling strategies 

can help project managers to save energy and to decrease costs. 

Scheduling concentrates on allocating valuable and finite resources to 

a set of activities. This paper addresses an energy-efficient resource-

constrained project scheduling problem (EE-RCPSP) to optimize 

makespan and total energy consumption, simultaneously. In this 

problem, resources are considered as speed-scaling machines. Speed-

scaling machines are able to process activities at different speed 

levels. The RCPSP aims at scheduling the activities of a project with 

respect to precedence relations and resource constraints (Zareei and 

Hassan-Pour, 2015). In the EE-RCPSP, the required workload of each 

activity depends on the activity itself and the resource on which it is 

executed. The RCPSP is categorized as an NP-hard optimization 

problem. This means that due to complexity of the problem, exact 

methods may fail to find optimal solutions of large-size test problems 

in a reasonable computation time (Blazewicz et al., 1983). Therefore, 

a multi-objective fruit fly optimization algorithm (MOFOA) is 

developed for the EE-RCPSP. The MOFOA can find appropriate 

schedules for large projects in a relatively short computation time. We 

listed the major contributions of this research as follows: 

1. This research tackles the energy-efficient RCPSP, where the 

objectives are the minimization of makespan and total energy 

consumption, simultaneously. 

2. An efficient multi-objective fruit fly optimization algorithm 

(MOFOA) with a new solution representation is proposed. The 
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proposed algorithm uses the VIKOR
1
 as a multi-criteria decision 

making (MCDM) method to choose the best solution in each 

sub-swarm. 

3. The input parameters of the MOFOA is tuned by the Taguchi 

method. 

4. The outputs of the MOFOA is compared with the optimal 

solutions obtained by GAMS and three other meta-heuristics. 

The rest of the paper is structured as follows. Section 2 reviews the 

most relevant studies in the literature. Section 3 explains the problem, 

and it contains the EE-RCPSP formulation. Section 4 describes the 

proposed algorithm in detail. The computational results obtained by 

implementing algorithms are reported in Section 5. Section 6 

summarizes the paper and provides some conclusions. 

Literature review 
In this section, we review several studies on the Energy-efficient 

scheduling problems. There are two common energy-efficient strategies 

in the literature, namely the speed-scaling approach and the power-

down mechanism. In the speed-scaling approach, it is possible to adjust 

processing speeds of resources where it is necessary. By increasing the 

processing speed, the consumption of energy grows, while the required 

processing time decreases. Hence, the appropriate selection of 

processing speeds for resources will result in significant energy savings. 

According to the power-down strategy, if a resource remains idle for a 

period of time, it is possible to save energy by shutting the resource 

down (Mouzon and Yildirim, 2008). Fang et al. (2011) presented a 

mathematical formulation for flow shop scheduling problem 

considering peak power load, energy consumption and carbon footprint. 

Bampis et al. (2012) used power-down mechanism to minimize total 

energy consumption for a speed-scaling single machine scheduling 

problem. Luo et al. (2013) studied a hybrid flow shop (HFS) scheduling 

to improve the production efficiency. The proposed algorithm considers 

the production efficiency and electric power cost (EPC) with time-of-

use (TOU) electricity prices, simultaneously. Dai et al. (2013) modeled 

an energy-efficient bi-objective flexible flow shop scheduling problem 

                                                 
1. VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) 
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(FFSP). They considered power-down mechanism in their proposed 

model to optimize makespan and energy consumption. Shrouf et al. 

(2014) studied a scheduling problem, where a single machine is 

available for production. Liu et al. (2014) proposed a bi-objective job 

shop scheduling problem to minimize total electricity consumption and 

total weighted tardiness. The Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) was hired to find the Pareto front. Merkert et 

al. (2015) clarified the differences between energy efficiency and 

demand-side management. Fang et al. (2016) studied speed-scaling 

single machine scheduling problem with time-of-use electricity prices. 

A bi-objective formulation was proposed by Ding et al. (2016) for the 

speed-scaling permutation flow shop scheduling problem. Gahm et al. 

(2016) developed a research framework for energy-efficient scheduling 

(EES) to improve energy efficiency. Mansouri et al. (2016) introduced a 

mixed-integer linear multi-objective model for shop floor scheduling 

with sequence-dependent setup times. Tang et al. (2016) addressed a 

dynamic flexible flow shop scheduling problem. Wang et al. (2016) 

studied a bi-objective machine batch scheduling problem with non-

identical job sizes, the time-of-use (TOU) electricity prices and 

different consumption rates of machines. Yan et al. (2016) proposed a 

multi-level optimization approach for energy-efficient flexible flow 

shop scheduling problem. Zhang and Chiong (2016) presented a bi-

objective mathematical formulation for the job shop scheduling 

problem based on the machine speed scaling framework. Che et al. 

(2017) proposed a mixed-integer linear programming (MILP) model for 

energy-conscious unrelated parallel machine scheduling problem 

considering time-of-use electricity pricing scheme. In this problem, the 

electricity price varies during a day. Liu et al. (2017) addressed the 

fuzzy flow shop scheduling problem, where the setup times of machines 

depend on their prior states. Lu et al. (2017) proposed a mathematical 

model for the flow shop scheduling problem. Their proposed model is 

energy-efficient and includes controllable transportation times. 

Mokhtari and Hasani (2017) modeled an energy-efficient multi-

objective flexible job shop scheduling problem to optimize the 

makespan, the availability of the system, and the total energy costs of 

production and maintenance. Che et al. (2017) developed a mixed-

integer programming model for the single machine scheduling problem 
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with power-down mechanism. In another study, a dynamic scheduling 

approach was proposed by Zhai et al. (2017) to minimize the electricity 

cost of a flow shop with a grid-integrated wind turbine. They utilized 

time series models to obtain updated wind speed and electricity prices. 

Based on the studies reviewed in this section, none of the previous 

research projects have proposed an energy-efficient mathematical 

formulation for the RCPSP. Therefore, we propose an energy-efficient 

bi-objective formulation for the resource-constrained project scheduling 

problem. The objectives of the proposed model are the minimization of 

both the completion time and the total energy consumption of the 

project, simultaneously. Besides, the fruit fly optimization algorithm 

has not been used in previous studies to solve energy-efficient models. 

Thus, a multi-objective fruit fly optimization algorithm is developed to 

solve the proposed model. 

Problem definition 
In this research, an energy-efficient resource-constrained project 

scheduling problem (EE-RCPSP) is studied. In this problem, there is a 

set of interrelated activities to be processed by a set of unrelated 

renewable resources. We present the project as a graph G(J, A), where 

J is the set of nodes, representing activities, and A represents a set of 

arcs, showing precedence constraints with no time-lags. For each 

activity, there is a set of immediate predecessors. The activities are 

numbered as j= 0, 1, 2, …, N+1. The activities 0 and N+1 are dummy 

start and finish activities, respectively. These activities have zero 

durations and they have no consumption of resources. Activities 

require a certain amount of resources in each period and they have 

only one execution mode. Moreover, they are non-preemptive. A 

limited amount of resource is available in each period. Allocation and 

transfer times of resources are negligible. Each resource can only 

process one activity in each period. Resources are able to process 

activities at different speed levels. There are L speed levels for each 

resource. Suppose that vl (1 l  L) denotes the functioning speed of a 

resource at     speed level. All resources have the same operating 

speed at level L. In the EE-RCPSP, we assume that v1 < v2<…< vl. The 

workload of activity j (1 j  N) on resource k (1 k  K)  k, denoted 

as    , depends on the activity itself and the resource on which it is 
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executed. Let    stand for the actual processing time required by 

activity j.    can be computed by        (
   

  
). Suppose that      

represents the energy consumption rate for the execution of activity j 

by resource k at speed level l. The actual energy consumption required 

by resource k to execute activity j at speed level l is denoted as     , 

which is calculated by            (
   

  
).  

If vl1 >vl2 (l1, l2{1, …, L}) then ejkl1 > ejkl2. Using higher 

processing speed will result in more energy consumption. However, 

less time is required to accomplish the activity. The EE-RCPSP aims 

at assigning resources to activities and choosing proper speed levels 

for activities in order to optimize the makespan and total energy 

consumption, simultaneously. We define the following notations to 

understand the proposed model. 
Sets 

 

J Set of activities     ́           

  Set of renewable resources           

H Set of time periods (   ́         

SL Set of speed levels (l        

Pj Set of predecessors of activity j 

Parameters 

 

vl Processing speed of a resource functioning at speed level l  

wjk Workload of activity j on resource k 

gjkl Energy consumption rate for performing activity j by resource 

 k at speed level l. 

rjk The required amount of resource k for activity j 

Rk The available amount of resource k 

  

Variables 

dj The actual processing time required by activity j 

ejkl The actual energy consumption required by resource k to 

execute activity j at speed level l 

FTj Finish time of activity j 

Cmax Project completion time (Makespan) 

E Total energy consumption 

Xjt Equals 1 if activity j is started in period t, otherwise it equals 0 

                Equals 1 if activity j is assigned to resource k at processing 

speed   , otherwise it equals 0 
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In the following lines, the problem is formulated as a bi-objective 

mixed-integer linear programming model: 

maxMin C   (1) 

Min E   (2) 

Subject to:   

0

1
T

jt
t

X



  j J   (3) 

max( / )j jk l
k

d w v  j J   (4) 

j j jFT FT d    jj, j J , j P     (5) 
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

  ,j J k      (7) 
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
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

  
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max, , , , 0j jkl jd e FT C E    (11) 

, {0,1}jt jklX U    (12) 
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The objective function (1) is the minimization of the project 

completion time. The objective function (2) is the minimization of 

project energy consumption. Constraint (3) ensures that activities are 

allowed to start just once. Equation (4) computes the actual processing 

times of activities. Constraint (5) guarantees the precedence 

constraints of the project. Constraint (6) satisfies the resource 

limitations. Constraint (7) implies that a single speed level can be 

chosen for processing activities. Equation (8) calculates the actual 

energy consumption required by resource k to perform activity j at 

speed level l. Constraint (9) implies that the makespan must be greater 

than or equal to the maximum completion times on all resources. 

Constraint (10) defines the total energy consumption of the project. 

Constraints (11) and (12) define the feasible scope of decision 

variables. 

MOFOA for the EE-RCPSP 
This section proposes a multi-objective fruit fly optimization 

algorithm (MOFOA) to solve the EE-RCPSP. One of the advantages 

of the fruit fly optimization algorithm (FOA) in comparison to some 

of the other swarm intelligence methods is that the FOA is a simple 

method to implement since it requires less calculation and it does not 

have many input parameters to adjust. The FOA has a strong 

expanding capability in its smell-based search procedure. Despite 

having a strong smell-based search procedure, the vision-based search 

procedure sometimes entraps the FOA in a local optima (Huang et al., 

2017). Hence, in this paper, the operators of the MOFOA for 

searching the solution space are developed, and a multi-swarm 

strategy is used to avoid the premature convergence of the FOA to 

local optima. The procedures of the MOFOA are described in the 

following sub-sections. 

Solution representation and decoding procedure 

In the MOFOA, each fruit fly is considered as a solution of the EE-

RCPSP. The key point for solving the EE-RCPSP is to determine on 

which resources each activity is processed. Besides, it is important to 

determine the appropriate processing speed levels for the resources. 

Therefore, a feasible solution consists of three vectors, namely an 

activity list, a resource list, and a speed vector. The activity list is 



An Energy-efficient Mathematical Model for the Resource-constrained … 99 

feasible based on the precedence constraints of the project and it 

shows the order of activities entering the scheduling process. On an 

activity list, activities must be positioned after all their predecessors. 

A resource assignment vector determines the resources assigned to 

each activity. A speed vector shows the speed levels of resources 

assigned to activities. Figure 1 shows a sample project with eight non-

dummy activities. There are four available resources to execute 

project activities. Suppose that resources have three processing speed 

levels. Figure 2 illustrates a solution for this project. According to 

Figure 2, the resources ―2‖ and ―4‖ are assigned to activity ―1‖. Both 

resources are set to operate at speed level ―2‖ to execute this activity. 

We have used the serial schedule generation scheme (S-SGS) (Kadri 

and Boctor, 2018), as a decoding procedure, to produce schedules for 

the EE-RCPSP.  
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Fig. 1. The AON network of the example 

2 1 4 3 6 5 8 7Activity list

1 2 , 4 3 3 4 2 1 1 , 3
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1 2 2 1 1 3 3 2Speed vector 

 

Fig. 2. A feasible solution for the EE-RCPSP 
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Initialization 

The MOFOA uses multiple-swarm procedure to construct population. 

The number of swarms in the population is denoted as NS. The 

locations of fruit fly swarms are considered as solutions. As 

mentioned in Section 4.1, each solution is represented as a 3×N vector, 

where N is the number of project activities. Therefore, the MOFOA 

generates NS vectors in the initialization phase. The MOFOA stores 

non-dominated solutions in a Pareto archive (PA).  

Smell-based search 

The MOFOA uses the smell-based search as its main search 

procedure. In this procedure, S fruit flies are produced in the 

surrounding of each swarm. These fruit flies form the sub-swarm. The 

smell-based search procedure is implemented by using search 

operators (Wang and Zheng, 2018). Fang and Wang (2012) proposed 

an operator which swaps two adjacent activities without precedence 

relations. This operator is used to explore the neighborhood for 

finding new activity lists. Suppose that activity j has been selected 

randomly to be changed with regard to its assigned resources. For the 

resource assignment list, a new operator is designed, which reassigns 

an appropriate resource to activity j. Another operator is developed to 

change the speed level of the resources assigned to the chosen activity. 

Vision-based search 

After generating S fruit flies in the smell-based search, the solutions in 

each sub-swarms are evaluated. Then, the best found solution takes 

the place of the central location of the sub-swarm if more appropriate 

outputs are acquired. Therefore, one best solution has to be chosen 

from S+1 solutions. Opricovic and Tzeng (2007) proposed the VIKOR 

method as a compromise multi-attribute decision making (MADM) 

for optimization problems, where there are multiple criteria. The 

VIKOR determines how good an individual is among a set of non-

dominated solutions. Therefore, the VIKOR is employed to choose the 

best solution in each sub-swarm. Based on the VIKOR, the 

alternatives are ranked based on the measure of closeness to the ideal 

solution. Figure 3 shows the procedure of the VIKOR method when 

objectives are needed to be minimized. 
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Step 1. Determine the best ( *
cf ) and the worst ( cf

 ) values of all 

criteria among solutions. *
cf  and cf

  are obtained by Equations (13) 

and (14) respectively, if the     metric represents a cost: 

* minc cf f


  1,2,...,    1,2,...,c CR   (13) 

maxc cf f


   1,2,...,    1,2,...,c CR   (14) 

Step 2. Calculate the maximum group utility (  ) and the minimum 

individual regret of the opponent (  ) values by the following 

formulas: 

   * *

1

/
CR

c c c c c
c

f f f f   



    

1,2,...,    

(15) 

   * *max /c c c c c
c

f f f f      
  

 (16) 

Where,    is the weight of the     criterion. In this study, the weights 

of the criteria are the same. 

Step 3. Compute the VIKOR index for each alternative (Q) (= 1, 2, 

…, )  using Equation (17): 

        * * * */ 1 /Q                  
 

1,2,...,    (17) 

Where,   and (1 )  represent the weights for the strategies of 

maximum group utility and individual regret, respectively. In this 

paper,   is set to 0.5. In Equation (17), *
,min    ,max   

*
,min    

and max    .  

Step 4. Rank the alternatives (solutions) by sorting the values  ,  

and Q in ascending order. Three ranking lists are obtained by sorting 

these values. 

Step 5. Propose as a compromise solution, the alternative with the 

minimum VIKOR index. The solution with the least VIKOR index is 

the best-ranked solution. 

Fig. 3. Procedure of the VIKOR 
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After the smell-based search, there are NS new fruit fly swarms.  

Therefore, the MOFOA updates the population by selecting NS 

solutions from 2×NS solutions. In this respect, the non-dominated 

sorting technique proposed by Deb et al., (2002) is used to sort the 

candidate solutions in order to find non-dominated solutions for the 

Pareto front. 

Elitism in the MOFOA 

In each iteration, the Pareto archive (PA) is updated by the newly 

found non-dominated solutions. In this respect, the newly found non-

dominated solutions are compared with the individuals existing in the 

PA. If a newly found non-dominated solution (y) is not dominated by 

the solutions in the PA, it will be added to the PA. The number of elite 

solutions (NE) in the PA is limited. The solutions of the PA which are 

dominated by the solution y will be removed from the PA.  

Procedures of the MOFOA 

Figure 4 illustrates the flowchart of the MOFOA. Operators of the 

smell-based search are used to find the Pareto optimal solutions. In the 

vision-based search procedure, the MOFOA uses the VIKOR and the 

non-dominated sorting method for multi-objective evaluations. The 

Pareto archive is updated in each iteration by the newly found non-

dominated solutions. The MOFOA stops when the maximum number 

of iterations (MaxIt) is reached. 

Set the input 

parameters of the 

MOFOA

Start

Produce NS fruit 

fly swarms and fill 

the PA with the 

non-dominated 

solutions

Is stopping 

criterion met?

Produce S fruit 

flies around each 

fruit fly swarm 

location to form 

the sub-population

Use the VIKOR 

method to sort 

each fruit fly 

swarm and update 

the swarm center

Use the non-dominated 

sorting method to sort 

the 2NS fruit flies and 

update the fruit fly 

swarms

Output: 

PA

Finish

Update PA

No

Yes

 

Fig. 4. Flowchart of the MOFOA 
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Experimental results 
In this section, the performance of the MOFOA is compared with 

three meta-heuristics such as the NSGA-II, SPEA-II and PESA-II. All 

algorithms have been coded in the Matlab R2017b software. We have 

run the algorithms on a personal computer with Intel Core 2 Quad 

processor Q8200 (4M Cache, 2.33 GHz, 1333 MHz FSB) and 4GB 

memory.  

Test problems 

To evaluate the proposed model, 200 precedence networks have been 

taken randomly from the library of project scheduling problem 

(PSPLIB) (Kolisch and Sprecher, 1996) with 30, 60, 90 and 120 non-

dummy activities. These standard test instances contain the activities, 

standard durations, precedence relations, required amount of resources 

for activities and the available amount of resources. However, some 

new data are needed for our proposed mathematical model. The 

required data are generated as follows: 

1. The workload of activity j on resource k (     is following a 

uniform distribution on the interval [    ]  
2. The basic energy consumption rate for activity j on resource k 

(     is uniformly chosen on the interval [    ]  
3. The rate of energy consumption for activity j on resource k with 

speed    is calculated by            
        

4. Based on the energy consumption rate, the actual energy 

consumption of activity j on resource k with speed    is obtained 

as                
   . Since     is more than zero and 

        is constant for activity j on resource k, the faster    is, 

the higher       will be. In this study, we set      

5. We set    , and                      for speed levels of 

processing. 

Test problems are categorized into three sizes of small, medium 

and large. Test instances with 30 activities (J=30) are considered as 

small size problems. Test problems with 60 (J=60) activities are 

medium size problems and test problems with 90 (J=90) and 120 

(J=120) activities are large size problems. 
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Performance measures 

It is challenging to evaluate an algorithm when the objectives conflict 

with each other (Mehdizadeh et al., 2018). Five multi-objective 

performance measures are used to evaluate the algorithms: 

 Number of non-dominated solutions (NOS): The number of 

non-dominated solutions on the Pareto front is a metric to 

evaluate a multi-objective optimization algorithm. The higher 

the number of non-dominated solutions, the more alternatives 

are available for decision makers to choose from (Pargar et al., 

2018). 

 Mean ideal distance (MID): This metric measures the distance 

between the non-dominated solutions of the Pareto front 

obtained by an algorithm and the ideal point. This metric is 

calculated by Eq. (18) (Zitzler and Thiele, 1998): 

   
2 2

* *
1 21 2

1

NOS
i i

i

OFV OFV OFV OFV

MID
NOS



  




 

(18) 

where, NOS represents the number of non-dominated solutions 

obtained by an algorithm.     
  and     

  denote the values of the 

first and the second objective function for solution i, respectively. 

Ideal points of the first and the second objective functions are 

represented as     
  and     

 , respectively. Lower values of the 

MID metric imply better performance of an algorithm. 

 Spacing metric (SM): This metric evaluates the distribution of 

non-dominated solutions obtained by an algorithm. This metric 

is computed using Equation (19) (Schott, 1995): 

 
2

1

1

1

NOS

i
i

SM D D
NOS



 

  (19) 

where,    is the Euclidean distance between solutions of the Pareto 

front.    is obtained by Equation (20): 

 

, 1,2,...,i i NOS   

(20) 
 1 1 2 2

min ;i i i i
i

i
D OFV OFV OFV OFV

 


   
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 ̅ denotes the average of   s, calculated as  ̅  ∑          
     

     and      denote the values of the first and the second objective 

functions, respectively. Lower values of this metric indicate that 

solutions are more uniformly distributed.  

 Diversification metric (DM): The extension of the Pareto front 

is measured by the diversification metric (DM). Higher values of 

DM imply that solutions have better diversity. This performance 

measure is obtained by Equation (21) (Zitzler et al., 2000): 

2 2

1 1 2 2
1: 1:1: 1:

max min max mini i i i

i NOS i NOSi NOS i NOS
DM OFV OFV OFV OFV

  

   
      

   

 
(21) 

 Computation time (CPU time): The computation time is a 

well-known metric to assess the efficiency of an algorithm in 

terms of rapidity. 

Table 1. Parameters and their levels 

Algorithm Parameter Symbol 
Factor level 

1 2 3 4 

MOFOA 

Number of swarms NS 10 50 100 200 

Size of sub-swam S 5 10 15 20 

Number of elite solutions 

(Size of PA) 
NE 5 10 20 30 

Maximum number of iterations MaxIt 100 150 200 300 

NSGA-II 

Crossover rate    0.75 0.80 0.85 0.90 

Mutation rate    0.10 0.15 0.20 0.25 

Number of solutions in 

population 
Npop 10 50 100 200 

Maximum number of iterations MaxIt 100 150 200 300 

SPEA-II 

Crossover rate    0.75 0.80 0.85 0.90 

Mutation rate    0.10 0.15 0.20 0.25 

Number of solutions in 

population 
Npop 10 50 100 200 

Maximum number of iterations MaxIt 100 150 200 300 

Archive size ARS 5 10 15 20 

PESA-II 

Crossover rate    0.75 0.80 0.85 0.90 

Mutation rate    0.10 0.15 0.20 0.25 

Number of solutions in 

population 
Npop 10 50 100 200 

Maximum number of iterations MaxIt 100 150 200 300 

Archive size ARS 5 10 15 20 
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Calibrating parameters of algorithms 

In this paper, the Taguchi method – as a design of experiments (DOE) 

technique (Afruzi et al., 2014) – is used to tune parameters of 

algorithms. Taguchi proposed a statistic called Signal-to-Noise (S/N) 

ratio to evaluate a process. ―Signal‖ represents mean response 

variable, with its greater value being desirable. On the other hand, 

―Noise‖ depicts standard deviation and smaller values of it are 

preferred. Therefore, greater values of S/N ratio will lead to variability 

reduction. Table 1 shows the control factors of the MOFOA, NSGA-

II, SPEA-II and PESA-II methods. 

Rahmati et al. (2013) presented a response variable known as the 

multi-objective coefficient of variation (MOCV) for the Taguchi 

method. The MOCV incorporates both conversion and diversity by 

considering the MID and DM metrics. The MID estimates the 

convergence rate of the algorithms, while DM measures the diversity 

of methods. The MOCV is obtained as follows: 

MID
MOCV

DM
  (22) 

Five test instances are randomly chosen and each problem is run 

for ten replicates to obtain reliable results. Therefore, 50 results are 

obtained for each experiment. The result of each problem is equal to 

the best result among ten runs of that problem. To compute the 

MOCV, the results of MID and DM should be converted to 

relative percentage difference (RPD). Equation (23) is used to 

calculate the RPD (Gao et al., 2013):  

lg
100

sol sol

sol

A Best
RPD

Best


 

 

(23) 

where        denotes the value of metric acquired by an algorithm, 

while         represents the best obtained value of a metric. For each 

experiment, the average of RPDs (   ̅̅ ̅̅ ̅̅   are computed. In the next 

step,         ̅̅ ̅̅ ̅̅          ̅̅ ̅̅ ̅̅      is calculated for all 

experiments. Figures 5 to 8 show the S/N ratio plots for parameters of 

the MOFOA, NSGA-II, SPEA-II and PESA-II, respectively. Optimal 

values of parameters have been reported in Table 2. 



An Energy-efficient Mathematical Model for the Resource-constrained … 107 

4321

0

-10

-20

-30

-40
4321

4321

0

-10

-20

-30

-40
4321

NS

M
ea

n
 o

f 
S

N
 r

at
io

s

S

NE MaxIt

Main Effects Plot for SN ratios

Data Means

 

Fig. 5. The S/N ratio plot of the MOFOA in the Taguchi methodology 
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Fig. 6. The S/N ratio plot of the NSGA-II in the Taguchi methodology 
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Fig. 7. The S/N ratio plot of the SPEA-II in the Taguchi methodology 
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Fig. 8. The S/N ratio plot of the PESA-II in the Taguchi methodology 

Table 2. Optimal values of parameters 

Algorithms Parameters’ values 

MOFOA NS = 200 S = 15 NE = 10 MaxIt = 300 

NSGA-II     0.75     0.25 Npop = 200 MaxIt = 300 

SPEA-II     0.75     0.25 Npop = 200 MaxIt = 300 ARS = 20 

PESA-II     0.75     0.25 Npop = 200 MaxIt = 300 ARS = 20 

Computational results 

The performance of the MOFOA is compared with the NSGA-II, 

SPEA-II and PESA-II in solving test problems. Each algorithm has 

been run for ten times to remove uncertainties. Table 3 shows the 

average values of performance measures obtained by these algorithms. 

Based on the outputs summarized in Table 3, the following outlines 

have been obtained: 

1. The MOFOA has been more successful in finding higher 

number of non-dominated solutions. Therefore, the decision 

makers have more options. 

2. The convergence of the MOFOA to the optimal Pareto front is 

considerably better than the convergence of other algorithms. 

3. The diversity of the solutions obtained by the MOFOA is more 

than the diversity of the solutions acquired by the NSGA-II, 

SPEA-II and PESA-II. 
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4. The computation time of the PESA-II is far less than the other 

methods. 

Figures 9 to 13 show the best results obtained by algorithms in 

terms of performance measures. According to these figures, the 

MOFOA has achieved better results in terms of NOS, MID, SM and 

DM in comparison with other method. In terms of CPU time, the 

PESA-II needed less time to solve test problems. 

Table 3. Comparison of algorithms in terms of performance measures 

Number of 

activities 
Algorithm 

Performance measure 

NOS MID SM DM 
CPU 

time 

J=30 

MOFOA 19.40 50.06 0.92 4974.32 41.38 

NSGA-II 12.86 314.19 2.84 3138.64 45.07 

SPEA-II 14.84 299.51 2.05 3328.71 57.03 

PESA-II 11.01 266.58 1.86 3607.67 35.39 

J=60 

MOFOA 32.27 135.83 3.42 5507.13 92.26 

NSGA-II 23.71 467.69 5.38 4273.92 98.01 

SPEA-II 24.53 431.44 5.24 4826.04 123.28 

PESA-II 20.18 401.47 4.88 5119.93 79.47 

J=90 

MOFOA 41.01 658.86 12.39 9834.10 132.06 

NSGA-II 32.36 784.13 26.37 8199.08 141.44 

SPEA-II 30.44 721.77 25.04 8312.26 179.42 

PESA-II 36.11 706.19 24.51 8956.40 111.58 

J=120 

MOFOA 49.87 2473.97 53.72 10872.34 173.64 

NSGA-II 40.28 4235.35 81.34 9101.17 188.58 

SPEA-II 43.96 4014.22 79.16 9574.99 236.76 

PESA-II 45.52 3856.79 73.39 10029.85 151.01 

 

Fig. 9. Comparison of algorithms in terms of NOS 
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Fig. 10. Comparison of algorithms in terms of MID 

 

Fig. 11. Comparison of algorithms in terms of SM 

 

Fig. 12. Comparison of algorithms in terms of DM 
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Fig. 13. Comparison of algorithms in terms of CPU time 

To validate the results obtained by the algorithms, the outputs of 

three algorithms are compared with the optimal objective function 

values obtained by the GAMS software (version 24.1.2). The 

comparisons have been made for small size problems with J=30 

activities. In this respect, twenty test problems with 30 activities have 

been chosen randomly. Table 4 reports the best results obtained by 

algorithms in ten runs.      and E represent the best values of 

objectives found by algorithms. As shown in Table 4, the MOFOA 

has achieved the best values for the first and the second objective 

functions in most of the problems. 

Table 4. The best results obtained by each algorithm 

Prob. 
MOFOA NSGA-II SPEA-II PESA-II GAMS 

     E      E      E      E      E 

1 60 6370.39 60 6370.39 68 6994.22 60 6370.39 60 6370.39 

2 62 6231.18 62 6231.18 69 7074.45 62 6231.18 62 6231.18 

3 53 6816.54 63 7352.31 53 6816.54 53 6816.54 53 6816.54 

4 51 7119.89 51 7119.89 62 7558.48 57 7583.39 51 7119.89 

5 63 7067.086 56 6591.47 56 6591.47 56 6591.47 56 6591.47 

6 74 6094.072 71 6525.77 64 6081.56 74 6204.37 64 6081.56 

7 59 6372.85 59 6372.85 59 6372.85 59 6372.85 59 6372.85 

8 37 7948.84 37 7948.84 53 8261.03 48 8290.63 37 7948.84 

9 73 5503.33 73 5503.33 73 5503.33 73 5503.33 73 5503.33 

10 61 6310.81 61 6310.81 73 6553.95 61 6310.81 61 6310.81 

11 71 5577.56 71 5577.56 71 5577.56 71 5577.56 71 5577.56 

12 46 7319.99 46 7319.99 46 7319.99 46 7319.99 46 7319.99 

13 38 7881.47 50 8445.50 53 8397.91 38 7881.47 38 7881.47 

14 48 7268.41 48 7268.41 48 7268.41 48 7268.41 48 7268.41 

15 68 5754.23 80 5948.42 68 5754.23 68 5754.23 68 5754.23 

16 74 5438.4 74 5438.40 74 5438.40 74 5438.40 74 5438.40 

17 49 7158.49 60 7623.80 49 7158.49 49 7158.49 49 7158.49 

18 55 6708.71 55 6708.71 55 6708.71 55 6708.71 55 6708.71 

19 65 6037.65 73 6468.03 65 6037.65 74 6180.80 65 6037.65 

20 66 6014.18 78 6047.49 66 6014.18 66 6014.18 66 6014.18 

Avg. 58.65 6549.70 61.40 6658.66 61.25 6674.17 59.60 6578.86 57.80 6525.30 
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Table 5 reports the gaps between the best found solutions of meta-

heuristics and optimal solutions obtained by the GAMS software. The 

optimal solutions found by the GAMS software have been achieved in 

around 2000 seconds. The relative gaps between the optimal solutions 

and the solutions of evolutionary algorithms are obtained as follows 

(Bashiri et al., 2012): 

lg *

*

aOFV OFV
GAP

OFV


  (24) 

where        and      are the objective function values obtained 

by the evolutionary algorithm and GAMS, respectively. As reported in 

Table 5, the MOFOA has been successful in finding optimal solutions 

in 90% of problems. 

Table 5. Comparison of meta-heuristics and GAMS 

Prob. 
GAP(MOFOA) GAP(NSGA-II) GAP(SPEA-II) GAP(PESA-II) 

     E      E      E      E 

1 0.00 0.00 0.00 0.00 0.13 0.10 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.11 0.14 0.00 0.00 

3 0.00 0.00 0.19 0.08 0.00 0.00 0.00 0.00 

4 0.00 0.00 0.00 0.00 0.22 0.06 0.12 0.07 

5 0.13 0.07 0.00 0.00 0.00 0.00 0.00 0.00 

6 0.16 0.01 0.11 0.07 0.00 0.00 0.16 0.02 

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

8 0.00 0.00 0.00 0.00 0.43 0.04 0.30 0.04 

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 0.20 0.04 0.00 0.00 

11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

13 0.00 0.00 0.32 0.07 0.39 0.07 0.00 0.00 

14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

15 0.00 0.00 0.18 0.03 0.00 0.00 0.00 0.00 

16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

17 0.00 0.00 0.22 0.07 0.00 0.00 0.00 0.00 

18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

19 0.00 0.00 0.12 0.07 0.00 0.00 0.14 0.02 

20 0.00 0.00 0.18 0.01 0.00 0.00 0.00 0.00 
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To have a reliable comparison between performances of 

algorithms, a one-way analysis of variances (ANOVA) at a 95% 

confidence interval is conducted. The following hypothesis test has 

been considered to determine whether the differences between 

algorithms are statistically significant or not. The null hypothesis      

is rejected if P-value of hypothesis test is smaller than 0.05. 

H0; The outputs of algorithms are not significantly different. 

 (25) 
H1; The outputs of algorithms are significantly different. 

Tables 6, 7, 8, 9 and 10 report the results of ANOVA tests of 

algorithms in terms of the NOS, MID, SM, DM and CPU time, 

respectively. To save space, only the results for large size problems (J 

=120) have been reported in these tables. According to the results, 

there is a significant difference between the performances of the 

algorithms in terms of the NOS, MID, SM, and DM metrics, while 

there is no significant difference between the performances of 

algorithms in terms of CPU time.  

Table 6. ANOVA test for the difference of algorithms in terms of NOS 

Source SS MS F P-Value Results 

Columns 1334.25 444.75 7.97 0.0034 H0 is rejected. 

Error 669.50 55.792    

Total 2003.75     

Table 7. ANOVA test for the difference of algorithms in terms of MID 

Source SS MS F P-Value Results 

Columns 75542890 2518096.30 224.99 8.26e-011 H0 is rejected. 

Error 134306.90 11192.20    

Total 7688595.90     

Table 8. ANOVA test for the difference of algorithms in terms of SM 

Source SS MS F P-Value Results 

Columns 1543.01 514.33 7.15 0.0052 H0 is rejected. 

Error 863.70 71.97    

Total 2406.71     
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Table 9. ANOVA test for the difference of algorithms in terms of DM 

Source SS MS F P-Value Results 

Columns 1.01e+007 3367645.60 6.06 0.0094 H0 is rejected. 

Error 6.66e+006 555743.70    

Total 1.67e+007     

Table 10. ANOVA test for the difference of algorithms in terms of CPU time 

Source SS MS F P-Value Results 

Columns 2934.80 978.26 3.40 0.13 H0 is not rejected. 

Error 1151.85 287.96    

Total 4086.65     

Conclusions 
This paper investigated an energy-efficient speed-scaling resource-

constrained project scheduling problem to optimize both project 

completion time and total energy consumption. To tackle the problem 

which is strongly NP-hard, a multi-objective fruit fly optimization 

algorithm (MOFOA) was developed. This method uses a new solution 

representation consisting of activity vector, resource vector and speed 

vector. In each iteration, the MOFOA utilizes the VIKOR method to 

choose the best solutions (fruit flies) in each sub-swarm. The MOFOA 

was used to solve a considerable number of test problems available on 

the PSPLIB with 30, 60, 90 and 120 activities. To evaluate the 

performance of the MOFOA, three other meta-heuristics were 

employed to solve the same test problems. The algorithms have been 

compared in terms of several performance measures. Computational 

results have significantly demonstrated that the MOFOA has been 

more successful than other methods in terms of most of the metrics. 

To validate the outputs of the MOFOA, the solutions of this algorithm 

were compared to the optimal solutions of small size problems 

provided by the GAMS software. These comparisons show that the 

proposed algorithm has found the optimal solutions in most of the 

cases. There are some suggestions to extend the current research: 

 Considering power-down mechanism as another energy-efficient 

mechanism for the RCPSP. 

 Using other multi-criteria decision-making techniques in the 

MOFOA to rank fruit flies in each sub-swarm.  
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