

journal homepage: http://jac.ut.ac.ir

Z_k -Magic Labeling of Some Families of Graphs

P. Jeyanthi^{*1} and K. Jeya Daisy^{†2}

¹Research Centre, Department of Mathematics, Govindammal Aditanar College for Women Tiruchendur-628 215, Tamil Nadu, India.

²Department of Mathematics, Holy Cross College, Nagercoil, Tamilnadu, India.

ABSTRACT

For any non-trivial abelian group A under addition a graph G is said to be A-magic if there exists a labeling $f : E(G) \to A - \{0\}$ such that, the vertex labeling f^+ defined as $f^+(v) = \sum f(uv)$ taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Z_k -magic graph if the group A is Z_k the group of integers modulo k. These Z_k -magic graphs are referred to as k-magic graphs. In this paper we prove that the total graph, flower graph, generalized prism graph, closed helm graph, lotus inside a circle graph, $G \odot \overline{K_m}$, m-splitting graph of a path and m-shadow graph of a path are Z_k -magic graphs.

Keyword: A-magic labeling; Z_k -magic labeling; Z_k -magic graph; total graph; flower graph; generalized prism graph; closed helm graph; lotus inside a circle graph; $G \odot \overline{K_m}$; m-splitting graph; m-shadow graph.

AMS subject Classification: 05C78.

1 Introduction

Graph labeling is currently an emerging area in the research of graph theory. A graph labeling is an assignment of integers to vertices or edges or both subject to certain con-

ARTICLE INFO

Article history: Received 30, June 2018 Received in revised form 18, November 2018 Accepted 30 November 2018 Available online 30, December 2018

^{*}Corresponding author: P. Jeyanthi. Email: jeyajeyanthi@rediffmail.com

[†]jeyadaisy@yahoo.com

ditions. A detailed survey was done by Gallian in [5]. If the labels of edges are distinct positive integers and for each vertex v the sum of the labels of all edges incident with v is the same for every vertex v in the given graph then the labeling is called a magic labeling. Sedláček [8] introduced the concept of A-magic graphs. A graph with real-valued edge labeling such that distinct edges have distinct non-negative labels and the sum of the labels of the edges incident to a particular vertex is same for all vertices. Low and Lee [7] examined the A-magic property of the resulting graph obtained from the product of two A-magic graphs. Shiu, Lam and Sun [9] proved that the product and composition of A-magic graphs were also A-magic.

For any non-trivial Abelian group A under addition a graph G is said to be A-magic if there exists a labeling $f : E(G) \to A - \{0\}$ such that, the vertex labeling f^+ defined as $f^+(v) = \sum f(uv)$ taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Z_k -magic graph if the group A is Z_k , the group of integers modulo k. These Z_k -magic graphs are referred to as k-magic graphs. Shiu and Low [10] determined all positive integers k for which fans and wheels have a Z_k -magic labeling with a magic constant 0. Kavitha and Thirusangu [6] obtained a Z_k -magic labeling of two cycles with a common vertex. Motivated by the concept of A-magic graph in [8] and the results in [7], [9] and [10] Jeyanthi and Jeya Daisy [1]-[4] proved that the open star of graphs, subdivision graphs, square graph, middle graph, $m\Delta_n$ -snake graph, shell graph, generalised jahangir graph, $(P_n + P_1) \times P_2$ graph, double wheel graph, mongolian tent graph, flower snark, slanting ladder, double step grid graph, double arrow graph and semi jahangir graph admit Z_k -magic labeling. We use the following definitions in the subsequent section.

Definition 1.1. Total graph T(G) is a graph with the vertex set $V(G) \cup E(G)$ in which two vertices are adjacent whenever they are either adjacent or incident in G.

Definition 1.2. A helm graph H_n , $n \ge 3$, is obtained from a wheel W_n by adjoining a pendant edge at each vertex of the wheel except the center.

Definition 1.3. A flower graph Fl_n , $n \ge 3$, is obtained from a helm H_n by joining each pendent vertex to the central vertex of the helm.

Definition 1.4. A Cartesian product of a cycle C_n , $n \ge 3$, and a path on m vertices is called a *generalized prism graph* $C_n \times P_m$.

Definition 1.5. A closed helm graph CH_n , $n \ge 3$, is obtained from a helm H_n by joining each pendent vertex to form a cycle.

Definition 1.6. A *lotus inside a circle* LC_n , $n \ge 3$, is obtained from a wheel W_n by subdividing every edge forming the outer cycle and joining these new vertices to form a cycle.

Definition 1.7. If G has order n, the corona of G with $H, G \odot H$ is the graph obtained by taking one copy of G and n copies of H and joining the i^{th} vertex of G with an edge to every vertex in the i^{th} copy of H.

Definition 1.8. A *m*-shadow graph $D_m(G)$ is constructed by taking *m*-copies of *G*, say $G_1, G_2, G_3, \ldots, G_m$, then join each vertex *u* in G_i to the neighbors of the corresponding vertex *v* in $G_j, 1 \le i, j \le m$.

Definition 1.9. A *m*-splitting graph $Spl_m(G)$ is obtained by adding to each vertex v of G new m vertices, say $v^1, v^2, v^3, \ldots, v^m$, such that v^i , $1 \le i \le m$ is adjacent to every vertex that is adjacent to v in G.

2 Z_k -Magic Labeling of Some Families of Graphs

In this section we prove that the total graph of a path, flower graph, generalized prism graph, closed helm graph, lotus inside a circle graph, $G \odot \overline{K_m}$, *m*-splitting graph of a path and *m*-shadow graph of a path are Z_k -magic graphs.

Theorem 2.1. The total graph of the path $T(P_n)$ is Z_k -magic for all n > 2.

Proof. Let the vertex set and the edge set of $T(P_n)$ be $V(T(P_n)) = \{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_{n-1}\}$ and $E(T(P_n)) = \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{v_i v_{i+1} : 1 \le i \le n-2\} \cup \{u_{i+1} v_i : 1 \le i \le n-1\} \cup \{u_i v_i : 1 \le i \le n-1\} \cup \{u_i v_i : 1 \le i \le n-1\}$ respectively.

Let a be an integer such that $a \in \{1, 2, \dots, \frac{k}{2} - 1\}$ if k is even and $a \in \{1, 2, \dots, \frac{k-1}{2}\}$ if k is odd.

Define the edge labeling $f : E(T(P_n)) \to Z_k - \{0\}$ as follows: $f(u_1v_1) = a, f(u_2v_1) = a,$

$$f(u_i u_{i+1}) = \begin{cases} k - a, & \text{if } i = 1, n - 1, \\ k - 2a, & \text{if } 2 \le i \le n - 2, \end{cases}$$

$$f(v_i v_{i+1}) = k - 2a \text{ for } 1 \le i \le n - 2, \\ f(u_i v_i) = 2a & \text{for } 2 \le i \le n - 2, \\ f(u_{i+1} v_i) = 2a & \text{for } 2 \le i \le n - 2, \end{cases}$$

$$f(u_n v_{n-1}) = a; \quad f(u_{n-1} v_{n-1}) = a.$$

Then the induced vertex labeling $f^+: V(T(P_n)) \to Z_k - \{0\}$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(T(P_n))$. Thus f^+ is constant and it is equal to $0 \pmod{k}$. Hence the total graph of the path $T(P_n)$ is Z_k -magic.

An example of Z_5 -magic labeling of $T(P_5)$ is shown in Figure 1. An example of Z_5 -magic labeling of $T(P_5)$ is shown in Figure 1.

Theorem 2.2. The flower graph Fl_n is Z_k -magic for all n > 2.

Proof. Let the vertex set and the edge set of Fl_n be $V(Fl_n) = \{v, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n\}$ and $E(Fl_n) = \{vv_i: 1 \le i \le n\} \cup \{v_iv_{i+1}: 1 \le i \le n-1\} \cup \{v_nv_1\} \cup \{u_iv_i: 1 \le i \le n\} \cup \{vu_i: 1 \le i \le n\}$ respectively. Let $a \in Z_k - \{0\}$. Define the edge labeling $f: E(Fl_n) \to Z_k - \{0\}$ as follows: $f(vv_i) = k - a$ for $1 \le i \le n$, $f(v_iv_{i+1}) = a$ for $1 \le i \le n$, $f(vu_i) = a$; $f(u_iv_i) = k - a$ for $1 \le i \le n$, $f(vu_i) = a$ for $1 \le i \le n$. Then the induced vertex labeling $f^+: V(Fl_n) \to Z_k - \{0\}$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(Fl_n)$. Thus f^+ is constant and it is equal to $0 \pmod{k}$. Hence the flower graph Fl_n is Z_k -magic.

An example of Z_3 -magic labeling of Fl_5 is shown in Figure 2.

Figure 2: Z_3 -magic labeling of Fl_5

Theorem 2.3. The generalized prism graph $C_m \times P_n$ is Z_k -magic for all $n \ge 2$ and $m \ge 3$.

Proof. Let the vertex set and the edge set of $C_m \times P_n$ be $V(C_m \times P_n) = \{v_i^j : 1 \le i \le m \text{ and } 1 \le j \le n\}$ and $E(C_m \times P_n) = \{v_i^j v_{i+1}^j : 1 \le i \le m \text{ and } 1 \le j \le n\} \cup \{v_i^j v_i^{j+1} : 1 \le i \le m \text{ and } 1 \le j \le n-1\}$ respectively.

Let a be an integer such that $a \in \{1, 2, \dots, \frac{k}{2} - 1\}$ if k is even and $a \in \{1, 2, \dots, \frac{k-1}{2}\}$ if k is odd.

Define the edge labeling $f : E(C_m \times P_n) \to Z_k - \{0\}$ as follows: $f(v_i^j v_i^{j+1}) = k - 2a$ for $1 \le i \le m$ and $1 \le j \le n - 1$, $f(v_i^j v_{i+1}^j) = \begin{cases} a, & \text{if } 1 \le i \le m; \quad j = 1, n, \\ 2a, & \text{if } 1 \le i \le m; \quad 2 \le j \le n - 1. \end{cases}$

Then the induced vertex labeling $f^+: V(C_m \times P_n) \to Z_k - \{0\}$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(C_m \times P_n)$. Thus f^+ is constant and it is equal to $0 \pmod{k}$. Hence the generalized prism graph $C_m \times P_n$ is Z_k -magic.

An example of Z_4 -magic labeling of $C_4 \times P_3$ is shown in Figure 3.

Figure 3: Z_4 -magic labeling of $C_4 \times P_3$

Theorem 2.4. The closed helm graph CH_n is Z_k -magic when k is even, k > 4 and n > 2.

..., u_n and $E(CH_n) = \{vv_i : 1 \le i \le n\} \cup \{v_iv_{i+1} : 1 \le i \le n-1\} \cup \{v_nv_1\} \cup \{u_iv_i : 1 \le i \le n-1\} \cup \{v_nv_1\} \cup \{u_iv_i : 1 \le i \le n-1\} \cup \{v_nv_n\} \cup \{v_nv_nv_n\} \cup \{v_nv_nv_nv_n\} \cup \{v_nv_nvv_nv_nv_nv_nvv_nv_nvv$ $1 \le i \le n$ $\} \cup \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{u_n u_1\}$ respectively. We consider the following two cases. Case(i): n is odd. Subcase(i): $k \equiv 0 \pmod{4}$. Define the edge labeling $f: E(CH_n) \to Z_k - \{0\}$ as follows: $f(vv_{i}) = \frac{k}{2} \text{ for } 1 \le i \le n,$ $f(v_{i}v_{i+1}) = \frac{k}{4} \text{ for } 1 \le i \le n-1,$ $f(u_{i}v_{i}) = \frac{k}{2} \text{ for } 1 \le i \le n,$ $f(u_{i}u_{i+1}) = \frac{k}{2} \text{ for } 1 \le i \le n-1,$ $f(u_{n}u_{1}) = \frac{k}{2}, \quad f(v_{n}v_{1}) = \frac{k}{4}.$ Then the induced vertex labeling $f^+: V(CH_n) \to Z_k - \{0\}$ is $f^+(v) \equiv \frac{k}{2} \pmod{k}$ for all $v \in V(CH_n)$. Hence f^+ is constant and it is equal to $\frac{k}{2} \pmod{k}$. Subcase(ii): $k \equiv 2 \pmod{4}$. Define the edge labeling $f: E(CH_n) \to Z_k - \{0\}$ as follows: $f(vv_i) = \frac{k}{2}$ for $1 \le i \le n-1$, $f(vv_n) = k-2$. For $1 \le i \le n-1$. $f(v_i v_{i+1}) = \begin{cases} \frac{k}{2} - 1, & \text{if } i \text{ is odd,} \\ 1, & \text{if } i \text{ is even,} \end{cases}$ $f(v_n v_1) = 1, \ f(u_i v_i) = k - 2 \text{ for } 1 \le i \le n,$ $f(u_i u_{i+1}) = \frac{k}{2}$ for $1 \le i \le n-1$, $f(u_n u_1) = \frac{k}{2}$. Then the induced vertex labeling $f^+: V(C\tilde{H}_n) \to Z_k - \{0\}$ is $f^+(v) \equiv (k-2) \pmod{k}$ for all $v \in V(CH_n)$. Hence f^+ is constant and it is equal to $(k-2) \pmod{k}$. Case(ii): n is odd. Subcase(i): $k \equiv 0 \pmod{4}$. Define the edge labeling $f: E(CH_n) \to Z_k - \{0\}$ as follows: $f(vv_i) = 1 \text{ for } i = 1, 2, \ f(vv_i) = \frac{k}{2} \text{ for } 3 \le i \le n.$ For $1 \leq i \leq n-1$.

$$\begin{split} f(v_i v_{i+1}) &= \begin{cases} \frac{3k}{4} - 1, & \text{if } i \text{ is even}, \\ \frac{3k}{4} + 1, & \text{if } i \text{ is odd}, i \neq 1. \\ f(v_1 v_2) &= \frac{k}{4}, f(v_n v_1) = \frac{3k}{4} - 1, \\ f(u_i v_i) &= 2 & \text{for } 1 \leq i \leq n, \\ f(u_i u_{i+1}) &= \frac{k}{2} \text{ for } 1 \leq i \leq n - 1, \\ f(u_n u_1) &= \frac{k}{2}. \end{cases} \\ \text{Then the induced vertex labeling } f^+ : V(CH_n) \to Z_k - \{0\} \text{ is } f^+(v) \equiv 2(mod \ k) \text{ for all } \\ v \in V(CH_n). \text{ Hence } f^+ \text{is constant and it is equal to } 2(mod \ k). \end{cases} \\ \text{Subcase(ii): } k \equiv 2(mod \ 4). \\ \text{Define the edge labeling } f : E(CH_n) \to Z_k - \{0\} \text{ as follows:} \\ f(vv_i) &= \frac{k}{2} + 1 \text{ for } i = 1, 2, f(vv_i) = \frac{k}{2} \text{ for } 3 \leq i \leq n. \\ \text{For } 1 \leq i \leq n - 1. \\ f(v_i v_{i+1}) &= \begin{cases} \frac{k-2}{4}, & \text{if } i \text{ is even}, \\ \frac{k+2}{4}, & \text{if } i \text{ is odd}, i \neq 1. \\ f(v_i v_i) &= 2 & \text{for } 1 \leq i \leq n, \\ f(u_i v_i) &= 2 & \text{for } 1 \leq i \leq n, \\ f(u_i v_i) &= 2 & \text{for } 1 \leq i \leq n, \\ f(u_i u_{i+1}) &= \frac{k}{2} & \text{for } 1 \leq i \leq n - 1, \\ f(u_i u_{i+1}) &= \frac{k}{2} & \text{for } 1 \leq i \leq n - 1, \\ f(u_i u_{i+1}) &= \frac{k}{2} & \text{for } 1 \leq i \leq n, \\ f(u_i u_{i+1}) &= \frac{k}{2} & \text{for } 1 \leq i \leq n - 1, \\ f(u_i u_{i+1}) &= \frac{k}{2} & \text{for } 1 \leq i \leq n - 1, \\ f(u_n u_1) &= \frac{k}{2}. \\ \text{Then the induced vertex labeling } f^+ : V(CH_n) \to Z_k - \{0\} \text{ is } f^+(v) \equiv 2(mod \ k) \text{ for all} \end{cases}$$

 $v \in V(CH_n)$. Thus f^+ is constant and it is equal to $2(mod \ k)$. Hence the closed helm graph CH_n is Z_k -magic.

The examples of Z_6 -magic labeling of CH_3 and Z_8 -magic labeling of CH_4 are shown in Figure 4.

 Z_8 -magic labeling of CH_4

Figure 4

Theorem 2.5. The lotus inside a circle graph LC_n is Z_{4k} -magic when n > 2.

 \dots, u_n and $E(G) = \{v_0v_i : 1 \le i \le n\} \cup \{u_iv_i : 1 \le i \le n\} \cup \{v_iu_{i+1} : 1 \le i \le n\}$ n-1 \cup { $v_n u_1$ } \cup { $u_i u_{i+1}$: $1 \le i \le n-1$ } \cup { $u_n u_1$ } respectively. We consider the following two cases. Case(i): n is odd.

Define the edge labeling $f: E(LC_n) \to Z_k - \{0\}$ as follows: $f(v_0v_i) = \frac{k}{2}$ for $1 \le i \le n$, $f(u_iv_i) = \frac{k}{2}$ for $1 \le i \le n$, $f(v_iu_{i+1}) = \frac{k}{2}$ for $1 \le i \le n-1$, $f(v_nu_1) = \frac{k}{2}$, $f(u_iu_{i+1}) = \frac{k}{4}$ for $1 \le i \le n-1$, $f(u_nu_1) = \frac{k}{4}$. Then the induced vertex labeling $f^+: V(LC_n) \to Z_k - \{0\}$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(LC_n)$. **Case(ii)**: n is even. Define the edge labeling $f: E(LC_n) \to Z_k - \{0\}$ as follows: $f(v_0v_i) = \frac{k}{2}$ for $1 \le i \le n$, $f(u_iv_i) = \frac{k}{4}$ for $1 \le i \le n$, $f(v_iu_{i+1}) = \frac{k}{4}$ for $1 \le i \le n-1$, $f(v_nu_1) = \frac{k}{4}$, $f(u_iu_{i+1}) = \frac{k}{4}$ for $1 \le i \le n-1$, $f(u_nu_1) = \frac{k}{4}$. Then the induced vertex labeling $f^+: V(LC_n) \to Z_k - \{0\}$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(LC_n)$. Thus f^+ is constant and it is equal to $0 \pmod{k}$. Hence the lotus inside a circle graph LC_n is Z_{4k} -magic.

The examples of Z_4 -magic labeling of LC_5 and LC_4 are shown in Figure 5.

Figure 5

Theorem 2.6. The two odd cycles connected by a path P_n denoted by $P_n(C_1, C_2)$ is Z_k -magic when k is even and $k \neq 2$.

Proof. Let $P_n(C_1, C_2)$ be a graph obtained by joining two odd cycles by a path P_n . Let the vertex set and the edge set of $P_n(C_1, C_2)$ be $V(P_n(C_1, C_2)) = \{v_i : 1 \le i \le n\} \cup \{v'_i : 1 \le i \le n-1\} \cup \{v_n v_1\} \cup \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{v'_i v'_{i+1} : 1 \le i \le n-1\} \cup \{v'_n v'_1\}$ respectively. We consider the following two cases. Case(i): $k \equiv 0 \pmod{4}$. Define the edge labeling $f : E(P_n(C_1, C_2)) \to Z_k - \{0\}$ as follows: $f(v_i v_{i+1}) = f(v'_i v'_{i+1}) = \begin{cases} \frac{k}{4}, & \text{if } i \text{ is odd,} \\ \frac{3k}{4}, & \text{if } i \text{ is even.} \end{cases}$ $f(u_i u_{i+1}) = \frac{k}{2} \text{ for } 1 \le i \le n.$ Then the induced vertex labeling $f^+ : V(P_n(C_1, C_2)) \to Z_k - \{0\}$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(P_n(C_1, C_2))$. $\begin{aligned} \mathbf{Case(ii):} \ k &\equiv 2 \pmod{4}. \\ \text{Define the edge labeling } f : E(P_n(C_1, C_2)) \to Z_k - \{0\} \text{ as follows:} \\ f(v_i v_{i+1}) &= \begin{cases} \frac{k+2}{4}, & \text{if } i \text{ is odd,} \\ \frac{3k-2}{4}, & \text{if } i \text{ is even.} \end{cases} \\ f(u_i u_{i+1}) &= \begin{cases} \frac{k}{2} - 1, & \text{if } i \text{ is odd,} \\ \frac{k}{2} + 1, & \text{if } i \text{ is even.} \end{cases} \\ \text{If } n \text{ is odd} \\ f(v'_i v'_{i+1}) &= \begin{cases} \frac{k+2}{4}, & \text{if } i \text{ is odd,} \\ \frac{3k-2}{4}, & \text{if } i \text{ is even.} \end{cases} \\ \text{If } n \text{ is even} \\ \text{If } n \text{ is even} \\ f(v'_i v'_{i+1}) &= \begin{cases} \frac{k+2}{4}, & \text{if } i \text{ is even.} \\ \frac{3k-2}{4}, & \text{if } i \text{ is even.} \end{cases} \\ \text{Then the induced vertex labeling } f^+ : V(P_n(C_1, C_2)) \to Z_1 \text{ is } f^+ \end{cases} \end{aligned}$

Then the induced vertex labeling $f^+: V(P_n(C_1, C_2)) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(P_n(C_1, C_2))$. Thus f^+ is constant and it is equal to $0 \pmod{k}$. Hence $P_n(C_1, C_2)$ is Z_k -magic.

An example of Z_8 -magic labeling of $P_5(C_5, C_9)$ is shown in Figure 6.

Fiure 6 : Z_8 -magic labeling of $P_5(C_5, C_9)$

Theorem 2.7. If G is Z_m -magic with the magic constant a then $G \odot K_m$ is Z_m -magic for all $m \ge 2$.

Proof. Let G be any graph with the vertex set $\{v_1, v_2, \ldots, v_n\}$. Let G is Z_m -magic with magic constant a where $a \in Z_m - \{0\}$. Therefore $f^+(v) \equiv a \pmod{m}$ for $1 \leq i \leq n$. Let $G \odot \overline{K_m}$ be the corona graph. Let the vertex set and the edge set of $G \odot \overline{K_m}$ is $V(G \odot \overline{K_m}) = V(G) \cup \{v_i^j : 1 \leq i \leq n, 1 \leq j \leq m\}$ and $E(G \odot \overline{K_m}) = E(G) \cup \{v_i v_i^j : 1 \leq i \leq n, 1 \leq j \leq m\}$ respectively. Let $a \in Z_k - \{0\}$. Define the edge labeling $g : E(G \odot \overline{K_m}) \to Z_m - \{0\}$ as follows: g(e) = f(e) for $e \in E(G)$, $g(v_i v_i^j) = a$ for $1 \leq i \leq n, 1 \leq j \leq m$. Then the induced vertex labeling $g^+ : V(G \odot \overline{K_m}) \to Z_m$ is $g^+(v_i) = f^+(v_i) + ma$ for $1 \leq i \leq n$, $= a + ma \equiv a \pmod{m}$. $g^+(v_i^j) = a \text{ for } 1 \leq i \leq n, 1 \leq j \leq m.$ Thus g^+ is constant and it is equal to $a \pmod{m}$. Hence $G \odot \overline{K_m}$ is Z_m -magic. \Box

An example of Z_3 -magic labeling of $C_4 \odot \overline{K_3}$ is shown in Figure 7.

Figure 7: Z_3 -magic labeling of $C_4 \odot \overline{K_3}$

Theorem 2.8. The *m*-splitting graph of a path $Spl_m(P_n)$ is Z_k -magic when *n* is even and k > (2m-3)a for any integers $m \in N - \{1\}$ and $a \in Z_k - \{0\}$.

Proof. Let P_n be the path v_1, v_2, \ldots, v_n . Let $Spl_m(P_n)$ be the *m*-splitting graph of a path P_n . Let n be even such that k > (2m-3)a for any integers $m \in N - \{1\}$ and $a \in Z_k - \{0\}$. Let the vertex set and the edge set of $Spl_m(P_n)$ be $V(Spl_m(P_n)) = \{v_i : 1 \leq i \leq n\}$ $i \leq n \} \cup \{v_i^j : 1 \leq i \leq n \text{ and } 1 \leq j \leq m-1\} \text{ and } E(Spl_m(P_n)) = \{v_i v_{i+1} : 1 \leq i \leq m-1\}$ $n-1 \cup \{v_i v_{i+1}^j : 1 \le i \le n-1 \text{ and } 1 \le j \le m-1 \} \cup \{v_i^j v_{i+1} : 1 \le i \le n-1 \text{ and } \}$ $1 \leq j \leq m-1$ respectively. Let $a \in Z_k - \{0\}$ be an integer and k > (2m - 3)a. Define the edge labeling $f: E(Spl_m(P_n)) \to Z_k - \{0\}$ as follows: $f(v_1v_2) = 2a,$ $f(v_{i}v_{i+1}) = k - (2m - 3)a,$ $f(v_{i}v_{i+1}) = \begin{cases} a, & \text{if } i \text{ is odd,} \\ k - (m - 1)a, & \text{if } i \text{ is even.} \end{cases}$ $f(v_i v_{i+1}^j) = k - a \text{ for } 1 \le i \le n-2, \ 1 \le j \le m-1,$ $f(v_i^j v_{i+1}) = 2a \text{ for } 2 \le i \le n-1, \ 1 \le j \le m-1,$ $f(v_n^j v_{n-1}) = a \text{ for } 1 \le j \le m-1,$ $f(v_1^j v_2) = a \text{ for } 1 \le j \le m - 1.$ Then the induced vertex labeling $f^+: V(Spl_m(P_n)) \to Z_k$ is $f^+(v) \equiv a \pmod{k}$ for all $v \in V(Spl_m(P_n))$. Thus f^+ is constant and it is equal to $a(mod \ k)$. Hence *m*-splitting

An example of Z_k -magic labeling of $Spl_4(P_8)$ is shown in Figure 8.

graph of a path $Spl_m(P_n)$ is Z_k -magic.

Figure 8: Z_k -magic labeling of $Spl_4(P_8)$

Theorem 2.9. The *m*-shadow graph of a path $D_m(P_n)$ is Z_k -magic for all m, n > 2.

Proof. Consider m copies of P_n . Let $u_1^j, u_2^j, \ldots, u_n^j$ be the vertices of the j^{th} -copy of $P_n, 1 \leq j \leq m$. Let $D_m(P_n)$ be a *m*-shadow graph of a path P_n , then $|V(D_m(P_n))| = mn$ and $|E(D_m(P_n))| = m^2(n-1)$.

Let $a \in Z_k - \{0\}$ be an integer and k > (m-1)a.

Define the edge labeling $f: E(D_m(P_n)) \to Z_k - \{0\}$ as follows:

 $f(u_i^{j}u_{i+1}^{j}) = k - (m-1)a,$

f(e) = a for all other edges of E(G).

Then the induced vertex labeling $f^+ : V(D_m(P_n)) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(D_m(P_n))$. Thus f^+ is constant and it is equal to $0 \pmod{k}$. Hence *m*-shadow graph of a path $D_m(P_n)$ is Z_k -magic.

An example of Z_k -magic labeling of $D_3(P_4)$ is shown in Figure 9.

Figure 9: Z_k -magic labeling of $D_3(P_4)$

Theorem 2.10. The graph $CE(C_1, C_2)$ of two cycles C_1 and C_2 with a common edge is Z_k -magic if one of the cycle C_1 or C_2 is an even cycle.

Proof. Let $CE(C_1, C_2)$ be a graph of two cycles with a common edge. Let u and v be the end vertices of the common edge. Let u_1 and v_1 are the vertices adjacent to u and v in C_1 and u_2 and v_2 are the vertices adjacent to u and v in C_2 . Let $\alpha_1, \alpha_2, \alpha_3$ be the distinct elements from $Z_k - \{0\}$ such that $\alpha_1 + \alpha_2 \not\equiv 0 \pmod{k}$ and $\alpha_1 + \alpha_3 \not\equiv 0 \pmod{k}$. Assign α_1 to the common edge uv.

We consider the following two cases.

Case (i): C_1 and C_2 are even cycles.

Label the edges of C_1 starting from uu_1 with α_2 and $\alpha_1 + \alpha_3$ alternately. Then the edge vv_1 receives the label α_2 . Again label the edges of C_2 starting from uu_2 with α_3 and $\alpha_1 + \alpha_2$ alternately. Then the edge vv_2 receives the label α_3 . Hence all the vertices of $CE(C_1, C_2)$ get the sum $\alpha_1 + \alpha_2 + \alpha_3$.

Case (ii): Either C_1 or C_2 is even cycle.

Suppose that C_1 is an odd cycle and C_2 is an even cycle. Assign the label α_1 to the common edge and α_2 to all the edges of C_1 . Also label the edges of C_2 starting from uu_2 with $\alpha_2 - \alpha_1 vv_1$ and $\alpha_1 + \alpha_2$ alternately. Then vv_2 receives the label $\alpha_2 - \alpha_1$. Hence all the vertices of $CE(C_1, C_2)$ get the label $2\alpha_2$.

Then $CE(C_1, C_2)$ is Z_k -magic.

An example of Z_k -magic labeling of $CE(C_1, C_2)$ are shown in Figure 10.

Figure 10: Z_k -magic labeling of $CE(C_1, C_2)$

References

- [1] Jeyanthi, P. and Jeya Daisy, K. Z_k -magic labeling of open star of graphs, Bulletin of the International Mathematical Virtual Institute, 7 (2017), 243–255.
- [2] Jeyanthi, P. and Jeya Daisy, K. Z_k -magic labeling of subdivision graphs, Discrete Math. Algorithm. Appl., 8(3) (2016), [19 pages] DOI: 10.1142/S1793830916500464.
- [3] Jeyanthi, P. and Jeya Daisy, K. Certain classes of Z_k -magic graphs, Journal of Graph Labeling, 4(1) (2018), 38–47.

- [4] Jeyanthi, P. and Jeya Daisy, K. Some results on Z_k -magic labeling, Palestine Journal of Mathematics, to appear.
- [5] Gallian, J.A. A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 2017, #DS6.
- [6] Kavitha, K. and Thirusangu, K. *Group magic labeling of cycles with a common vertex*, International Journal of Computing Algorithm, 2 (2013), 239–242.
- [7] Low, R.M and Lee, S.M. On the products of group-magic graphs, Australas. J. Combin., 34 (2006), 41–48.
- [8] Sedláček, J. On magic graphs, Math. Slov., 26 (1976), 329–335.
- [9] Shiu, W.C., Lam, P.C.B. and Sun, P.K. Construction of magic graphs and some A-magic graphs with A of even order, Congr. Numer., 167 (2004), 97–107.
- [10] Shiu, W.C. and Low, R.M. Z_k -magic labeling of fans and wheels with magic-value zero, Australas. J. Combin., 45 (2009), 309–316.