تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,085,793 |
تعداد دریافت فایل اصل مقاله | 97,189,367 |
Variability of F2-layer peak characteristics at low latitude in Argentina for high and low solar activity and comparison with the IRI-2016 model | ||
فیزیک زمین و فضا | ||
مقاله 12، دوره 45، شماره 4، بهمن 1398، صفحه 143-164 اصل مقاله (2.39 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2019.252489.1006975 | ||
نویسندگان | ||
Gilda de L. González* 1؛ Jorgelina López2 | ||
1Assistant Professor, Department of Physics, Faculty of of Ingineering, Saint Thomas Aquina University of the North, Tucumán, Argentina | ||
2Researcher, CIASUR - National Technological University, Tucumán, Argentina | ||
چکیده | ||
This work presents the study of the variability of foF2 and hmF2 at a low latitude station in South America (Tucumán, 26.9°S, 294.6°E; magnetic latitude 15.5°S, Argentina). Ground based ionosonde measurements obtained during different seasonal and solar activity conditions (a year of low solar activity, 2009 and one of high solar activity, 2016) are considered in order to compare the ionospheric behavior. The parameters used to analyze the variability are the median, upper and lower quartiles. In addition, the foF2 values are compared with those estimated by the International Reference Ionosphere (IRI) - 2016 model. It is found that: a) A clear dependence on solar activity is observed in foF2 and hmF2, both increase with increase in solar activity. b) the variability of foF2 is higher at low solar activity, this behavior is not observed in hmF2 that present similar variability during both periods. c) the variability of foF2 is larger at night than during the day, this behavior is more pronounced during the high solar activity period. d) The variability of foF2 is higher than that of hmF2. e) Significant planetary wave spectral peaks at about 2 and 5 days are observed at high and low solar activity. f) In general, IRI overestimates foF2 during daytime, and underestimates it at post-sunset period, a better agreement is shown during nighttime. | ||
کلیدواژهها | ||
Ionosphere؛ Variability؛ IRI | ||
مراجع | ||
Abdu, M. A., 2016, Electrodynamics of ionospheric weather over low latitudes. Geosci. Lett. [Internet] 3:11. Available from: http://www.geoscienceletters.com/ content/3/1/11. De Abreu, A. J., Fagundes, P. R., Bolzan, M. J. A., Gende, M., Brunini, C., De Jesus, R., Pillat, V. G., Abalde, J. R. and Lima, W. L. C., 2014, Traveling planetary wave ionospheric disturbances and their role in the generation of equatorial spread-F and GPS phase fluctuations during the last extreme low solar activity and comparison with high solar activity. J. Atmos. Solar-Terrestrial Phys. [Internet] 117:7-19. Available from: http://dx.doi.org/10.1016/ j.jastp.2014.05.005. Alam Kherani, E., Abdu, M. A., De Paula, E. R., Fritts, D. C., Sobral, J. H. A. and De Meneses, F. C., 2009, The impact of gravity waves rising from convection in the lower atmosphere on the generation and nonlinear evolution of equatorial bubble. Ann. Geophys. [Internet] 27:1657-1668. Available from: www.ann-geophys.net/27/1657/2009. Altinay, O., Tulunay, E. and Tulunay, Y., 1997, Forecasting of ionospheric critical frequency using neural networks. Geophys. Res. Lett. [Internet], 24:1467. Available from: http://doi.wiley.com/ 10.1029/97GL01381. Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B. and Huang, X., 2017, International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Sp. Weather [Internet] 15:418-429. Available from: http://doi.wiley.com/10.1002/2016SW001593. Bilitza, D., McKinnell, L. A., Reinisch, B. and Fuller-Rowell, T., 2011, The international reference ionosphere today and in the future. J. Geod. [Internet], 85:909-920. Available from: http://link.springer.com/10.1007/s00190-010-0427-x. Bilitza, D., Obrou, O. K., Adeniyi, J. O. and Oladipo, O., 2004, Variability of foF2 in the equatorial ionosphere. Adv. Sp. Res. [Internet], 34:1901-1906. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0273117704007094. Chum, J., Bonomi, F. A. M., Fišer, J., Cabrera, M. A., Ezquer, R. G., Burešová, D., Laštovička, J., Baše, J. and Hruška, F., 2014, Propagation of gravity waves and spread F in the low-latitude ionosphere over Tucumán, Argentina, by continuous Doppler sounding: First results. J. Geophys. Res. Sp. Phys. [Internet], 119:6954-6965. Available from: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000344809600068&KeyUID=WOS:000344809600068%0Ahttp://doi.wiley.com/10.1002/2014JA020184. Davies, K., 2008, Ionospheric Radio. London, United Kingdom: The Institution of Engineering and Technology. Eccles, V., Rice, D. D., Sojka, J. J., Valladares, C. E., Bullett, T. and Chau, J. L., 2011, Lunar atmospheric tidal effects in the plasma drifts observed by the Low-Latitude Ionospheric Sensor Network. J. Geophys. Res. Sp. Phys., 116:1-8. Ezquer, R. G., Mosert, M., Corbella, R., Erazù, M., Radicella, S. M., Cabrera, M. and De La Zerda, L., 2004, Day-to-day variability of ionospheric characteristics in the American sector. Adv. Sp. Res., 34:1887-1893. Kelley, M. C., 2009, The Earth’ s Ionosphere Second Edition. Elsevier. Kumluca, A., Tulunay, E. and Topalii, I., 1999, Temporal and spatial forecasting of ionospheric critical frequency using neural networks. 34:1497-1506. Laštovička, J., 2006, Forcing of the ionosphere by waves from below. J. Atmos. Solar-Terrestrial Phys. [Internet], 68:479-497. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1364682605002579. Meza, A., Brunini, C. and Kleusberg, A., 2000, Global ionospheric models in three dimensions from GPS measurements: Numerical simulation. Geofísica Int., 39:21-27. Mikhailov, A. V., Depuev, V. H. and Depueva, A. H., 2007, Short-Term fo F2 Forecast: Present Day State of Art. En: Springer, Dordrecht, p 169-184, Available from: http://link.springer.com/10.1007/1-4020-5446-7_16. Ogawa, T., Otsuka, Y., Shiokawa, K., Saito, A. and Nishioka, M., 2006, Ionospheric Disturbances Over Indonesia and Their Possible Association With Atmospheric Gravity Waves From the Troposphere. J. Meteorol. Soc. Japan [Internet], 84A:327-342. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-33748458077&partnerID=tZOtx3y1. Oronsaye, S. I., McKinnell, L. A. and Habarulema, J. B., 2014, A new global version of M(3000)F2 prediction model based on artificial neural networks. Adv. Sp. Res. [Internet], 53:371-386. Available from: http://www.sciencedirect.com/ science/article/pii/S0273117713007072. Sales, G. S., 1992, High Frequency (HF) radiowave propagation. Lowell, Massachusetts. Shim, J. S., Kuznetsova, M., Raster, L., Bilitza, D., Butala, M., Codrescu, M., Emery, B. A., Foster, B. and Fuller-Rowell, T. J., 2012, CEDAR electrodynamics thermosphere ionosphere (ETI) challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations. Sp. Weather 10. Spiegel, M. R., 1976, Teoría y problemas de Probabilidad y Estadística. McGraw-Hill. Strangeways, H. J., Kutiev, I., Cander, L. R., Kouris, S., Gherm, V., Marin, D., De La Morena, B., Pryse, S. E. and Perrone, L., 2009, Near-Earth space plasma modelling and forecasting. Ann. Geophys., 52:255-271. Whitehead, J. D., 1971, Ionization Disturbances Caused by Gravity Waves in the Presence of an Electrostatic Field and Background Wind. J. Geophys. Res., 76:238-241. Wintoft, P. and Cander, L. R., 2000, Ionospheric foF2 storm forecasting using neural networks. Phys. Chem. Earth, Part C Solar, Terr. Planet. Sci. [Internet], 25:267-273. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1464191700000155. Zolesi, B. and Cander, L.R., 2014, Ionospheric Prediction and Forecasting. | ||
آمار تعداد مشاهده مقاله: 1,205 تعداد دریافت فایل اصل مقاله: 776 |