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Abstract

Computed Magnetic Gradient Tensor (CMGT) includes the first derivatives of three components
of magnetic field of a body. At the eigenvector analysis of Gravity Gradient Tensors (GGT) for a
line of poles and point pole, the eigenvectors of the largest eigenvalues (first eigenvectors) point
precisely toward the Center of Mass (COM) of a body. However, due to the nature of the magnetic
field, it is shown that these eigenvectors for the similar shaped magnetic bodies (line of dipoles and
point-dipole), in CMGT, are not convergent to COM anymore. Rather, in the best condition, when
there is no remanent magnetization and the body is in the magnetic poles, their directions are a
function of data point locations. In this study, by reduction to the pole (RTP) transformation and
calculation of CMGT, a point is estimated that its horizontal components are exactly the horizontal
components of the COM and its vertical component is a fraction of the COM vertical component.
These obtained depth values are 0.56 and 0.74 of COM vertical components for a line of dipoles
and point-dipole, respectively. To reduce the turbulent effects of noise, “Moving Twenty five Point
Averaging” method and upward continuation filter are used. The method is tested on solitary and
binary simulated data for bodies with varying physical characteristics, inclinations and
declinations. Finally, it is imposed on two real underground examples; an urban gas pipe and a

roughly spherical orebody and the results confirm the methodology of this syudy.

Keywords: Computed Magnetic Gradient Tensor, Center of Mass, First Eigenvectors.

1. Introduction

Magnetic and Gravity gradient tensors (MGT
and GGT) contain the second derivatives of
the earth magnetic and gravitational
potentials in three directions, respectively.
The history of Gravity gradiometry goes back
to 1886, when the petroleum industry was
revolutionized by Baron von Eotvos’
invention (Bell and Hansen, 1998). However,
the annals of employing MGT are much
shorter. In 1972, Frahm used MGT data with
an explicit solution to a point-by-point
magnetic dipole localization. Reford and
Sumner (1964) gave an account of
equipment, survey techniques, data reduction
and interpretational methods regarding
airborne surveys in mining and petroleum
exploration, geological mapping, and crustal
and upper mantle studies. Reid et al. (1990)
interpreted  the  magnetic data by
deconvolution using Euler’s homogeneity
relation. Their method, employing gradients
of magnetic field, was remarkably accurate in
detection of some bodies like dikes, vertical
pipes and contacts, and also, it was

independent of remanence. In the last two
decades, various techniques of MGT data
have been widely improved (Schmidt and
Clark, 2000; Schmidt and Bracken, 2004;
Gamey et al, 2004; Doll et al., 2006;
Chianese and Lapenna, 2007). Pedersen and
Rasmussen (1990) showed that using MGT
and GGT data is functional for geophysical
prospecting. They discussed in detail the
practical problems encountered in the
collecting and processing of the MGT and
introduced scalar invariants to indicate
dimensionality of the sources. They also
showed that the maximum eigenvalues and
their corresponding eigenvectors  (first
eigenvectors) of the GGT are related to the
COM of simple sources; however, they did
not analyze the properties of these
eigenvectors for simple magnetic bodies
because they did not show organized or
obvious orientations. Chianese and Lapenna
(2007) introduced a new tomographic
technique for magnetic data inversion in
near-surface  geophysical  investigations
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conducted in environmental and engineering
applications. Their method was based on
cross-correlation integral between measured
and theoretically produced magnetic fields.
At the same year, Shaw et al. (2007) could
compute the depths of four idealized
magnetic sources by the Walsh spectra of the
total-field magnetic anomalies. These sources
were a monopole, a line of monopoles, a
dipole and a line of dipoles. Three years later,
Oruc (2010) proposed a method using ratio
of analytic signal of magnetic field and its
MGT components for simple causative
bodies to estimate their locations. Beiki and
Pedersen (2010) located the causative bodies
from a collection of eigenvectors of the GGT
using robust least squares procedure. In a
parallel way, one year later, they employed
pseudogravity gradient tensor (PGGT) to
detect dimensionality, strike direction and
location of geological bodies, simultaneously
having both magnetic and gravitational
properties (Beiki and Pedersen, 2011).
Finally, Eppelbaum (2015) presented a
quantitative magnetic anomalies
interpretation approximated by thick bed
models. He reasonably argued that many
geological targets resemble thick beds, thin
horizontal plates and intermediate forms
lying between those two models. Using this
quality, his method yielded acceptable
results.

In this paper, with the aid of least squares
procedure for a collection of first
eigenvectors of CMGT, the location of
simple causative bodies (line of dipoles and
point dipole) are approximated with an
acceptable accuracy. The concept of point-
dipole and line of dipoles is often employed
in the analysis of magnetic anomalies caused
by geologic bodies whose geometric shapes
approach those of: 1) spheres and 2) thin
horizontal cylinder or narrow prisms of finite
depth  extent, respectively. = Magnetic
anomalies observed in archaeological
prospecting may be classified roughly in two
categories: the ones that correspond to
elongate features (ditches and buried
cylindrical graves for example), and those
that have limited lateral extension in both
directions. For the first category, a line of
dipoles must be used rather than one dipole
alone, which is convenient for the second
category. Because of using the derivatives of

magnetic field components, “Moving Twenty
five Point Averaging” and upward
continuation methods are employed to
decrease the disruptive impact of noise on the
data.

2. Theory

In order to calculate COM of a line of dipoles
and a point dipole, their measured magnetic
fields are reduced to the pole, and the
derivatives of their three components (BX,
B,, B,), using Fourier Domain, in three
orthogonal directions are calculated (Blakely,
1996). Then, for each data point, a 3x3
matrix, containing these derivatives (CMGT)
is constituted:

Bxx Bxy sz
r=CMGT=|B_ B B, (1)
B, B, B

Since the above tensor is symmetrical, its
eigenvalues (b;) are real and eigenvectors (Vv;)
are perpendicular. Therefore, the following
relation holds:

I'v,=b,v, 2

For a line of dipoles along y axis and depth
of “Zy” in the magnetic poles, without
remanent magnetization, I' is (Pedersen and
Rasmussen, 1990):

r, - —2124(—2c +8azcz ~2a +8ac:] _ (r“ rn)
R° \-2a+8ac” —6b+8 r, r,
3)
where “M” is the magnetization of a line of
dipoles, a= M, c=_20 and
R R

1
<)
R=|r—ro|=[(x—x0)2+zoz] 2" For such a

matrix, the eigenvalues are: ; _ 41‘/3[
R

and ﬂ,zz—t?f

1990). The eigenvector corresponding to the
larger eigenvalue (i.e. first eigenvector) is:
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Eventually, the angle between the first
eigenvectors and z axis at data point
locations which is a function of x (this axis is
perpendicular to the strike direction), can be
written as:

/11 _rn

In a counter clockwise rotation, ® has
positive values. Figure 1(a) illustrates the
schematic image of magnetic source along a
profile, the directions of the first eigenvectors
and other features. Figure 1(b) demonstrates
“@” pertaining to a line of dipoles lain at
(100 m, 100 m, 40 m). It is evident that a
number of first eigenvectors incline to the
causative body, but towards the ends of the
profile (x <31 m and x >169 m), they deviate
completely from the magnetic source.
Similarly, for a point dipole with depth of
“Zy” in the magnetic poles without remanent
magnetization, I' is (Pedersen and
Rasmussen, 1990):

O(x)=tan"(a)= {tanl(r'z)} (5)

Usprigre =
—c+5d’c Sabc —a +5ac’
-M % Sabc —c+5b’c  —b+5bc’
. —a+5ac’ —b+5bc’  -3c+5c
r, r, r,
Ir.r,or, (©)
r r., T

in which “M” is the magnetization of a point
a:(x_xo) b:y_yo and
R

dipole, and ,
R

Z, .
c= —EO. Three eigenvectors of I'spypr are

calculated as:

A =C+D
cC+D C-D
A== + -3 @)
2 2
C+D C-D
2 2

where _ (L rlaye Ly,
C—{2+[(2)+(3)] }
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D={2_
{2

12:-27M30(1+cz) (Pedersen and Rasmussen,
r12

1990).

The first eigenvector (i.e. the eigenvector

corresponding to the largest eigenvalue, A) is

derived as follows:

a
1
V= ———| s ®)
o+ B+l |
Where
T r @.-A)-T'T
a:ﬂ-‘r 13 and ﬂ:— 12( 33 l) 137 22

/11 _rll FIS(/II _F22)+r12r23
For a profile passing over the sphere COM
and parallel to x axis (y=y,), some of the

components of I are zero. Then we have:

ru 0 r]s
r=io r, o/, =0 and
Fm 0 F33
r
o= 13
ﬂ“l _Fn

Hence, ® is obtained by the following
equation:

[O(x)], -, = tan” (@)= {tan%r—”r)} ©)

—tn

The trend of this function on a profile line
passing over the dipole, lain at (100 m, 100
m, 40 m), is similar to that of a line of

dipoles (see Figure 1(c)).

The first eigenvector, “v;;” at the " data
point, approximately aims for a point
surrounding the underground causative body
called “Qy”. This vector passing through each
data point creates a distance with Q, (Figure
1(a)). This distance is (Beiki and Pedersen,
2010):

Ao, :|V1,i ><(ro_r,')| (10)
where
Vi = ; I:xi_xi,oﬁy[_yi,O’Zi_Zi,O:I
-
1
in which

¥ _ro“ :\/(xi _xli,o)z"'(yi _yli,o)z"'(zi _Z'i,o)2 - P
and r; are the coordinates of Q, and i data
point, respectively. r, is a point along “v,;”
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that creates the distance AJ; with r, The
square distances of “Ad,”’s for a group of first
eigenvectors can be expressed as:
N 2
D=2(83) (n
i=1
where N is the number of data points inside
any selected window. By minimizing
Equation (11), the location of point “Qy“is
obtained (modified from Menke, 2012).

v =(G'G)' G'd (12)

In Equation (12), we have:

Gl d]
GZ d2
G= d=
_GN_ _d\/_
0 -v \% X

The covariance matrix of the Equation (12) is
given by (modified from Menke, 2012):

cl 1 CIZ cl 3

est
covQ, =[¢, € Cp (13)

In Equation (13), c¢,,,¢,,,C,; are
variances (uncertainties) along x, y and z
axes, in turn. Finally, the standard error is
calculated from the following relation:

normalized

0

§ =4Jc;, +¢C,y +Cyy — S (14)

where “Zy“ is the depth component of the

E)

estimated location of “Q,”.

3. Work flow

In the magnetic poles, the maximum or
minimum value of the first vertical derivative
of the vertical component of magnetic field,
B,,, lies approximately over the center of

mass for positive and negative anomalies,
respectively (Beiki and Pedersen, 2010). To
find the maximum or minimum point in the
case in which it occurs among four data
points in a grid map, we can use the method
introduced by Blakely and Simpson (1986).
Then, a window with a center at maximum of
B,, is considered. We change the size of the
window around the same center until the
standard error reaches to the minimum value
(notice that in the case of a line of dipoles,
the window can lie anywhere on the linear
B,, maximum except the edges). The
obtained solution with the minimum standard
error (MSE) is the most reliable one. After
running the present algorithm on many of
synthetic spherical and cylindrical models,
we empirically obtained that the calculated
vertical component of the point “Q,”, i.e.
“Zy”, is a fraction of vertical component of
COM (Zcom). And the estimated horizontal
location of Q,, is the same as those of COM.
The relation between the estimated location
of Qo and COM are as follows:

For a point-dipole: (Xo, Zo)= (Xcoms,
0‘74><ZCOM)

For a line of dipoles: (Xo, Yo, Zo)= (Xcom,
Ycom, 0.56XZcom).

The resulted fraction of each type of
simulated model, with varying depth and
size, is almost the same.

4. Synthetic models

In this section, firstly, two sets of synthetic
models in absence and presence of noise are
tested. They are isolated line of dipoles
(horizontal cylinders “A” and “B”) and
isolated point-dipoles (spheres “A” and “B”).
Then, we go further and examine two close
parallel lines of dipoles in a virtually lateral
neighborhood (cylinders “C” and “D”).
Thereafter, two close point-dipoles in an
almost lateral neighborhood (spheres “C” and
“D”), and finally, two neighboring point-
dipoles in an  absolutely  vertical
neighborhood (spheres “E” and “F”) are
employed to see the impression of interfering
sources on solutions (see Figures 3(a), (b)
and (c)). The characteristics of models are
given in Table 1. The areas of interest and
cell sizes are 205x205 m’ and 5x5 m’
respectively.
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Figure 1. (a) Schematic profile in y=y, together with the orientations of first eigenvectors in different locations on the
ground in conjunction with the estimated point (Qo) relating to COM, and COM itself. ® function in terms of x
for (b) A line of dipoles at the point (100 m,100 m,40 m) with an arbitrary profile line where y=y,
(perpendicular to the strike direction); and (c) A point dipole at (100 m, 100 m, 40 m) with a profile line

passing over its COM (this profile line is y=yy).

The applied noise is a random Gaussian noise
with standard deviation equal to 20 percent
of B (measured magnetic fields). To avoid
Gibbs phenomenon out of discontinuity of
discreet Fourier transform in calculation of
RTP field and the derivatives of its

components, the data is tapered such that the
tapering value is stated as a ratio of three
times of the number of data points in half
maximum full width of RTP field to the
number of total data points in one direction
(n=41) (Blakely, 1996). Since we work with
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derivatives of RTP  magnetic field
components, noise disturbs the smoothness of
the CMGT component contour maps and first
eigenvector directions remarkably.
Consequently, we have to moderate these
turbulent effects. Firstly, a “moving twenty
five point averaging” method is employed. In
this method, the average of a magnetic field
data point and its twenty four surrounding
points in a grid map is calculated and
attributed to the main point. By doing
this, the disruptive effects of noise
are reduced to a great extent. Secondly, the
data is continued 5 meters upward.
Afterwards, the dimensions of window are
changed to give a solution with MSE. The

precision of the estimated “COM”s is
presented in Table 1. The greater
uncertainties in the estimated COM values of
horizontal cylinders in comparison with those
of spheres are caused by the first
eigenvectors, in a square window, which
point toward a linear COM, not a single
point. The results for all the solitary and
binary models are indicated in Table 1.
Figure 2 shows the magnetic field, RTP field
and six components of CMGT pertaining to
cylinder “B” with 20% of noise. Figure 3(d),
(e) and (f) indicate B,, map of the three
binary systems in the presence of 20% noise.
The white and black circles are the real and
estimated COMs, respectively.

Table 1. The specification of synthetic isolated and binary models and their solutions together with the characteristic of
two sets of real data and their solutions (in the last two rows).

Model Di* St* In* De* RCOM* No* uc* (lzzst*h Tap* ECOM(m)* MSE*
m | o) O |0 oo | % | @ width) ) (m,m,m) (%)
0 0 (90,90) 30 (100£1.4,1001.7,61.142.6) 9.97
Cylinder (A) 18 (1.0, 0.0,0.0) -50 30 (100,100,60)
20 5 (90,90) 80 (100.7£1.4,99.7£1.6,67.3+2.8) 8.56
0 0 (50,50) 36 (99.9+1.5,100.0+1.5,39.94+2.9) 16.23
Cylinder (B) 14 (0.7,0.7,0.0) -70 0 (100,100,40)
20 5 (70,70) 36 (100.4£1.6,100.1£1.6, 37.6+2.7) 14.62
0 0 (10,10) 37 (100.0+0,100.0+0, 29.9+0) 0.14
Sphere (A) 10 -30 15 (100,100,30)
20 5 (30,30) 58 (100.5+0.1 ,99.7+0.1, 34.7+0.2) 0.82
0 0 (10,10) 65 (100.0+0 ,100.0+0, 50.3+0) 0.09
Sphere (B) 16 -60 45 | (100,100,50)
20 5 (50,50) 80 (100.3£0.1,100.7+0.1, 50.9£0.2) 0.55
Cylinder (C) 6 (0.0,1.0,0.0) (100,70,27) (30,30) 51 (99.9+1.5 ,69.5+1.7, 23.0+3.3) 25.50
Binary
Cylinders <0 ® 20 J
Cylinder (D) 9 (0.0,1.0,0.0) (100,130,33) (40,40) 51 (100.6+1.5 ,130.4£1.7, 35.0+3.4) 18.33
Sphere (C) 11 (70, 70,39) (10,10) 65 (70.6+0 ,69.0+0, 43.2+0.4) 1.11
Binary
Spheres -40 0 20 5
Sphere (D) 14 (130,130,44) (30,30) 65 (130.2+0,130.0+0, 44.0+0.3) 0.79
Sphere (E) (100,100,40)
Binany 10 -50 20 20 5 (50,50) 68 (99.5+0 ,100.0+0, 43.9+0.3) 0.62
Spheres
Sphere (F) (100,100,50)
Gih (13.89+0.16 ,11.00+0.13,
- Pipeline (1.0,0.0,0.0) 52.5 4.5 0.20 (4.4) 2.8940.25) 18.61
Geological
models
Elura Orebody 62.5 9.2 - - 18 (300, 300) (501+8 ,1083 +11, 204+14) 21.8
*Di=Diameter*De=Declination *UC=Upward Continuation *No=Noise

*St=strike
*In=Inclination

*RCOM=Real Center Of Mass
*ECOM-=Estimated Center Of Mass

*WS=Window Size *Ta=Tapering

*MSE=Minimum Standard Error
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Figure 2. (a) Smoothed main magnetic field (without upward continuation); (b) Smoothed and upward continued RTP
field; (c, d, e, f, g, h) Smoothed and upward continued six components of CMGT for cylinder “B” in presence
of 20% random Gaussian noise. The area of interest is 205 mx205 m and the cell size is 5 mx5 m. The white

and the black circles in (h) are real and estimated COMs, respectively, with the illustrated window giving
MSE.
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Figure 3. (a) Schematic binary system of spheres in a virtually lateral neighborhood; (b) Schematic binary system of
horizontal cylinders in a virtually lateral neighborhood; (c) Schematic binary system of spheres in an
absolutely vertical neighborhood; (d, e and f) smoothed and upward continued B,, field of the mentioned
binary systems, respectively. The area of interest is 205 mx 205 m and the cell size is 5 mx5 m. The imposed
noise on three binary systems is 20%. The black circles in (d), (¢) and (f) are the estimated COMs, and the
white circles are the true COMs. The windows giving the best results (MSE) are illustrated on each map.

5. Field example

In this section, two real underground
examples: 1) an urban gas pipe, and 2) a big
spherical mass called “Elura” orebody are
analyzed.

5-1. Gas pipe, Kermanshah, Iran

The first real example is a very long buried
urban gas pipe around Kermanshah, Iran. The
whole area is in sedimentary basin mainly
created in Quaternary era. The major
formations of the area are arable lands (Q°),
older and younger terraces and gravel fans
(Q" and QW respectively) and alternation of

white, yellow, grey, purple, green and red
thin bedded Radiolarian bearing mudstone,
silisiferous limestone, fossiliferous, neritic
and pelagic limestone (J;K',). Since the
topography of the area is calm, it has been
used for agriculture aims for hundreds of
years and no evidence of mineral outcrops
has been observed in it. Besides, because the
pipe is shallow and the dimensions of the
survey area (located in 34° 19' 02" N and 47°
09 22" E) is very limited (30 mx22 m), it
does not comprise any special geological
structure (see the circular area in Figure 4).
Therefore, all the magnetic field measured at
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the study area belongs to the main field as
well as the field due to the pipeline. The
inclination and declination of total magnetic
field are, in turn, 52° 30 and 4° 33. The
dimensions of grid map are 30 mx22 m in
which the profile length is 30 m. Since the
strike direction of this pipe is roughly North-
South, the profile directions are almost West-
East. The estimated COM by means of our
method is (x=13.894+0.16, y=11£0.13,
2.8940.25), while it was estimated through
two methods by Karimi and Shirzaditabar
(2017) as (x=14 m, z=2.86 m) and (x=14 m,
7z=2.94 m). Notice that y component of the
estimated solution has arbitrary values
depending on the window location. Figures
5(a) and 5(b) show the measured total
magnetic field and computed B,, map from
the smoothed RTP field, respectively. The
black circle is the estimated COM and the
most suitable window (with MSE) is depicted
with dimensions of 4 mx4 m (Figure 5 and
Table 1).

5-2. The Elura orebody, New South Wales,
Australia

The second geological example is a mine
located at the north of the Cobar mineral field
of New South Wales in Australia, which is
called “Elura” (31° 10 16.86” S and 145° 39
48.91" E). Mining experience in the Cobar
region indicated that the mineralization is
stratabound, being hosted in graded siltstones

Qe

23

and shales belonging to the Silurian—Lower
Devonian CSA siltstone unit of the Cobar
supergroup. The geology is concealed
beneath about 2 m of regolith, plus up to 10
m of unconsolidated alluvium in drainage
depressions; thus, the geology is known
mainly from drill holes and pits. A further
complication is that the top 0.5 m of bedrock
is normally iron stained or ferruginised, and
sometimes includes gravels with the
magnetic mineral maghaemite (for more
study about geology and geological maps of
the area, you can refer to Mussett and Aftab
Khan (2009)). Using aeromagnetic data,
the Elura orebody was modeled as a spherical
body with a radius of 118 m and the depth
to its center of 250 m (Blackburn, 1980).
Ground gravity and magnetic surveys
were then carried out over the area in 1973-
1974. The pattern of the gravity anomalies
suggested that the sphere approximation
could be used, and the depth to the center
was estimated 194 m. Besides, from the
half-width of ground magnetic survey, this
depth was estimated as 209 m (Mussett
and Aftab Khan, 2009). This study used
the ground magnetic data relating to
this mass from Mussett and Aftab Khan
(2009) and reproduced the magnetic

field, and obtained a solution as (501+8,
1083+11, 204.4+14) (see Table 1). In Figures
5(c) and 5(d), B and calculated B,, are
indicated.

D0OTORE

(00RE

13
Tossiliferous, neritic and pelagic limestone,
Figure 4. The geological map of gas pipe area. The circle in the central part of the map reveals the area where the data is
collected (Karimi Bavandpur and Hajihosseini, 1999). As it is clear, the gas pipe runs approximately from
north to south.

6IB000

© Terraces and gravel fan(older)
© I Terraces and gravel fan(yonger)

700000

e, grey, red thin
siferous limestone,
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6. Conclusion

The applied models in this study were point-
dipole and line of dipoles. Because of their
magnetic properties, the first eigenvectors of
the CMGT do not point toward COM.
Nevertheless, in the magnetic poles and in
absence of any remanent magnetization, the
first eigenvector directions are dependent on
the data point locations; only a limited
number of them have efficient directions
surrounding the body and by moving away
from it, they shift away. Using RTP
transform and these eigenvectors in the least
squares procedure, COM is estimated. The
method was tested on a variety of simulated

B (nT)

Geographic
North

B resry e

x(m)

©

data in absence and presence of noise, as well
as two sets of real data. The attained
solutions were of acceptable accuracy. After
all, as a result of using “twenty-five point
averaging” and “upward continuation”
techniques, even though we wuse the
derivatives of magnetic field components,
noise effects were moderated so much. We
hope this method will be developed in source
location estimation of some other models like
vertical cylinder, dipping dikes or horizontal
sheets in future, and predict that the vertical
component coefficients for more complex
bodies may be related to the ratio between
their different dimensions.

x(m)

(d)

Figure 5. (a & c) measured magnetic fields of the pipe line and Elura orebody (without smoothing and upward
continuation), respectively; (b & d) B,, fields, computed from the smoothed and upward continued RTP fields
in conjunction with estimated “COM?”s (black circles) and the most suitable windows for pipeline and Elura

orebody, in turn.
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