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Abstract

A total number of 1099 data points consisting of alcohol-alcohol, al-
cohol-alkane, alkane-alkane, alcohol-amine, and acid-acid binary solu-
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in order to predict the refractive index of binary solutions. The op-

neurons in the hidden layer, respectively. The results revealed that the 
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1. Introduction
he refractive index of a substance is de-
fined as the ratio of the velocity of light in 
the vacuum to the velocity of light in the 

considered medium. This thermodynamic proper-
ty depends on temperature and pressure for any 
pure fluid [1]. When the measurement of other 
thermodynamic properties is time-consuming, it 
is more convenient to measure the refractive in-
dex [2]. 

The refractive index of each material is a function 
of temperature but this function is different for 
each material. The refractive index may increase 
or decrease with temperature which depends on 
the medium. 

The most general form of the Lorentz–Lorenz 
equation which describes the refractive index is 
as follows: 

  (1) 

where  is the refractive index,  is the number 
of molecules per unit volume, and  is the 
mean polarizability. This equation gives good es-

T 
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timates for liquids, solids and homogeneous sol-
ids. 

For many gases the square of the refractive index 
is , so this equation reduces to: 

  (2) 

Or simply: 

    (3) 

This applies to gases at ordinary pressures. The 
refractive index of the gas may be expressed in 
terms of the molar refractivity as: 

 (4)          

where P is the pressure of the gas, R is 
the universal gas constant, and T is the absolute 
temperature. These parameters determine N 
which is the number density [3]. It is known that 
the refractive index for most glasses increases 
with temperature, while for plastic polymers, the 
opposite is true. The refractive index of water 
decreases with temperature. The decrease in the 
refractive index of most organic liquids with tem-
perature is usually greater than water [4]. 

Refractive index has many applications, but the 
most important one may be the identification or 
concentration measurement of a specific sub-
stance. Generally, the refractive index is used to 
measure the concentration of solutes in aqueous 
solutions. For instance, in an aqueous sugar solu-
tion, the refractive index may be used to deter-
mine the sugar content (Brix degree), also it may 
be used to determine the drug concentration in 
the pharmaceutical industry. Another application 
of the refractive index may be the estimation of 
thermo-physical properties of hydrocarbons and 
petroleum mixtures [5]. 

Some empirical equations have been used to pre-
dict the refractive index. The relationship be-
tween refractive index, density and other physical 
properties of hydrocarbons investigated was by 
Lipkin and Martin: 

 (5) 

where  is the refractive index at  for the D 
line of sodium,  is the density at  and  is 

 temperature coefficient of density ( , 
which is obtained from the approximate molecu-
lar weight [6]. 

The relation between refractive index with sur-
face tension was introduced by Deetlefs for ionic 
liquids as below: 

  (6)       

where  is the refractive index,  is the para-
chor, a surface-tension-weighted molar volume, 
and  is the molar refraction [7]. 

Sattari and his colleagues developed a based-
group contribution method to predict the refrac-
tive indices of ionic liquids and they observed 
that the refractive index is a linear function of the 
temperature. 

        (7) 

  (8) 

 (9) 

where  is the number of occurrences of the ith 
functional group of anions and cations, k is the 
total number of different functional groups of  the 
anions and cations, and  and  are the relevant 
coefficients of  the ith functional group [8]. 

There are numerous empirical equations based 
on experimental measurements for the prediction 
of the refractive index but these correlations have 
certain limitations. They usually include a large 
number of coefficients for each equation, require 
a separate equation for each temperature and 
they are not able to predict several parameters 
simultaneously. Recently, intelligent modeling 
techniques such as the artificial neural network 
(ANN) are successfully used to predict the differ-
ent thermo physical properties. The most im-
portant characteristic of the neural network 
models is their flexibility to predict the nonlinear 
behavior of chemical properties and their ability 
to estimate any function with high dimensional 
data. The mechanism of the ANN models is to 
construct relationships between the input and 
output data and predict the properties with 
reasonable accuracy [9, 10]. Recently, ANN mod-
els have been used to predict different thermody-
namic properties such as viscosity, density, elec-
trical conductivity, porosity, hardness and so on 
[11-18]. 

 The method of evaluating properties using avail-
able experimental data to generate a model for 
predicting properties is called predictive compu-
ting [19]. Selection of an appropriate computer 
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algorithm such as the ANN is a vital step in this 
computational procedure. 

 Although the refractive index of some pure and a 
few mixtures was reported in the literature, these 
limited experimental data still cannot satisfy the 
requirements for their wide applications. Besides, 
experimental measurements are time-consuming 
and relatively expensive and are not always 
available, so estimation methods have been wide-
ly used instead of the rare experimental data [20].

The main purpose of this work is to develop a 
predictive model for the refractive index of binary 
mixtures. Specifically, it defines the best neural 
architecture using the ANN along with the pa-
rameters correlated with it, and it predicts the 
refractive index of the studied systems from the 
calculated empirical parameters. 

For better response, the neural network trained 
by genetic (GA) and particle swarm optimization 
algorithm (PSO) independently. 

2. Theory
In this section, the techniques of ANN, GA and 
PSO are briefly presented.  

2.1. Artificial neural network algorithm (ANN) 

The applicability of ANN in process industries 
and scientific research has been growing contin-
uously in recent years [21]. Given adequate ex-
perimental data, the ANN model is able to approx-
imate any continuous function with a satisfactory 
accuracy. The adequate performance of an ANN 
depends on several main elements. The first ele-
ment is related to the collection of the input and 
output data. The second element is the type of the 
network architecture. Different network architec-
tures may result in different estimations with 
varying degrees of accuracy. The third element is 
the model size and the problem complication. The 
model size and the problem complication have to 
be proportional to each other and the last ele-
ment is related to the network training. In this 
paper like many other research papers in ANN 
modeling, the focus is on this last item [22]. 

ANN is a non-linear learning mathematical model 
that follows the human brain procedures. This 
technique is used in various scientific and engi-

neering areas including prediction of physical and 
chemical properties. The input data is moved 
across any two successive layers and in each 
layer, the data is weighted and then passed to the 
next layer through a proper transfer function. In 
the training stage, the ANN revises the weights 
and biases of each neuron [19]. 

Gradient descent algorithms such as Back-
Propagation (BP) method are used by many re-
searchers in recent years. These researchers have 
included some of the advantages of these meth-
ods such as adequate implementations, better 
fine-tuning, and quicker convergence. However, 
some other researchers have listed the disad-
vantages of these methods such as involving in 
local minima and ill performances. So the com-
mon gradient search method is may be trapped in 
local optima. This is however not the case for 
Evolutionary Algorithms (EAs) which have better 
chances to reach the global optimal [22]. On the 
other hand, these algorithms are suitable for 
complicated problems [23]. Many different at-
tempts have been tried by several researchers to 
solve this problem including imposing constraints 
on the search area, restarting training, adjusting 
training parameters, and reconstruction of the 
ANN architecture [24]. One of the most successful 
methods is to make use of EAs such as PSO, and 
GAs to train the ANNs. PSO or GA are global 
search algorithms and are more appropriate for 
local minima problems [25, 26]. 

When these algorithms are applied to neural 
networks, they find the best neural network ar-
chitecture, optimizing the neural network learn-
ing parameters, and weights. In this way, emer-
gence EAs and ANN may improve the predictive 
power of simple ANN, PSO or GA models [22].  

2.2. Genetic algorithm (GA) 

GA refers to a class of search algorithms that is 
known as Evolutionary Algorithms [27]. GA is 
based on the rule of “survival of fittest”, referring 
to natural phenomena of genetic heredity. This 
algorithm operates on a population of individuals 
giving potential solutions to a certain problem. A 
single individual usually is affected by other 
neighboring individuals. Normally, the “fittest” 
individual has a greater chance to survive and 
multiply. This in turn heirs the good parental ge-
netic information. Hence, after various genera-
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tions, only the better individuals will survive. In 
general, GA may be applied to a wide range of 
optimization problems. GA was created to solve 
sequential decision processes but recently, it has 
been applied widely in both optimization and 
learning problems [28, 29]. The two main sub-
jects in searching strategies for optimization 
problems are: exploiting the best solution and 
discovery of the search area [30, 31]. GA makes a 
balance between these two main subjects and 
also avoids the local minima. Fundamentally, the 
operation of weights evolution using GA belonged 
to the number of populations and generations. If 
these parameters were set nominal, the evolution 
may converge to a premature solution. However, 
the larger number of populations and generations 
would require longer convergence times [32]. 

The steps of GA to reach the optimum connection 
weights of ANN may be listed as follows: 

At the first step, the primary population of ran-
dom weights was generated to create the original 
ANN. Then the ANN was improved using the pop-
ulation weights by computing the training error. 
At the next section parents for genetic manipula-
tion were selected and a new population of 
weights was constructed. 

At the last section, the most appropriate popula-
tion of weights was designated as the sequel of 
the performed GA, for the weights evolved using 
GA. The procedure may be terminated when the 
number of generation reaches a certain number 
[33]. 

Since the back propagation error algorithm is too 
slow, GA may be used to select the primary 
weight. In other words, by a combination of neu-
ral network with GA, the performance of the re-
sults may increase. In this research, in both train-
ing and testing data, GA was used to optimize the 
basic ANN behavior. 

2.3. Particle swarm optimization (PSO) 

PSO is a global optimization method introduced 
by Eberhart and Kennedy [33, 34]. The funda-
mental motivation of PSO algorithm was the so-
cial natural phenomena, such as flocks of birds 
and schools of fish in order to direct swarms of 
particles towards the most promising search ar-
ea. PSO has shown a good performance in static 
optimization problems. In this method, a popula-

tion of individuals is exploited to find the promis-
ing regions of the search area. In this study, we 
call the population a swarm and the individuals 
are called particles. Each particle in the swarm 
may be considered as a candidate solution. Each 
particle may move with a compatible velocity 
through the search area. These particles adjust 
their positions according to their own experience 
and also the experience of the neighboring parti-
cles. The mutual effect may be described as the fly 
of the particles towards the global minimum [35-
37]. A predefined function describes the close-
ness of particles to the global minimum. In this 
research, a particle demonstrates the weight vec-
tor of ANNs, including biases. The dimension of 
the search area may be defined as the total num-
ber of weights and biases [22]. 

The PSO procedure can be described as follows. 
At first, a population size, locations, and velocities 
of factors, and the number of weights and biases 
were initialized. Then, the current best fitness 
attained by particle p was set as   .The   
with the best value was set as  and stored. 
Subsequently, the agreeable optimization fitness 
function fp was evaluated for each particle as the 
Mean Square Error (MSE). Then, the evaluated 
fitness value fp of each particle was contrasted 
with its  value. If then 

 and . where xp stands 
for the current coordinates of particle p, and the 
best xp stands for the coordinates corresponding 
to the best fitness of particle p. The objective 
function value was obtained for new locations of 
each particle. If a better position was obtained, 

 value was replaced. As in Step 1, val-
ue was selected among   values. If the new 

 value was better than the previous one, the 
value was replaced. If  then 

, where  is the particle having the 
overall best fitness over all particles in the 
swarm. The velocity and location of the particle 
may change due to the Eqs. 9 and 10, respectively 
[14, 19]. Then each particle p may fly according to 
Eq. 10. If you reach the maximum number of iter-
ations, the procedure would be terminated; oth-
erwise the procedure was looped to step 3 until 
convergence. 

   (10) 
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where acc stands for the acceleration constant, 
and rand returns a uniform random number be-
tween 0 and 1. 

  (11)

 is the current velocity, 1 is the former veloci-
ty, xp is the present particle location, xpp is the 
former particle location, and i is the particle in-
dex. In the last step the coordinates bestxp and 
best x  are used to find the global minimum. 

Similarly, the PSO algorithm was also applied to 
obtain the initial weights of the neural network. 
The inputs are the initial weights that should be 

calculated and the output is the summation of 
errors that should be minimized. 

2.4. Data bank 

Since this research is purely computational, all 
the data (experimental) needed for the calcula-
tions were taken from literature [38-46]. A total 
number of 1099 experimental data points for the 
refractive index were gathered in which the de-
tails are presented in Table 1, including the tem-
perature range, mole fraction range, refractive 
index range, number of data points and the refer-
ences. 

Table 1. Name and specification of compounds 

compound T/K range mole fraction refractive index data 
points reference 

methanol+n-pentane 298.15 0.0464-0.9734 1.3274-1.35359 10 [33] 
methanol+n-hexane 298.15 0.0532-0.9771 1.32871-1.77118 11 [33] 
methanol+n-heptane 298.15 0.0171-0.9765 1.32993-1.3838 9 [33] 
methanol+n-octane 298.15 0.0367-0.9853 1.32962-1.39465 8 [33] 
ethanol+n-pentane 298.15 0.0673-0.9174 1.3541-1.35823 10 [33] 
ethanol+n-hexane 298.15 0.0569-0.9673 1.35988-1.37167 9 [33] 
ethanol+n-heptane 298.15 0.0831-0.9744 1.36044-1.38382 9 [33] 
ethanol+n-octane 298.15 0.0986-0.9773 1.3611-1.39295 9 [33] 
1-propanol+n-pentane 298.15 0.0291-0.9586 1.35502-1.38162 10 [33] 
1-propanol+n-hexane 298.15 0.1148-0.9594 1.37249-1.3823 9 [33] 
1-propanol+n-heptane 298.15 0.0919-0.967 1.38398-1.38441 10 [33] 
1-propanol+n-octane 298.15 0.1018-0.9677 1.385-1.39375 9 [33] 
octane+ethanol 298.15 0.0686-0.9212 1.3641-1.3939 18 [34] 
octane+propanol 298.15 0.0237-0.9245 1.3835-1.3943 18 [34] 
octane+butanol 298.15 0.0453-0.9376 1.3948-1.397 15 [34] 
octane+pentanol 298.15 0.0189-0.9457 1.3955-1.4075 17 [34] 
octane+hexanol 298.15 0.0515-0.959 1.3956-1.4147 17 [34] 
octane+heptanol 298.15 0.0616-0.9111 1.3971-1.4205 17 [34] 
octane+octanol 298.15 0.0641-0.9635 1.3961-1.4257 16 [34] 
pentane+hexane 298.15 0.1045-0.8997 1.3569-1.3715 9 [35] 
pentane+heptane 298.15 0.1046-0.8929 1.359-1.3826 9 [35] 
pentane+octane 298.15 0.1059-0.9035 1.361-1.3925 9 [35] 
pentane+nonane 298.15 0.1995-0.904 1.3626-1.3975 8 [35] 
pentane+decane 298.15 0.1031-0.9008 1.365-1.4068 9 [35] 
pentane+undecane 298.15 0.0962-0.8967 1.3805-1.4152 9 [35] 
pentane+dodecane 298.15 0.1094-0.8991 1.3684-1.4164 9 [35] 
pentane+hexadecane 298.15 0.3099-0.9029 1.3747-1.4233 7 [35] 
hexane+heptane 298.15 0.1059-0.8993 1.3745-1.3841 9 [35] 
hexane+octane 298.15 0.1072-0.9018 1.3761-1.3937 9 [35] 
hexane+nonane 298.15 0.1073-0.9035 1.3772-1.4009 9 [35] 
hexane+decane 298.15 0.1074-0.9036 1.3788-1.4074 9 [35] 
hexane+dodecane 298.15 0.1128-0.9037 1.381-1.4168 9 [35] 
hexane+hexadecane 298.15 0.1046-0.9026 1.3864-1.4306 9 [35] 
heptane+octane 298.15 0.1073-0.9012 1.3873-1.3945 9 [35] 
heptane+nonane 298.15 0.1102-0.8996 1.3875-1.4021 9 [35] 
heptane+decane 298.15 0.0985-0.903 1.3886-1.4086 9 [35] 
heptane+undecane 298.15 0.1084-0.8998 1.3943-1.413 9 [35] 
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compound T/K range mole fraction refractive index data 
points 

reference 

heptane+dodecane 298.15 0.1076-0.9039 1.3907-1.4174 9 [35] 
heptane+hexadecane 298.15 0.167-0.9019 1.3946-1.4316 9 [35] 
octane+nonane 298.15 0.1092-0.9025 1.3963-1.4027 9 [35] 
octane+decane 298.15 0.2142-0.9058 1.3968-1.4027 9 [35] 
octane+undecane 298.15 0.1011-0.9039 1.3975-1.4132 9 [35] 
octane+dodecane 298.15 0.1117-0.9048 1.3982-1.4177 9 [35] 
octane+hexadecane 298.15 0.1039-0.9049 1.4015-1.4308 9 [35] 
nonane+decane 298.15 0.1051-0.897 1.4043-1.4093 9 [35] 
nonane+undecane 298.15 0.1034-0.9038 1.4045-1.4136 9 [35] 
nonane+dodecane 298.15 0.0957-0.9023 1.4054-1.4183 9 [35] 
nonane+hexadecane 298.15 0.1105-0.8988 1.4084-1.4323 9 [35] 
decane+undecane 298.15 0.1074-0.9056 1.4105-1.4148 9 [35] 
decane+dodecane 298.15 0.1071-0.9045 1.4115-1.419 9 [35] 
decane+hexadecane 298.15 0.151-0.9041 1.417-1.4328 9 [35] 
undecane+dodecane 298.15 0.106-0.9084 1.4156-1.4192 9 [35] 
undecane+hexadecane 298.15 0.1095-0.9031 1.4182-1.4331 9 [35] 
dodecane+hexadecane 298.15 0.1077-0.905 1.4218-1.4331 9 [35] 
hexadecane+1-butanol 298.15-318.15 0.0903-0.9628 1.396-1.4347 30 [36] 
hexadecane+1-pentanol 298.15 0.0831-0.9314 1.4101-1.4345 10 [36] 
hexadecane+1-hexanol 298.15 0.0791-0.9184 1.4105-1.4347 10 [36] 
hexadecane+1-heptanol 298.15 0.0893-0.9242 1.4123-1.4346 10 [36] 
heptadecane+1-butanol 298.15 0.0867-0.9379 1.3996-1.4357 10 [36] 
heptadecane+1-pentanol 298.15 0.1472-0.898 1.4103-1.4357 10 [36] 
heptadecane+1-hexanol 298.15 0.0961-0.9107 1.4189-1.4356 10 [36] 
heptadecane+1-heptanol 298.15 0.305-0.9194 1.4268-1.4357 8 [36] 
methanol+2methyl,1butanol 298.15 0.0485-0.9503 1.33618-1.40702 19 [37] 
ethanol+2methyl,1butanol 298.15 0.0486-0.9503 1.36358-1.40734 18 [37] 
propanol+2methyl,1butanol 298.15 0.051-0.949 1.38483-1.40768 19 [38] 
propanol+3methyl,1butanol 298.15 0.05-0.95 1.38458-1.40447 19 [38] 
heptanoic acid+propanoic acid 293.15-313.15 0.0539-0.95 1.3816-1.4223 55 [39] 
heptanoic acid+butanoic acid 293.15-313.15 0.0559-0.9575 1.392-1.4226 55 [39] 
1-Propanol+ dicyclohexylamine 288.15-323.15 0.0527-0.9491 1.38876-1.48522 88 [40] 
1-butanol+ dicyclohexylamine 288.15-323-15 0.0512-0.9493 1.39701-1.48502 88 [40] 
1-pentanol+dicyclohexylamine 288.15-323.15 0.0525-0.9495 1.40539-1.48486 88 [40] 

2.5. Criteria assessment of models 

The statistical parameters such as the mean 
squared error (MSE) and the coefficient of deter-
mination ( ) and the average absolute relation 
deviation (AARD) is applied for the performance 
assessment and to identify the accuracy of the 
developed ANN models which are defined as fol-
lows: 

Mean squared errors: 

(12) 

Average absolute relative deviations: 

(13) 

Squared correlation coefficients: 

(14) 

where is the predicted value using the ANN 
model, is the experimental value, N is the 
number of data, and  is the average of the ex-
perimental value. 

3. Results and Discussions
3.1. Model structure 

The ANN model applied in this research consists 
of ten input nodes representing temperature, 
mole fractions, molecular weights and 6 function-
al groups of CH3, CH2, CH, OH, NH and COOH. The 
output is the only target, refractive index. 
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Before performing the ANN training stage, a data 
set is obtained from the literature [33-41]. There 
is a difference in magnitude and dimension of 
experimental data, therefore it should be normal-
ized before being training stage. Manifold ANN 
structures were considered to choose the most 
accurate architecture. The optimal number of 
neurons was specified by trial and error.  

The effectiveness of ANN in training stage must 
improve with augmenting the number of neurons, 
while the effectiveness of ANN in testing stage 
results in optimum value at an optimal number of 
hidden neurons. After training the ANN success-
fully, the trained network model was used to pre-
dict the testing data set and the comparison of the 
predicted and experimental data was carried out. 
The trained model was then assumed successful if 
the model would have given good outcomes for 
the testing data set. As mentioned above, the ANN 
training was started with 1 neuron in the hidden 
layer and piecemeal the neuron number in-
creased. 

The architecture consists of one input layer fol-
lowed by a hidden layer and an output layer. 
Aside from temperature, the mole fraction of the 
first component and molecular weights, the input 
set consists of 6 functional groups of CH3, CH2, CH, 
OH, NH and COOH. The optimal number of neu-
rons was determined according to the lowest 
AARD%. The optimal ANN-GA consisted of 13 
neurons in the hidden layer and the optimal ANN-
PSO consisted of 16 neurons in the hidden layer. 
Thus, the best ANN topology was attained as (10-
13-1) for ANN-GA and (10-16-1) for ANN-PSO.

3.2. ANN-GA model 

The combination of ANN and GA was used. This 
means that the weights of the neural network 
were determined using GA. First, the structure of 
the neural network should have been determined 
by the user. That was the number of neurons. 
Then, the neural network weights were deter-
mined by using a GA. The GA is capable to opti-
mize and minimize an objective function, which 
here should be minimized, is the difference be-
tween the actual data and output data of a neural 
network. This means that, at any stage, weight 
coefficients were selected and neural network 
output was calculated, and its difference with the 
actual data was obtained, which in fact was the 

objective function value. In Fig. 2 the Objective 
function (MSE) is drawn by max generations.  

Figure 2. Objective function with the number of genera-
tions for ANN-GA model 

We inserted 1099 refractive indices in the data-
base, trained, validated and tested the network, 
and then, according to the output obtained after 
optimization of the weights by GA, the neural 
network is better trained. As a result, the refrac-
tive index that was predicted is very close to the 
actual refractive index. Figs. 3, 4 and 5 show the 
results of applying this algorithm for train and 
validation test data: 

Figure 3. Experimental and Predicted Train Data for 
ANN-GA model 

Figure 4. Experimental and Predicted Validation Data for 
ANN-GA model 
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Figure 5. Experimental and Predicted Test Data for ANN-
GA model  

3.3. ANN-PSO 

In this section, the particle swarm optimization 
algorithm was used to optimize the weights of the 
neural network to predict the refractive index of 
binary solutions. At this stage, 1099 refractive 
indices of the database were used. Figs. 6, 7 and 8 
show that the actual data and the model predic-
tions are in good agreement with each other.  The 
results are given in the Tables 2 and 3. 

Table 2. Results of prediction of binary solutions refrac-
tive indices using ANN-GA with 10-13-1 structure 

Data-set Classi-
fication MSE AARD% R2 

Train 0.0050181 8.2123 0.9091 
Validation 0.0059107 2.4611 0.9851 
Test 0.005117 1.4103 0.9884 

Figure 6. Experimental and Predicted Train Data for 
ANN-PSO model 

Table 3. Results of prediction of binary solutions refrac-
tive indices using ANN-PSO with 10-16-1 structure 

 Data-set 
Classification MSE AARD% R2 

Train 0.003836 7.9552 0.9944 
Validation 0.003535 1.6643 0.9843 
Test 0.003441 1.4024 0.9852 

Figure 7. Experimental and Predicted Validation Data for 
ANN-PSO model 

Figure 8. Experimental and Predicted Test Data for ANN-
PSO model  

4. Conclusions
An artificial neural network has been established 
to predict the refractive index of binary solutions 
including alcohol- alcohol, alcohol-alkane, alkane-
alkane, alcohol-amine and acid-acid mixtures. In 
order to improve the performance of the neural 
network, the training process has been done by 
the genetic and particle swarm optimization algo-
rithms independently, using 1099 data points 
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gathered from the published scientific literature. 
Temperature, the molecular weight of the pure 
components, the mole fraction of one component 
and 6 structural groups of the components were 
adapted as input parameters of the multi-layer 
perceptron neural network. The ANN-GA and 
ANN-PSO methodology have been compared with 
each other. The convergence performance and 
prediction accuracy of the PSO-based ANN are 
much better (MSE= 0.003441) than the GA based 
ANN (MSE=0.005117).  
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