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Abstract 
Computed Magnetic Gradient Tensor (CMGT) includes the first derivatives of three components 
of magnetic field of a body. At the eigenvector analysis of Gravity Gradient Tensors (GGT) for a 
line of poles and point pole, the eigenvectors of the largest eigenvalues (first eigenvectors) point 
precisely toward the Center of Mass (COM) of a body. However, due to the nature of the magnetic 
field, it is shown that these eigenvectors for the similar shaped magnetic bodies (line of dipoles and 
point-dipole), in CMGT, are not convergent to COM anymore. Rather, in the best condition, when 
there is no remanent magnetization and the body is in the magnetic poles, their directions are a 
function of data point locations. In this study, by reduction to the pole (RTP) transformation and 
calculation of CMGT, a point is estimated that its horizontal components are exactly the horizontal 
components of the COM and its vertical component is a fraction of the COM vertical component. 
These obtained depth values are 0.56 and 0.74 of COM vertical components for a line of dipoles 
and point-dipole, respectively. To reduce the turbulent effects of noise, “Moving Twenty five Point 
Averaging” method and upward continuation filter are used. The method is tested on solitary and 
binary simulated data for bodies with varying physical characteristics, inclinations and 
declinations. Finally, it is imposed on two real underground examples; an urban gas pipe and a 
roughly spherical orebody and the results confirm the methodology of this syudy. 
 
Keywords: Computed Magnetic Gradient Tensor, Center of Mass, First Eigenvectors. 

 
1. Introduction 
Magnetic and Gravity gradient tensors (MGT 
and GGT) contain the second derivatives of 
the earth magnetic and gravitational 
potentials in three directions, respectively. 
The history of Gravity gradiometry goes back 
to 1886, when the petroleum industry was 
revolutionized by Baron von Eötvös’ 
invention (Bell and Hansen, 1998). However, 
the annals of employing MGT are much 
shorter. In 1972, Frahm used MGT data with 
an explicit solution to a point-by-point 
magnetic dipole localization. Reford and 
Sumner (1964) gave an account of 
equipment, survey techniques, data reduction 
and interpretational methods regarding 
airborne surveys in mining and petroleum 
exploration, geological mapping, and crustal 
and upper mantle studies. Reid et al. (1990) 
interpreted the magnetic data by 
deconvolution using Euler’s homogeneity 
relation. Their method, employing gradients 
of magnetic field, was remarkably accurate in 
detection of some bodies like dikes, vertical 
pipes and contacts, and also, it was 

independent of remanence. In the last two 
decades, various techniques of MGT data 
have been widely improved (Schmidt and 
Clark, 2000; Schmidt and Bracken, 2004; 
Gamey et al., 2004; Doll et al., 2006; 
Chianese and Lapenna, 2007). Pedersen and 
Rasmussen (1990) showed that using MGT 
and GGT data is functional for geophysical 
prospecting. They discussed in detail the 
practical problems encountered in the 
collecting and processing of the MGT and 
introduced scalar invariants to indicate 
dimensionality of the sources. They also 
showed that the maximum eigenvalues and 
their corresponding eigenvectors (first 
eigenvectors) of the GGT are related to the 
COM of simple sources; however, they did 
not analyze the properties of these 
eigenvectors for simple magnetic bodies 
because they did not show organized or 
obvious orientations. Chianese and Lapenna 
(2007) introduced a new tomographic 
technique for magnetic data inversion in 
near-surface geophysical investigations 
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conducted in environmental and engineering 
applications. Their method was based on 
cross-correlation integral between measured 
and theoretically produced magnetic fields. 
At the same year, Shaw et al. (2007) could 
compute the depths of four idealized 
magnetic sources by the Walsh spectra of the 
total-field magnetic anomalies. These sources 
were a monopole, a line of monopoles, a 
dipole and a line of dipoles. Three years later, 
Oruc (2010) proposed a method using ratio 
of analytic signal of magnetic field and its 
MGT components for simple causative 
bodies to estimate their locations. Beiki and 
Pedersen (2010) located the causative bodies 
from a collection of eigenvectors of the GGT 
using robust least squares procedure. In a 
parallel way, one year later, they employed 
pseudogravity gradient tensor (PGGT) to 
detect dimensionality, strike direction and 
location of geological bodies, simultaneously 
having both magnetic and gravitational 
properties (Beiki and Pedersen, 2011). 
Finally, Eppelbaum (2015) presented a 
quantitative magnetic anomalies 
interpretation approximated by thick bed 
models. He reasonably argued that many 
geological targets resemble thick beds, thin 
horizontal plates and intermediate forms 
lying between those two models. Using this 
quality, his method yielded acceptable 
results.  
In this paper, with the aid of least squares 
procedure for a collection of first 
eigenvectors of CMGT, the location of 
simple causative bodies (line of dipoles and 
point dipole) are approximated with an 
acceptable accuracy. The concept of point-
dipole and line of dipoles is often employed 
in the analysis of magnetic anomalies caused 
by geologic bodies whose geometric shapes 
approach those of: 1) spheres and 2) thin 
horizontal cylinder or narrow prisms of finite 
depth extent, respectively. Magnetic 
anomalies observed in archaeological 
prospecting may be classified roughly in two 
categories: the ones that correspond to 
elongate features (ditches and buried 
cylindrical graves for example), and those 
that have limited lateral extension in both 
directions. For the first category, a line of 
dipoles must be used rather than one dipole 
alone, which is convenient for the second 
category. Because of using the derivatives of 

magnetic field components, “Moving Twenty 
five Point Averaging” and upward 
continuation methods are employed to 
decrease the disruptive impact of noise on the 
data. 
 
2. Theory 
In order to calculate COM of a line of dipoles 
and a point dipole, their measured magnetic 
fields are reduced to the pole, and the 
derivatives of their three components (Bx, 
By, Bz), using Fourier Domain, in three 
orthogonal directions are calculated (Blakely, 
1996). Then, for each data point, a 3×3 
matrix, containing these derivatives (CMGT) 
is constituted: 

xx xy xz

yx yy yz

zx zy zz

=

B B B

B B B

B B B



 
 
 
  

Γ CMGT                  (1) 

Since the above tensor is symmetrical, its 
eigenvalues (bi) are real and eigenvectors (vi) 
are perpendicular. Therefore, the following 
relation holds:  

ibi iΓv v                                                    (2) 

For a line of dipoles along y axis and depth 
of “Z0” in the magnetic poles, without 
remanent magnetization, Г is (Pedersen and 
Rasmussen, 1990): 
 

2 2
11 12

3 2 3
12 22

2 8 2 82

2 8 6 8
CYL

c a c a acM

R a ac b c

       
           

Γ

                                                                           (3) 

where “M” is the magnetization of a line of 

dipoles, 0( )x x
a

R


 , 0zc

R
   and 

1
( )2 2 2

0 0 0[( ) ]R x x z    r r  For such a 

matrix, the eigenvalues are: 
1 3

4M
R

    

and 2 3

4M

R
    (Pedersen and Rasmussen, 

1990). The eigenvector corresponding to the 
larger eigenvalue (i.e. first eigenvector) is: 

1 2

1
11




 
 
 




V
                                         (4) 

where 12

1 11








. 



Center of Mass Estimation of Simple Shaped Magnetic Bodies Using …                               17 

 

Eventually, the angle between the first 
eigenvectors and z axis at data point 
locations which is a function of x (this axis is 
perpendicular to the strike direction), can be 
written as: 

1 1 12

1 11

( ) tan ( ) tan ( )x 


  
     

                      (5) 

In a counter clockwise rotation, Θ has 
positive values. Figure 1(a) illustrates the 
schematic image of magnetic source along a 
profile, the directions of the first eigenvectors 
and other features. Figure 1(b) demonstrates 
“Θ” pertaining to a line of dipoles lain at 
(100 m, 100 m, 40 m). It is evident that a 
number of first eigenvectors incline to the 
causative body, but towards the ends of the 
profile (x ≤ 31 m and x ≥169 m), they deviate 
completely from the magnetic source.   
Similarly, for a point dipole with depth of 
“Z0” in the magnetic poles without remanent 
magnetization, Г is (Pedersen and 
Rasmussen, 1990): 
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in which “M” is the magnetization of a point 

dipole, and 0 0( )
,

x x y y
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1990).  
The first eigenvector (i.e. the eigenvector 
corresponding to the largest eigenvalue, λ1) is 
derived as follows: 
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For a profile passing over the sphere COM 
and parallel to x axis (y=y0), some of the 
components of Г are zero. Then we have:   
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Hence, Θ is obtained by the following 
equation: 

0
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The trend of this function on a profile line 

passing over the dipole, lain at (100 m, 100 

m, 40 m), is similar to that of a line of 

dipoles (see Figure 1(c)). 
The first eigenvector, “v1,i” at the ith data 
point, approximately aims for a point 
surrounding the underground causative body 
called “Q0”. This vector passing through each 
data point creates a distance with Q0 (Figure 
1(a)). This distance is (Beiki and Pedersen, 
2010):
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and ri are the coordinates of Q0 and ith data 
point, respectively. r′0 is a point along “v1,i” 
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that creates the distance Δδi with r0. The 
square distances of “Δδi”s for a group of first 
eigenvectors can be expressed as: 

 
2

1

N

i
i

D 


                                                    (11) 

where N is the number of data points inside 
any selected window. By minimizing 
Equation (11), the location of point “Q0“is 
obtained (modified from Menke, 2012). 
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In Equation (12), we have: 
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The covariance matrix of the Equation (12) is 
given by (modified from Menke, 2012): 
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In Equation (13), 1 1 2 2 3 3, , cc c  are 

variances (uncertainties) along x, y and z 
axes, in turn. Finally, the standard error is 
calculated from the following relation: 
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0

c normalized
S
Z

s c c S         (14) 

where “Z0“ is the depth component of the 
estimated location of “Q0”.  
 
3. Work flow 
In the magnetic poles, the maximum or 
minimum value of the first vertical derivative 
of the vertical component of magnetic field, 
Bzz, lies approximately over the center of  
 

mass for positive and negative anomalies, 
respectively (Beiki and Pedersen, 2010). To 
find the maximum or minimum point in the 
case in which it occurs among four data 
points in a grid map, we can use the method 
introduced by Blakely and Simpson (1986). 
Then, a window with a center at maximum of 
Bzz is considered. We change the size of the 
window around the same center until the 
standard error reaches to the minimum value 
(notice that in the case of a line of dipoles, 
the window can lie anywhere on the linear 
Bzz maximum except the edges). The 
obtained solution with the minimum standard 
error (MSE) is the most reliable one. After 
running the present algorithm on many of 
synthetic spherical and cylindrical models, 
we empirically obtained that the calculated 
vertical component of the point “Q0”, i.e. 
“Z0”, is a fraction of vertical component of 
COM (ZCOM). And the estimated horizontal 
location of Q0, is the same as those of COM. 
The relation between the estimated location 
of Q0 and COM are as follows: 
For a point-dipole: (X0, Z0)= (XCOM, 
0.74×ZCOM)  
For a line of dipoles: (X0, Y0, Z0)= (XCOM, 
YCOM , 0.56×ZCOM).    
The resulted fraction of each type of 
simulated model, with varying depth and 
size, is almost the same. 
 
4. Synthetic models 
In this section, firstly, two sets of synthetic 
models in absence and presence of noise are 
tested. They are isolated line of dipoles 
(horizontal cylinders “A” and “B”) and 
isolated point-dipoles (spheres “A” and “B”). 
Then, we go further and examine two close 
parallel lines of dipoles in a virtually lateral 
neighborhood (cylinders “C” and “D”). 
Thereafter, two close point-dipoles in an 
almost lateral neighborhood (spheres “C” and 
“D”), and finally, two neighboring point-
dipoles in an absolutely vertical 
neighborhood (spheres “E” and “F”) are 
employed to see the impression of interfering 
sources on solutions (see Figures 3(a), (b) 
and (c)). The characteristics of models are 
given in Table 1. The areas of interest and 
cell sizes are 205×205 m2 and 5×5 m2, 
respectively.  
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derivatives of RTP magnetic field 
components, noise disturbs the smoothness of 
the CMGT component contour maps and first 
eigenvector directions remarkably. 
Consequently, we have to moderate these 
turbulent effects. Firstly, a “moving twenty 
five point averaging” method is employed. In 
this method, the average of a magnetic field 
data point and its twenty four surrounding 
points in a grid map is calculated and 
attributed to the main point. By doing  
this, the disruptive effects of noise  
are reduced to a great extent. Secondly, the 
data is continued 5 meters upward. 
Afterwards, the dimensions of window are 
changed to give a solution with MSE. The 

precision of the estimated “COM”s is 
presented in Table 1. The greater 
uncertainties in the estimated COM values of 
horizontal cylinders in comparison with those 
of spheres are caused by the first 
eigenvectors, in a square window, which 
point toward a linear COM, not a single 
point. The results for all the solitary and 
binary models are indicated in Table 1. 
Figure 2 shows the magnetic field, RTP field 
and six components of CMGT pertaining to 
cylinder “B” with 20% of noise. Figure 3(d), 
(e) and (f) indicate Bzz map of the three 
binary systems in the presence of 20% noise. 
The white and black circles are the real and 
estimated COMs, respectively.  

 
Table 1. The specification of synthetic isolated and binary models and their solutions together with the characteristic of 

two sets of real data and their solutions (in the last two rows). 
 

Model 
Di* 
(m) 

St* 
(x,y,z) 

In* 
(o) 

De* 
(o) 

RCOM* 
(m,m,m) 

No* 
(%) 

UC* 
(m) 

WS* 
(length, 
width) 

Tap* 
(%) 

ECOM(m)* 
(m,m,m) 

MSE* 
(%) 

Cylinder (A) 18 (1.0, 0.0,0.0) -50 30 (100,100,60) 

0 0 (90,90) 80 (100±1.4,100±1.7,61.1±2.6) 9.97 

20 5 (90,90) 80 (100.7±1.4,99.7±1.6,67.3±2.8) 8.56 

Cylinder (B) 14 (0.7,0.7,0.0) -70 0 (100,100,40) 

0 0 (50,50) 36 (99.9±1.5,100.0±1.5,39.9±2.9) 16.23 

20 5 (70,70) 36 (100.4±1.6 ,100.1±1.6, 37.6±2.7) 14.62 

Sphere (A) 10 - -30 15 (100,100,30) 

0 0 (10,10) 37 (100.0±0 ,100.0±0, 29.9±0) 0.14 

20 5 (30,30) 58 (100.5±0.1 ,99.7±0.1, 34.7±0.2) 0.82 

Sphere (B) 16 - -60 45 (100,100,50) 

0 0 (10,10) 65 (100.0±0 ,100.0±0, 50.3±0) 0.09 

20 5 (50,50) 80 (100.3±0.1 ,100.7±0.1, 50.9±0.2) 0.55 

Binary 
Cylinders 

Cylinder (C) 6 (0.0,1.0,0.0) 

-40 0 

(100,70,27) 

20 5 

(30,30) 51 (99.9±1.5 ,69.5±1.7, 23.0±3.3) 25.50 

Cylinder (D) 9 (0.0,1.0,0.0) (100,130,33) (40,40) 51 (100.6±1.5 ,130.4±1.7, 35.0±3.4) 18.33 

Binary 
Spheres 

Sphere (C) 11 - 

-40 0 

(70, 70,39) 

20 5 

(10,10) 65 (70.6±0 ,69.0±0, 43.2±0.4) 1.11 

Sphere (D) 14 - (130,130,44) (30,30) 65 (130.2±0 ,130.0±0, 44.0±0.3) 0.79 

Binary 
Spheres 

Sphere (E) 

10 - -50 20 

(100,100,40) 

20 5 (50,50) 68 (99.5±0 ,100.0±0, 43.9±0.3) 0.62 

Sphere (F) (100,100,50) 

Real 
Geological

models 

Pipeline - (1.0,0.0,0.0) 52.5 4.5 - - 0.20 (4,4) - 
(13.89±0.16 ,11.00±0.13, 

2.89±0.25) 
18.61 

Elura Orebody - - 62.5 9.2 - - 18 (300 , 300) - (501±8 ,1083 ±11, 204±14) 21.8 

 
*Di=Diameter*De=Declination                                                                  *UC=Upward Continuation                                                               *No=Noise 
*St=strike                                                           *RCOM=Real Center Of Mass                                              *WS=Window Size                                                   *Ta=Tapering 
*In=Inclination                                                                     *ECOM=Estimated Center Of Mass                                                            *MSE=Minimum Standard Error 
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