NAKHOD
journal homepage: http://jac.ut.ac.ir

Z_{k}-Magic Labeling of Some Families of Graphs

P. Jeyanthi* ${ }^{* 1}$ and K. Jeya Daisy ${ }^{\dagger 2}$
${ }^{1}$ Research Centre, Department of Mathematics, Govindammal Aditanar College for Women Tiruchendur-628 215, Tamil Nadu, India.
${ }^{2}$ Department of Mathematics, Holy Cross College, Nagercoil, Tamilnadu, India.

ABSTRACT

For any non-trivial abelian group A under addition a graph G is said to be A-magic if there exists a labeling $f: E(G) \rightarrow A-\{0\}$ such that, the vertex labeling f^{+}defined as $f^{+}(v)=\sum f(u v)$ taken over all edges $u v$ incident at v is a constant. An A-magic graph G is said to be Z_{k}-magic graph if the group A is Z_{k} the group of integers modulo k. These Z_{k}-magic graphs are referred to as k-magic graphs. In this paper we prove that the total graph, flower graph, generalized prism graph, closed helm graph, lotus inside a circle graph, $G \odot \overline{K_{m}}, m$-splitting graph of a path and m-shadow graph of a path are Z_{k}-magic graphs.

Keyword: A-magic labeling; Z_{k}-magic labeling; Z_{k}-magic graph; total graph; flower graph; generalized prism graph; closed helm graph; lotus inside a circle graph; $G \odot \overline{K_{m}}$; msplitting graph; m-shadow graph.

ARTICLE INFO

Article history:

Received 30, June 2018
Received in revised form 18, November 2018
Accepted 30 November 2018
Available online 30, December 2018

AMS subject Classification: 05C78.

1 Introduction

Graph labeling is currently an emerging area in the research of graph theory. A graph labeling is an assignment of integers to vertices or edges or both subject to certain con-

[^0]ditions. A detailed survey was done by Gallian in [5]. If the labels of edges are distinct positive integers and for each vertex v the sum of the labels of all edges incident with v is the same for every vertex v in the given graph then the labeling is called a magic labeling. Sedláček [8] introduced the concept of A-magic graphs. A graph with real-valued edge labeling such that distinct edges have distinct non-negative labels and the sum of the labels of the edges incident to a particular vertex is same for all vertices. Low and Lee [7] examined the A-magic property of the resulting graph obtained from the product of two A-magic graphs. Shiu, Lam and Sun [9] proved that the product and composition of A-magic graphs were also A-magic.
For any non-trivial Abelian group A under addition a graph G is said to be A-magic if there exists a labeling $f: E(G) \rightarrow A-\{0\}$ such that, the vertex labeling f^{+}defined as $f^{+}(v)=\sum f(u v)$ taken over all edges $u v$ incident at v is a constant. An A-magic graph G is said to be Z_{k}-magic graph if the group A is Z_{k}, the group of integers modulo k. These Z_{k}-magic graphs are referred to as k-magic graphs. Shiu and Low [10] determined all positive integers k for which fans and wheels have a Z_{k}-magic labeling with a magic constant 0 . Kavitha and Thirusangu [6] obtained a Z_{k}-magic labeling of two cycles with a common vertex. Motivated by the concept of A-magic graph in [8] and the results in [7], [9] and [10] Jeyanthi and Jeya Daisy [1]-[4] proved that the open star of graphs, subdivision graphs, square graph, middle graph, $m \Delta_{n}$-snake graph, shell graph, generalised jahangir graph, $\left(P_{n}+P_{1}\right) \times P_{2}$ graph, double wheel graph, mongolian tent graph, flower snark, slanting ladder, double step grid graph, double arrow graph and semi jahangir graph admit Z_{k}-magic labeling. We use the following definitions in the subsequent section.
Definition 1.1. Total graph $T(G)$ is a graph with the vertex set $V(G) \cup E(G)$ in which two vertices are adjacent whenever they are either adjacent or incident in G.
Definition 1.2. A helm graph $H_{n}, n \geq 3$, is obtained from a wheel W_{n} by adjoining a pendant edge at each vertex of the wheel except the center.
Definition 1.3. A flower graph $F l_{n}, n \geq 3$, is obtained from a helm H_{n} by joining each pendent vertex to the central vertex of the helm.
Definition 1.4. A Cartesian product of a cycle $C_{n}, n \geq 3$, and a path on m vertices is called a generalized prism graph $C_{n} \times P_{m}$.
Definition 1.5. A closed helm graph $C H_{n}, n \geq 3$, is obtained from a helm H_{n} by joining each pendent vertex to form a cycle.
Definition 1.6. A lotus inside a circle $L C_{n}, n \geq 3$, is obtained from a wheel W_{n} by subdividing every edge forming the outer cycle and joining these new vertices to form a cycle.
Definition 1.7. If G has order n, the corona of G with $H, G \odot H$ is the graph obtained by taking one copy of G and n copies of H and joining the $i^{t h}$ vertex of G with an edge to every vertex in the $i^{\text {th }}$ copy of H.
Definition 1.8. A m-shadow graph $D_{m}(G)$ is constructed by taking m-copies of G, say $G_{1}, G_{2}, G_{3}, \ldots, G_{m}$, then join each vertex u in G_{i} to the neighbors of the corresponding vertex v in $G_{j}, 1 \leq i, j \leq m$.
Definition 1.9. A m-splitting graph $\operatorname{Spl}_{m}(G)$ is obtained by adding to each vertex v of G new m vertices, say $v^{1}, v^{2}, v^{3}, \ldots, v^{m}$, such that $v^{i}, 1 \leq i \leq m$ is adjacent to every vertex that is adjacent to v in G.

$2 \quad Z_{k}$-Magic Labeling of Some Families of Graphs

In this section we prove that the total graph of a path, flower graph, generalized prism graph, closed helm graph, lotus inside a circle graph, $G \odot \overline{K_{m}}, m$-splitting graph of a path and m-shadow graph of a path are Z_{k}-magic graphs.

Theorem 2.1. The total graph of the path $T\left(P_{n}\right)$ is Z_{k}-magic for all $n>2$.
Proof. Let the vertex set and the edge set of $T\left(P_{n}\right)$ be $V\left(T\left(P_{n}\right)\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}\right.$, $\left.\ldots, v_{n-1}\right\}$ and $E\left(T\left(P_{n}\right)\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+1}: 1 \leq i \leq n-2\right\} \cup\left\{u_{i+1} v_{i}\right.$: $1 \leq i \leq n-1\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n-1\right\}$ respectively.
Let a be an integer such that $a \in\left\{1,2, \ldots, \frac{k}{2}-1\right\}$ if k is even and $a \in\left\{1,2, \ldots, \frac{k-1}{2}\right\}$ if k is odd.
Define the edge labeling $f: E\left(T\left(P_{n}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(u_{1} v_{1}\right)=a, f\left(u_{2} v_{1}\right)=a$,
$f\left(u_{i} u_{i+1}\right)= \begin{cases}k-a, & \text { if } i=1, n-1, \\ k-2 a, & \text { if } 2 \leq i \leq n-2,\end{cases}$
$f\left(v_{i} v_{i+1}\right)=k-2 a$ for $1 \leq i \leq n-2$,
$f\left(u_{i} v_{i}\right)=2 a \quad$ for $2 \leq i \leq n-2$,
$f\left(u_{i+1} v_{i}\right)=2 a \quad$ for $2 \leq i \leq n-2$,
$f\left(u_{n} v_{n-1}\right)=a ; \quad f\left(u_{n-1} v_{n-1}\right)=a$.
Then the induced vertex labeling $f^{+}: V\left(T\left(P_{n}\right)\right) \rightarrow Z_{k}-\{0\}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(T\left(P_{n}\right)\right)$. Thus f^{+}is constant and it is equal to $0(\bmod k)$. Hence the total graph of the path $T\left(P_{n}\right)$ is Z_{k}-magic.

An example of Z_{5}-magic labeling of $T\left(P_{5}\right)$ is shown in Figure 1. An example of Z_{5}-magic labeling of $T\left(P_{5}\right)$ is shown in Figure 1.

Figure 1: Z_{5}-magic labeling of $T\left(P_{5}\right)$
Theorem 2.2. The flower graph $F l_{n}$ is Z_{k}-magic for all $n>2$.
Proof. Let the vertex set and the edge set of $F l_{n}$ be $V\left(F l_{n}\right)=\left\{v, v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}\right.$, $\left.\ldots, u_{n}\right\}$ and $E\left(F l_{n}\right)=\left\{v v_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\} \cup\left\{u_{i} v_{i}: 1 \leq\right.$ $i \leq n\} \cup\left\{v u_{i}: 1 \leq i \leq n\right\}$ respectively.
Let $a \in Z_{k}-\{0\}$.
Define the edge labeling $f: E\left(F l_{n}\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v v_{i}\right)=k-a$ for $1 \leq i \leq n, f\left(v_{i} v_{i+1}\right)=a$ for $1 \leq i \leq n$,
$f\left(v_{n} v_{1}\right)=a ; f\left(u_{i} v_{i}\right)=k-a$ for $1 \leq i \leq n$,
$f\left(v u_{i}\right)=a$ for $1 \leq i \leq n$.
Then the induced vertex labeling $f^{+}: V\left(F l_{n}\right) \rightarrow Z_{k}-\{0\}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all
$v \in V\left(F l_{n}\right)$. Thus f^{+}is constant and it is equal to $0(\bmod k)$. Hence the flower graph $F l_{n}$ is Z_{k}-magic.

An example of Z_{3}-magic labeling of $F l_{5}$ is shown in Figure 2.

Figure 2: Z_{3}-magic labeling of $F l_{5}$
Theorem 2.3. The generalized prism graph $C_{m} \times P_{n}$ is Z_{k}-magic for all $n \geq 2$ and $m \geq 3$.
Proof. Let the vertex set and the edge set of $C_{m} \times P_{n}$ be $V\left(C_{m} \times P_{n}\right)=\left\{v_{i}^{j}: 1 \leq i \leq m\right.$ and $1 \leq j \leq n\}$ and $E\left(C_{m} \times P_{n}\right)=\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq m\right.$ and $\left.1 \leq j \leq n\right\} \cup\left\{v_{i}^{j} v_{i}^{j+1}: 1 \leq i \leq m\right.$ and $1 \leq j \leq n-1\}$ respectively.
Let a be an integer such that $a \in\left\{1,2, \ldots, \frac{k}{2}-1\right\}$ if k is even and $a \in\left\{1,2, \ldots, \frac{k-1}{2}\right\}$ if k is odd.
Define the edge labeling $f: E\left(C_{m} \times P_{n}\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v_{i}^{j} v_{i}^{j+1}\right)=k-2 a$ for $1 \leq i \leq m$ and $1 \leq j \leq n-1$,
$f\left(v_{i}^{j} v_{i+1}^{j}\right)= \begin{cases}a, & \text { if } 1 \leq i \leq m ; \quad j=1, n, \\ 2 a, & \text { if } 1 \leq i \leq m ; \quad 2 \leq j \leq n-1 .\end{cases}$
Then the induced vertex labeling $f^{+}: V\left(C_{m} \times P_{n}\right) \rightarrow Z_{k}-\{0\}$ is $f^{+}(v) \equiv$ $0(\bmod k)$ for all $v \in V\left(C_{m} \times P_{n}\right)$. Thus f^{+}is constant and it is equal to $0(\bmod k)$. Hence the generalized prism graph $C_{m} \times P_{n}$ is Z_{k}-magic.

An example of Z_{4}-magic labeling of $C_{4} \times P_{3}$ is shown in Figure 3 .

Figure 3: Z_{4}-magic labeling of $C_{4} \times P_{3}$
Theorem 2.4. The closed helm graph $C H_{n}$ is Z_{k}-magic when k is even, $k>4$ and $n>2$.
Proof. Let the vertex set and the edge set of $C H_{n}$ be $V\left(C H_{n}\right)=\left\{v, v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}\right.$, $\left.\ldots, u_{n}\right\}$ and $E\left(C H_{n}\right)=\left\{v v_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\} \cup\left\{u_{i} v_{i}:\right.$ $1 \leq i \leq n\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\}$ respectively.
We consider the following two cases.
Case(i): n is odd.
Subcase(i): $k \equiv 0(\bmod 4)$.
Define the edge labeling $f: E\left(C H_{n}\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v v_{i}\right)=\frac{k}{2}$ for $1 \leq i \leq n$,
$f\left(v_{i} v_{i+1}\right)=\frac{k}{4}$ for $1 \leq i \leq n-1$,
$f\left(u_{i} v_{i}\right)=\frac{k}{2}$ for $1 \leq i \leq n$,
$f\left(u_{i} u_{i+1}\right)=\frac{k}{2}$ for $1 \leq i \leq n-1$,
$f\left(u_{n} u_{1}\right)=\frac{k}{2}, \quad f\left(v_{n} v_{1}\right)=\frac{k}{4}$.
Then the induced vertex labeling $f^{+}: V\left(C H_{n}\right) \rightarrow Z_{k}-\{0\}$ is $f^{+}(v) \equiv \frac{k}{2}(\bmod k)$ for all $v \in V\left(C H_{n}\right)$. Hence f^{+}is constant and it is equal to $\frac{k}{2}(\bmod k)$.
Subcase(ii): $k \equiv 2(\bmod 4)$.
Define the edge labeling $f: E\left(C H_{n}\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v v_{i}\right)=\frac{k}{2}$ for $1 \leq i \leq n-1, f\left(v v_{n}\right)=k-2$.
For $1 \leq i \leq n-1$.
$f\left(v_{i} v_{i+1}\right)= \begin{cases}\frac{k}{2}-1, & \text { if } i \text { is odd, } \\ 1, & \text { if } i \text { is even, }\end{cases}$
$f\left(v_{n} v_{1}\right)=1, f\left(u_{i} v_{i}\right)=k-2$ for $1 \leq i \leq n$,
$f\left(u_{i} u_{i+1}\right)=\frac{k}{2}$ for $1 \leq i \leq n-1, \quad f\left(u_{n} u_{1}\right)=\frac{k}{2}$.
Then the induced vertex labeling $f^{+}: V\left(C H_{n}\right) \rightarrow Z_{k}-\{0\}$ is $f^{+}(v) \equiv(k-2)(\bmod k)$ for all $v \in V\left(C H_{n}\right)$. Hence f^{+}is constant and it is equal to $(k-2)(\bmod k)$.
Case(ii): n is odd.
Subcase $(\mathbf{i}): k \equiv 0(\bmod 4)$.
Define the edge labeling $f: E\left(C H_{n}\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v v_{i}\right)=1$ for $i=1,2, f\left(v v_{i}\right)=\frac{k}{2}$ for $3 \leq i \leq n$.
For $1 \leq i \leq n-1$.
$f\left(v_{i} v_{i+1}\right)= \begin{cases}\frac{3 k}{4}-1, & \text { if } i \text { is even, } \\ \frac{3 k}{4}+1, & \text { if } i \text { is odd, } i \neq 1 .\end{cases}$
$f\left(v_{1} v_{2}\right)=\frac{k}{4}, \quad f\left(v_{n} v_{1}\right)=\frac{3 k}{4}-1$,
$f\left(u_{i} v_{i}\right)=2 \quad$ for $1 \leq i \leq n$,
$f\left(u_{i} u_{i+1}\right)=\frac{k}{2}$ for $1 \leq i \leq n-1$,
$f\left(u_{n} u_{1}\right)=\frac{k}{2}$.
Then the induced vertex labeling $f^{+}: V\left(C H_{n}\right) \rightarrow Z_{k}-\{0\}$ is $f^{+}(v) \equiv 2(\bmod k)$ for all $v \in V\left(C H_{n}\right)$. Hence f^{+}is constant and it is equal to $2(\bmod k)$.
Subcase $(i i): k \equiv 2(\bmod 4)$.
Define the edge labeling $f: E\left(C H_{n}\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v v_{i}\right)=\frac{k}{2}+1$ for $i=1,2, \quad f\left(v v_{i}\right)=\frac{k}{2}$ for $3 \leq i \leq n$.
For $1 \leq i \leq n-1$.
$f\left(v_{i} v_{i+1}\right)= \begin{cases}\frac{k-2}{4}, & \text { if } i \text { is even, } \\ \frac{k+2}{4}, & \text { if } i \text { is odd, } i \neq 1 .\end{cases}$
$f\left(v_{1} v_{2}\right)=\frac{k-2}{4}, \quad f\left(v_{n} v_{1}\right)=\frac{k-2}{4}$,
$f\left(u_{i} v_{i}\right)=2$ for $1 \leq i \leq n$,
$f\left(u_{i} u_{i+1}\right)=\frac{k}{2} \quad$ for $1 \leq i \leq n-1$,
$f\left(u_{n} u_{1}\right)=\frac{k}{2}$.
Then the induced vertex labeling $f^{+}: V\left(C H_{n}\right) \rightarrow Z_{k}-\{0\}$ is $f^{+}(v) \equiv 2(\bmod k)$ for all $v \in V\left(C H_{n}\right)$. Thus f^{+}is constant and it is equal to $2(\bmod k)$. Hence the closed helm graph $C H_{n}$ is Z_{k}-magic.

The examples of Z_{6}-magic labeling of CH_{3} and Z_{8}-magic labeling of CH_{4} are shown in Figure 4.

Z_{6}-magic labeling of CH_{3}

Z_{8}-magic labeling of CH_{4}

Figure 4

Theorem 2.5. The lotus inside a circle graph $L C_{n}$ is $Z_{4 k}$-magic when $n>2$.
Proof. Let the vertex set and the edge set of $L C_{n}$ be $V(G)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}\right.$, $\left.\ldots, u_{n}\right\}$ and $E(G)=\left\{v_{0} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} u_{i+1}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{v_{n} u_{1}\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\}$ respectively.
We consider the following two cases.
Case(i): n is odd.

Define the edge labeling $f: E\left(L C_{n}\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v_{0} v_{i}\right)=\frac{k}{2}$ for $1 \leq i \leq n, \quad f\left(u_{i} v_{i}\right)=\frac{k}{2}$ for $1 \leq i \leq n$,
$f\left(v_{i} u_{i+1}\right)=\frac{k}{2}$ for $1 \leq i \leq n-1, \quad f\left(v_{n} u_{1}\right)=\frac{k}{2}$,
$f\left(u_{i} u_{i+1}\right)=\frac{k}{4}$ for $1 \leq i \leq n-1, \quad f\left(u_{n} u_{1}\right)=\frac{k}{4}$.
Then the induced vertex labeling $f^{+}: V\left(L C_{n}\right) \rightarrow Z_{k}-\{0\}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(L C_{n}\right)$.
Case(ii): n is even.
Define the edge labeling $f: E\left(L C_{n}\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v_{0} v_{i}\right)=\frac{k}{2}$ for $1 \leq i \leq n, \quad f\left(u_{i} v_{i}\right)=\frac{k}{4}$ for $1 \leq i \leq n$,
$f\left(v_{i} u_{i+1}\right)=\frac{k}{4}$ for $1 \leq i \leq n-1, f\left(v_{n} u_{1}\right)=\frac{k}{4}$,
$f\left(u_{i} u_{i+1}\right)=\frac{k}{4}$ for $1 \leq i \leq n-1, \quad f\left(u_{n} u_{1}\right)=\frac{k}{4}$.
Then the induced vertex labeling $f^{+}: V\left(L C_{n}\right) \rightarrow Z_{k}-\{0\}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(L C_{n}\right)$. Thus f^{+}is constant and it is equal to $0(\bmod k)$. Hence the lotus inside a circle graph $L C_{n}$ is $Z_{4 k}$-magic.

The examples of Z_{4}-magic labeling of $L C_{5}$ and $L C_{4}$ are shown in Figure 5.

Figure 5
Theorem 2.6. The two odd cycles connected by a path P_{n} denoted by $P_{n}\left(C_{1}, C_{2}\right)$ is Z_{k}-magic when k is even and $k \neq 2$.

Proof. Let $P_{n}\left(C_{1}, C_{2}\right)$ be a graph obtained by joining two odd cycles by a path P_{n}. Let the vertex set and the edge set of $P_{n}\left(C_{1}, C_{2}\right)$ be $V\left(P_{n}\left(C_{1}, C_{2}\right)\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime}: 1 \leq\right.$ $i \leq n\} \cup\left\{v_{n}=u_{1}, u_{2}, \ldots, u_{n}=v_{n}^{\prime}\right\}$ and $E(G)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\} \cup\left\{u_{i} u_{i+1}\right.$: $1 \leq i \leq n-1\} \cup\left\{v_{i}^{\prime} v_{i+1}^{\prime}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n}^{\prime} v_{1}^{\prime}\right\}$ respectively.
We consider the following two cases.
Case(i): $k \equiv 0(\bmod 4)$.
Define the edge labeling $f: E\left(P_{n}\left(C_{1}, C_{2}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v_{i} v_{i+1}\right)=f\left(v_{i}^{\prime} v_{i+1}^{\prime}\right)= \begin{cases}\frac{k}{4}, & \text { if } i \text { is odd, } \\ \frac{3 k}{4}, & \text { if } i \text { is even. }\end{cases}$
$f\left(u_{i} u_{i+1}\right)=\frac{k}{2}$ for $1 \leq i \leq n$.
Then the induced vertex labeling $f^{+}: V\left(P_{n}\left(C_{1}, C_{2}\right)\right) \rightarrow Z_{k}-\{0\}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(P_{n}\left(C_{1}, C_{2}\right)\right)$.

Case(ii): $k \equiv 2(\bmod 4)$.
Define the edge labeling $f: E\left(P_{n}\left(C_{1}, C_{2}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v_{i} v_{i+1}\right)= \begin{cases}\frac{k+2}{4}, & \text { if } i \text { is odd, } \\ \frac{3 k-2}{4}, & \text { if } i \text { is even. }\end{cases}$
$f\left(u_{i} u_{i+1}\right)= \begin{cases}\frac{k}{2}-1, & \text { if } i \text { is odd, } \\ \frac{k}{2}+1, & \text { if } i \text { is even. }\end{cases}$
If n is odd
$f\left(v_{i}^{\prime} v_{i+1}^{\prime}\right)= \begin{cases}\frac{k+2}{4}, & \text { if } i \text { is odd, } \\ \frac{3 k-2}{4}, & \text { if } i \text { is even. }\end{cases}$
If n is even
$f\left(v_{i}^{\prime} v_{i+1}^{\prime}\right)= \begin{cases}\frac{k+2}{4}, & \text { if } i \text { is even, } \\ \frac{3 k-2}{4}, & \text { if } i \text { is odd. }\end{cases}$
Then the induced vertex labeling $f^{+}: V\left(P_{n}\left(C_{1}, C_{2}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(P_{n}\left(C_{1}, C_{2}\right)\right)$. Thus f^{+}is constant and it is equal to $0(\bmod k)$. Hence $P_{n}\left(C_{1}, C_{2}\right)$ is Z_{k}-magic.

An example of Z_{8}-magic labeling of $P_{5}\left(C_{5}, C_{9}\right)$ is shown in Figure 6 .

Fiure 6: Z_{8}-magic labeling of $P_{5}\left(C_{5}, C_{9}\right)$
Theorem 2.7. If G is Z_{m}-magic with the magic constant a then $G \odot \overline{K_{m}}$ is Z_{m}-magic for all $m \geq 2$.

Proof. Let G be any graph with the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let G is Z_{m}-magic with magic constant a where $a \in Z_{m}-\{0\}$. Therefore $f^{+}(v) \equiv a(\bmod m)$ for $1 \leq i \leq n$. Let $G \odot \overline{K_{m}}$ be the corona graph. Let the vertex set and the edge set of $G \odot \overline{K_{m}}$ is $V\left(G \odot \overline{K_{m}}\right)=V(G) \cup\left\{v_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and $E\left(G \odot \overline{K_{m}}\right)=E(G) \cup\left\{v_{i} v_{i}^{j}: 1 \leq\right.$ $i \leq n, 1 \leq j \leq m\}$ respectively.
Let $a \in Z_{k}-\{0\}$.
Define the edge labeling $g: E\left(G \odot \overline{K_{m}}\right) \rightarrow Z_{m}-\{0\}$ as follows:
$g(e)=f(e)$ for $e \in E(G)$,
$g\left(v_{i} v_{i}^{j}\right)=a \quad$ for $1 \leq i \leq n, 1 \leq j \leq m$.
Then the induced vertex labeling $g^{+}: V\left(G \odot \overline{K_{m}}\right) \rightarrow Z_{m}$ is
$g^{+}\left(v_{i}\right)=f^{+}\left(v_{i}\right)+m a$ for $1 \leq i \leq n$,
$=a+m a \equiv a(\bmod m)$.
$g^{+}\left(v_{i}^{j}\right)=a$ for $1 \leq i \leq n, 1 \leq j \leq m$.
Thus g^{+}is constant and it is equal to $a(\bmod m)$. Hence $G \odot \overline{K_{m}}$ is Z_{m}-magic.
An example of Z_{3}-magic labeling of $C_{4} \odot \overline{K_{3}}$ is shown in Figure 7 .

Figure 7: Z_{3}-magic labeling of $C_{4} \odot \overline{K_{3}}$
Theorem 2.8. The m-splitting graph of a path $\operatorname{Spl}_{m}\left(P_{n}\right)$ is Z_{k}-magic when n is even and $k>(2 m-3) a$ for any integers $m \in N-\{1\}$ and $a \in Z_{k}-\{0\}$.

Proof. Let P_{n} be the path $v_{1}, v_{2}, \ldots, v_{n}$. Let $S p l_{m}\left(P_{n}\right)$ be the m-splitting graph of a path P_{n}. Let n be even such that $k>(2 m-3) a$ for any integers $m \in N-\{1\}$ and $a \in Z_{k}-\{0\}$. Let the vertex set and the edge set of $\operatorname{Spl}_{m}\left(P_{n}\right)$ be $V\left(\operatorname{Spl}_{m}\left(P_{n}\right)\right)=\left\{v_{i}: 1 \leq\right.$ $i \leq n\} \cup\left\{v_{i}^{j}: 1 \leq i \leq n\right.$ and $\left.1 \leq j \leq m-1\right\}$ and $E\left(S p l_{m}\left(P_{n}\right)\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{v_{i} v_{i+1}^{j}: 1 \leq i \leq n-1\right.$ and $\left.1 \leq j \leq m-1\right\} \cup\left\{v_{i}^{j} v_{i+1}: 1 \leq i \leq n-1\right.$ and $1 \leq j \leq m-1\}$ respectively.
Let $a \in Z_{k}-\{0\}$ be an integer and $k>(2 m-3) a$.
Define the edge labeling $f: E\left(S p l_{m}\left(P_{n}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v_{1} v_{2}\right)=2 a$,
$f\left(v_{n-1} v_{n}\right)=k-(2 m-3) a$,
$f\left(v_{i} v_{i+1}\right)= \begin{cases}a, & \text { if } i \text { is odd, } \\ k-(m-1) a, & \text { if } i \text { is even. }\end{cases}$
$f\left(v_{i} v_{i+1}^{j}\right)=k-a$ for $1 \leq i \leq n-2,1 \leq j \leq m-1$,
$f\left(v_{i}^{j} v_{i+1}\right)=2 a$ for $2 \leq i \leq n-1,1 \leq j \leq m-1$,
$f\left(v_{n}^{j} v_{n-1}\right)=a$ for $1 \leq j \leq m-1$,
$f\left(v_{1}^{j} v_{2}\right)=a$ for $1 \leq j \leq m-1$.
Then the induced vertex labeling $f^{+}: V\left(S p l_{m}\left(P_{n}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv a(\bmod k)$ for all $v \in V\left(S p l_{m}\left(P_{n}\right)\right)$. Thus f^{+}is constant and it is equal to $a(\bmod k)$. Hence m-splitting graph of a path $\operatorname{Spl}_{m}\left(P_{n}\right)$ is Z_{k}-magic.

An example of Z_{k}-magic labeling of $S p l_{4}\left(P_{8}\right)$ is shown in Figure 8.

Figure 8: Z_{k}-magic labeling of $\operatorname{Spl}_{4}\left(P_{8}\right)$
Theorem 2.9. The m-shadow graph of a path $D_{m}\left(P_{n}\right)$ is Z_{k}-magic for all $m, n>2$.
Proof. Consider m copies of P_{n}. Let $u_{1}^{j}, u_{2}^{j}, \ldots, u_{n}^{j}$ be the vertices of the $j^{\text {th }}$-copy of $P_{n}, 1 \leq j \leq m$. Let $D_{m}\left(P_{n}\right)$ be a m-shadow graph of a path P_{n}, then $\left|V\left(D_{m}\left(P_{n}\right)\right)\right|=m n$ and $\left|E\left(D_{m}\left(P_{n}\right)\right)\right|=m^{2}(n-1)$.
Let $a \in Z_{k}-\{0\}$ be an integer and $k>(m-1) a$.
Define the edge labeling $f: E\left(D_{m}\left(P_{n}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(u_{i}^{j} u_{i+1}^{j}\right)=k-(m-1) a$,
$f(e) \quad=a$ for all other edges of $E(G)$.
Then the induced vertex labeling $f^{+}: V\left(D_{m}\left(P_{n}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(D_{m}\left(P_{n}\right)\right)$. Thus f^{+}is constant and it is equal to $0(\bmod k)$. Hence m-shadow graph of a path $D_{m}\left(P_{n}\right)$ is Z_{k}-magic.

An example of Z_{k}-magic labeling of $D_{3}\left(P_{4}\right)$ is shown in Figure 9 .

Figure 9: Z_{k}-magic labeling of $D_{3}\left(P_{4}\right)$
Theorem 2.10. The graph $C E\left(C_{1}, C_{2}\right)$ of two cycles C_{1} and C_{2} with a common edge is Z_{k}-magic if one of the cycle C_{1} or C_{2} is an even cycle.

Proof. Let $C E\left(C_{1}, C_{2}\right)$ be a graph of two cycles with a common edge. Let u and v be the end vertices of the common edge. Let u_{1} and v_{1} are the vertices adjacent to u and v in C_{1} and u_{2} and v_{2} are the vertices adjacent to u and v in C_{2}. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be the distinct elements from $Z_{k}-\{0\}$ such that $\alpha_{1}+\alpha_{2} \not \equiv 0(\bmod k)$ and $\alpha_{1}+\alpha_{3} \not \equiv 0(\bmod k)$. Assign α_{1} to the common edge $u v$.
We consider the following two cases.
Case (i): C_{1} and C_{2} are even cycles.
Label the edges of C_{1} starting from $u u_{1}$ with α_{2} and $\alpha_{1}+\alpha_{3}$ alternately. Then the edge $v v_{1}$ receives the label α_{2}. Again label the edges of C_{2} starting from $u u_{2}$ with α_{3} and $\alpha_{1}+\alpha_{2}$ alternately. Then the edge $v v_{2}$ receives the label α_{3}. Hence all the vertices of $C E\left(C_{1}, C_{2}\right)$ get the sum $\alpha_{1}+\alpha_{2}+\alpha_{3}$.
Case (ii): Either C_{1} or C_{2} is even cycle.
Suppose that C_{1} is an odd cycle and C_{2} is an even cycle. Assign the label α_{1} to the common edge and α_{2} to all the edges of C_{1}. Also label the edges of C_{2} starting from $u u_{2}$ with $\alpha_{2}-\alpha_{1} v v_{1}$ and $\alpha_{1}+\alpha_{2}$ alternately. Then $v v_{2}$ receives the label $\alpha_{2}-\alpha_{1}$. Hence all the vertices of $C E\left(C_{1}, C_{2}\right)$ get the label $2 \alpha_{2}$.
Then $C E\left(C_{1}, C_{2}\right)$ is Z_{k}-magic.
An example of Z_{k}-magic labeling of $C E\left(C_{1}, C_{2}\right)$ are shown in Figure 10.

Figure 10: Z_{k}-magic labeling of $C E\left(C_{1}, C_{2}\right)$

References

[1] Jeyanthi, P. and Jeya Daisy, K. Z_{k}-magic labeling of open star of graphs, Bulletin of the International Mathematical Virtual Institute, 7 (2017), 243-255.
[2] Jeyanthi, P. and Jeya Daisy, K. Z_{k}-magic labeling of subdivision graphs, Discrete Math. Algorithm. Appl., 8(3) (2016), [19 pages] DOI: 10.1142/ S1793830916500464.
[3] Jeyanthi, P. and Jeya Daisy, K. Certain classes of Z_{k}-magic graphs, Journal of Graph Labeling, 4(1) (2018), 38-47.
[4] Jeyanthi, P. and Jeya Daisy, K. Some results on Z_{k}-magic labeling, Palestine Journal of Mathematics, to appear.
[5] Gallian, J.A. A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 2017, \#DS6.
[6] Kavitha, K. and Thirusangu, K. Group magic labeling of cycles with a common vertex, International Journal of Computing Algorithm, 2 (2013), 239-242.
[7] Low, R.M and Lee, S.M. On the products of group-magic graphs, Australas. J. Combin., 34 (2006), 41-48.
[8] Sedláček, J. On magic graphs, Math. Slov., 26 (1976), 329-335.
[9] Shiu, W.C., Lam, P.C.B. and Sun, P.K. Construction of magic graphs and some A-magic graphs with A of even order, Congr. Numer., 167 (2004), 97-107.
[10] Shiu, W.C. and Low, R.M. Z_{k}-magic labeling of fans and wheels with magic-value zero, Australas. J. Combin., 45 (2009), 309-316.

[^0]: *Corresponding author: P. Jeyanthi. Email: jeyajeyanthi@rediffmail.com
 †jeyadaisy@yahoo.com

