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1. Introduction 

After the discovery by Iijima [1], carbon nanotubes (CNTs) 
have been used in many applications due to their superior physical, 
thermal and mechanical properties like material strength, low 
density, electrical and heat conductivity. Researchers have 
developed applications of CNTs in nanoelectromechanical 
products [2,3] like nano-bearing [4] or nano-gearbox [5] and 
pharmaceutical industry [6]. 

Static and dynamic analysis of CNTs are very important at the 
design stage. Magnetic field, temperature, density or concentration 
changes can affect the dynamics of the CNT, especially in 
torsional deformation. CNTs can be modeled using continuum and 
discrete models. In the discrete models, force and moment 
resultants on each node are solved by using static and dynamic 
equilibrium conditions. Lattice dynamics and molecular dynamic 
(MD) simulation are the discrete models. In these models 
numerical calculations take a lot of time because of the number of 
nodes. For example, the dynamic analysis of long or wide CNTs 
can take several days in some analysis. 

In continuum models, a CNT is assumed as a continuous elastic 
body. Elasticity theory can be used in the modeling of their static 
and dynamic behaviors. It is shown in previous studies that 
classical elasticity theory is inadequate in the mechanical 
modeling of CNTs due to its size independent modeling 
characteristics. Most materials exhibit size dependent elastic 

behavior in length scale range 1-50nm. Eringen [7,8] dealt with 
this problem and proposed length scale dependent nonlocal 
elasticity. Eringen calibrated his model by fitting nonlocal theory 
results to the lattice dynamics results. 

The magnetic field effect on CNTs has been recently 
investigated by researchers. Many studies have been published in 
the last years. Possible applications of magnetically sensitive 
CNTs have been developed by researchers. Ajiki and Ando [9] 
studied the electronic states of CNTs in a magnetic field. Bellucci 
et al. [10] investigated the vertical magnetic field effect on the 
transport properties of CNTs. Nanotube based field-effect 
transistors were studied by Fedorov et al. [11]. Magnetically 
driven torsional actuation of a multi-walled carbon nanotube 
(MWCNT) yarn artificial muscle was modeled by Lee et al. [12]. 

Wang et al. [13] dealt with the wave propagation problem of 
CNTs embedded in an elastic medium under the effect the 
longitudinal magnetic field. Li et al. [14] investigated the dynamic 
characteristics of MWCNTs under the effect of a transverse 
magnetic field. Li and Wang [15] achieved the dynamic analysis 
magneto-elastic CNTs with axial magnetic field effect. Murmu et 
al. investigated the longitudinal magnetic field effect on the 
vibration of a CNT system [16], transverse vibration of 
magnetically sensitive double-walled carbon nanotube (DWCNT) 
[17] and the influence of a transverse magnetic field on the axial 
vibration of CNTs [18]. Narendar et al. [19] studied the 
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longitudinal magnetic field effect on wave dispersion 
characteristics SWCNTs. Wang et al. [20] investigated the van der 
Waals interaction and transverse magnetic field effect on vibration 
characteristics of MWCNTs. Ghorbanpour Arani et al. 
investigated the longitudinal magnetic field effect on wave 
propagation in an embedded DWCNT conveying fluid [21] and 
nonlocal nonlinear vibration instability of a double-CNT system 
[22]. Li et al. [23] studied the buckling, bending and free vibration 
of magnetoelectroelastic nonlocal Timoshenko nanobeam. Wang 
et al. [24] investigated the wave propagation in a fluid-conveying 
SWCNT with temperature and magnetic field effects. Chang [25] 
studied the statistical nonlinear dynamic behaviors of a SWCNT 
subjected to a longitudinal magnetic field. 

Kiani has published remarkable papers about magnetic field 
effect on CNTs. Free transverse vibrations of elastically supported 
DWCNTs [26], free dynamic deflection of an elastically supported 
DWCNTs [27], the vibration and instability of a SWCNT [28] and 
free in-plane and out-of-plane vibrations of SWCNTs [29] with 
magnetic field effect were studied by Kiani. Also the axial 
buckling behavior [30], the axial load-bearing capacity [31] and 
the vibrations and instability of pre-tensioned current-carrying 
nanowires [32] were investigated by Kiani accounting the surface 
energy effect. 

In recent years, carbon nanotubes have been modeled as 
functionally graded (FG) material with size dependent theories in 
studies. FG nanoplates [33], bi-directional FG nanobeams [34,35], 
stress analysis of rotating FG nano-disks [36], FG nano-disks 
under thermoelastic loading [37], vibrations of three-
dimensionally graded nanobeams [38], pull-in behavior of FG 
nanobeams [39] and thermoelastic analysis of rotating FG nano-
disks have been investigated by researchers. Size dependent 
analysis for nanostructures were carried out in [40,41]. Adeli et al. 
studied the torsional vibration of nano-cone using nonlocal strain 
gradient theory. Farajpour et al. [42] investigated the nonlinear 
vibration, electrical and magnetic instabilities of nanofilms. Hadi 
et al. [43] modeled numerically of a cell membrane under pressure. 

Carbon nanotubes can be used as a nanomotors which is excited 
by magnetic field. Some recent studies presented the possible 
application of magnetically actuated nanomotors [44–47]. In 
literature search, magnetic field effect on torsional vibration of 
CNTs has not been investigated previously according to the 
author’s knowledge. Longitudinal and transverse vibrations of 
CNTs under the effect of magnetic field were studied in previous 
studies. But in these works, nonlocal magnetic field effect was not 
taken into consideration. In the present study, torque effect of the 
longitudinal magnetic field is defined by using Lorentz magnetic 
force. The nonlocal governing equation and boundary conditions 
of CNT are obtained using Hamilton Principle and Eringen’s 
nonlocal elasticity theory. The effects of some parameters like 
magnetic field, nonlocal parameter and nanotube length are 
investigated in detail. In addition to the previous studies, fourth 
order differential equation of motion for CNT, which includes the 
nonlocal magnetic field effect, is solved by using Differential 
Quadrature Method (DQM). 

 

 

2. Analysis 

The present study is based on the longitudinal magnetic field 
effect on carbon nanotube’s torsional dynamics. It is assumed that, 
the longitudinal magnetic field acts at opposite directions on the 

upper and lower surface of the CNT (illustrated in Figs. (1) and 
(2)). In this section, firstly the longitudinal magnetic field effect 
and the circumferential Lorentz Force on CNT are denoted. 
Governing equation and boundary conditions, including the 
magnetic field force are obtained by using Hamilton’s Principle 
and the nonlocal elasticity theory. 

 

Figure 1. CNT Atomic Lattice Structure Model 

 Magnetic field effect 

Longitudinal magnetic field equations may be obtained from 
the Maxwell’s Relations [48]. The Lorentz force resultants due to 
the longitudinal magnetic field along the x, y, and z directions has 
been defined in previous studies [16]: 

𝐹௫ = 0                (1) 

𝐹௬ = 𝜂𝐻௫
ଶ ቀ

డమ௩

డ௫మ
+

డమ௩

డ௬మ
+

డమ௪

డ௬డ௭
ቁ             (2) 

𝐹௭ = 𝜂𝐻௫
ଶ ቀ

డమ௪

డ௫మ +
డమ௪

డ௭మ +
డమ௩

డ௬డ௭
ቁ            (3) 

For the present torsional vibration analysis of a CNT, only the 
circumferential displacement, 𝑣 = 𝑣(𝑥, 𝑡) is taken into account. 
The Lorentz Force in the y direction is (Eq. (2)): 

𝐹௬ = 𝜂𝐻௫
ଶ ቀ

డమ௩

డ௫మ
ቁ               (4) 

The angular deformation can be written in circumferential 
direction as 𝑣 = 𝜃𝑅. Where θ is the angular displacement and R is 
the radius of the CNT. Eq. (4) can be written as: 

𝐹௬ = 𝜂𝐻௫
ଶ𝑅ଶ ቀ

డమఏ

డ௫మ
ቁ              (5) 

 
Figure 2. Continuum Model of the Present Problem a) Clamped-

Clamped b) Clamped-Free 

 

Magnetic torque of the circumferential Lorentz force in 
circumferential direction is: 
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𝑇ఏ = 𝐹௬𝑅 = 𝜂𝐻௫
ଶ𝑅ଷ ቀ

డమఏ

డ௫మ
ቁ              (6) 

Eq. (6) is the effect of the longitudinal magnetic field in 
circumferential direction of CNT. 

 Nonlocal Elasticity Theory for CNTs 

The differential form of nonlocal relation can be written as 
[7,8,49]: 

(1 − 𝜇𝛻ଶ)𝜏௞௟ = 𝜆𝜀௥௥𝛿௞௟ + 2𝐺𝜀௞௟             (7) 

where τkl is the nonlocal stress tensor, εkl is the strain tensor, λ and 
G are the Lame constants, μ=(e0a)2 is called the nonlocal 
parameter, a is an internal characteristic length and e0 is a constant. 
Eringen determined the e0 parameter as 0.39 with matching the 
dispersion curves based on the atomic models. Eq. (7) can be used 
in order to write stress in an elasticity problem for the shear 
deformation in one dimensional form [50]: 

ቀ1 − 𝜇
డమ

డ௫మ
ቁ 𝜏 = 𝐺𝛾                            (8) 

where γ and τ are the shear strain and the shear stress of the CNT, 
respectively. The torque relation can be expressed as: 

𝑇 = ∫ 𝜏𝑧 𝑑𝐴
஺

               (9) 

where A is the cross sectional area of the CNT. Multiplying the 
both sides of Eq. (9) by z and integrating them with respect to the 
cross sectional area of CNT lead to the following constitutive 
equation: 

𝑇 − (𝑒଴𝑎)ଶ డమ்

డ௫మ = 𝐺𝐼௉
డఏ

డ௫
            (10) 

where IP is polar moment of inertia for CNT and defined as: 

𝐼௉ = 𝜋
൫ோమ

రିோభ
ర൯

ଶ
            (11) 

 Equation of Motion  

The equation of motion and boundary conditions are obtained 
using the Hamilton Principle and Nonlocal Elasticity. The 
Hamilton Principle can be written as: 

∫ [𝛿𝑊 + 𝛿𝐸௄ − 𝛿𝐸௉]
௧మ

௧భ
= 0            (12) 

where W denotes the work done by the magnetic torque, EK 
denotes the kinetic energy  and EP denotes the potential energy of 
the CNT. They are defined as [51,52]: 

𝑊 =  ∫ 𝜂𝐻௫
ଶ𝑅ଷ ቀ

డమఏ

డ௫మ
ቁ

௅

଴
𝜃𝑑𝑥           (13) 

𝐸௄ =  ∫ 𝜌𝐼௉ ቀ
డఏ

డ௧
ቁ

ଶ௅

଴
𝑑𝑥            (14) 

𝐸௉ =  ∫ 𝐺𝐼௉ ቀ
డఏ

డ௫
ቁ

ଶ௅

଴
𝑑𝑥            (15) 

If W, EK and EP are defined according to the nonlocal elasticity 
theory and variational principle, following equations are obtained: 

𝛿𝑊 =  ∫ ∫
డ

డ௫
ቂ𝜂𝐻௫

ଶ𝑅ଷ డఏ

డ௫
ቃ

௅

଴

௧మ

௧భ
𝛿𝜃𝑑𝑥𝑑𝑡 +

∫ ∫
డమ

డ௫మ
ቂ𝜇𝜂𝐻௫

ଶ𝑅ଷ డమఏ

డ௫మ
ቃ

௅

଴

௧మ

௧భ
𝛿𝜃𝑑𝑥𝑑𝑡                  (16) 

𝛿𝐸௄ =  ∫ ∫
డ

డ௧
ቂ𝜌𝐼௉ ቀ

డఏ

డ௧
ቁቃ

௧మ

௧భ

௅

଴
𝛿𝜃𝑑𝑡𝑑𝑥 +

∫ ∫
డ

డ௫
ቂ𝜇𝜌𝐼௉ ቀ

డయఏ

డ௫డ௧మ
ቁቃ

௅

଴

௧మ

௧భ
𝛿𝜃𝑑𝑥𝑑𝑡                        (17) 

𝛿𝐸௉ =  ∫ ∫
డ

డ௫
ቂ𝐺𝐼௉ ቀ

డఏ

డ௫
ቁቃ

௅

଴

௧మ

௧భ
𝛿𝜃𝑑𝑥𝑑𝑡            (18) 

 If Eq. (12) is rearranged according to Eq. (16)-(18), Eq. (19) is 
obtained: 

ቄ− ∫ ∫
డ

డ௫
ቂ𝜂𝐻௫

ଶ𝑅ଷ డఏ

డ௫
ቃ

௅

଴

௧మ

௧భ
𝛿𝜃𝑑𝑥𝑑𝑡 + ∫ ቂ𝜂𝐻௫

ଶ𝑅ଷ డఏ

డ௫
ቃ [𝛿𝜃(𝐿) −

௧మ

௧భ

𝛿𝜃(0)]𝑑𝑡ቅ + ቄ∫ ∫
డమ

డ௫మ
ቂ𝜇𝜂𝐻௫

ଶ𝑅ଷ డమఏ

డ௫మ
ቃ

௅

଴

௧మ

௧భ
𝛿𝜃𝑑𝑥𝑑𝑡 +

∫ ቂ𝜇𝜂𝐻௫
ଶ𝑅ଷ ቀ

డమఏ

డ௫మ
ቁቃ ቂ

డఋఏ(௅)

డ௫
−

డఋఏ(଴)

డ௫
ቃ 𝑑𝑡

௧మ

௧భ
−

∫ ቂ𝜇𝜂𝐻௫
ଶ𝑅ଷ ቀ

డయఏ

డ௫య
ቁቃ [𝛿𝜃(𝐿) − 𝛿𝜃(0)]𝑑𝑡

௧మ

௧భ
ቅ +

ቄ− ∫ ∫
డ

డ௧
ቂ𝜌𝐼௉ ቀ

డఏ

డ௧
ቁቃ

௧మ

௧భ

௅

଴
𝛿𝜃𝑑𝑡𝑑𝑥 + ∫ ቂ𝜌𝐼௉ ቀ

డఏ

డ௧
ቁቃ [𝛿𝜃(𝑡ଶ) −

௅

଴

𝛿𝜃(𝑡ଵ)]𝑑𝑥ቅ − ቄ∫ ∫
డమ

డ௫డ௧
ቂ𝜇𝜌𝐼௉ ቀ

డమఏ

డ௫డ௧
ቁቃ

௅

଴

௧మ

௧భ
𝛿𝜃𝑑𝑡𝑑𝑥 −

∫ ቂ𝜇𝜌𝐼௉ ቀ
డయఏ

డ௫డ௧మ
ቁቃ [𝛿𝜃(𝐿) − 𝛿𝜃(0)]𝑑𝑡

௧మ

௧భ
ቅ −

ቄ− ∫ ∫
డ

డ௫
ቂ𝐺𝐼௉ ቀ

డఏ

డ௫
ቁቃ

௅

଴

௧మ

௧భ
𝛿𝜃𝑑𝑡𝑑𝑥 + ∫ ቂ𝐺𝐼௉ ቀ

డఏ

డ௫
ቁቃ [𝛿𝜃(𝐿) −

௧మ

௧భ

𝛿𝜃(0)]𝑑𝑡ቅ = 0             (19) 

If Eq. (19) is reorganized, following equation is obtained: 

∫ ∫ ቄ− ቂ𝜂𝐻௫
ଶ𝑅ଷ ቀ

డమఏ

డ௫మ
ቁቃ + ቂ𝜇𝜂𝐻௫

ଶ𝑅ଷ ቀ
డరఏ

డ௫ర
ቁቃ − ቂ𝜌𝐼௉ ቀ

డమఏ

డ௧మ
ቁቃ +

௅

଴

௧మ

௧భ

ቂ𝜇𝜌𝐼௉ ቀ
డరఏ

డ௫మడ௧మ
ቁቃ + ቂ𝐺𝐼௉ ቀ

డమఏ

డ௫మ
ቁቃቅ 𝛿𝜃𝑑𝑡𝑑𝑥 + ∫ ቄቂ𝜂𝐻௫

ଶ𝑅ଷ డఏ

డ௫
ቃ −

௧మ

௧భ

ቂ𝜇𝜂𝐻௫
ଶ𝑅ଷ ቀ

డయఏ

డ௫య
ቁቃ − ቂ𝜇𝜌𝐼௉ ቀ

డయఏ

డ௫డ௧మ
ቁቃ − ቂ𝐺𝐼௉ ቀ

డఏ

డ௫
ቁቃቅ [𝛿𝜃(𝐿) −

𝛿𝜃(0)]𝑑𝑡 − ∫ ቂ𝜇𝜂𝐻௫
ଶ𝑅ଷ ቀ

డమఏ

డ௫మ
ቁቃ ቂ

డఋఏ(௅)

డ௫
−

డఋఏ(଴)

డ௫
ቃ 𝑑𝑡

௧మ

௧భ
= 0       (20) 

According to Eq. (19), the governing equation of motion of a 
nanotube under the effect of the magnetic field can be written as: 

𝐺𝐼௉ ቀ
డమఏ

డ௫మ
ቁ = 𝜌𝐼௉ ቀ

డమఏ

డ௧మ
ቁ − 𝜇𝜌𝐼௉ ቀ

డరఏ

డ௫మడ௧మ
ቁ + 𝜂𝐻௫

ଶ𝑅ଷ ቀ
డమఏ

డ௫మ
ቁ −

𝜇𝜂𝐻௫
ଶ𝑅ଷ ቀ

డరఏ

డ௫ర
ቁ             (21) 

Inserting µ=0 leads to the classical equations of motion for 
torsional vibration of a CNT including a magnetic field. The 
boundary conditions are obtained as: 

ቂ𝜂𝐻௫
ଶ𝑅ଷ డఏ

డ௫
− 𝜇𝜂𝐻௫

ଶ𝑅ଷ ቀ
డయఏ

డ௫య
ቁ − 𝜇𝜌𝐼௉ ቀ

డయఏ

డ௫డ௧మ
ቁ −

𝐺𝐼௉ ቀ
డఏ

డ௫
ቁቃ [𝛿𝜃] = 0                   (22)  

ቂ−𝜇𝜂𝐻௫
ଶ𝑅ଷ ቀ

డమఏ

డ௫మ
ቁቃ ቂ

డఋఏ

డ௫
ቃ = 0           (23) 

Similarly, inserting µ=0 in Eqs. (22) and (23) leads to the 
boundary conditions of classical elasticity theory. 

 DQM Solution 

 A CNT with diameter d and length L is considered. Eq. (21) 
can be written in the following form with a negative magnetic field 
effect: 

𝐺𝐼௉ ቀ
డమఏ

డ௫మ
ቁ = ቀ1 − 𝜇

డమ

డ௫మ
ቁ 𝜌𝐼௉ ቀ

డమఏ

డ௧మ
ቁ − ቀ1 − 𝜇

డమ

డ௫మ
ቁ 𝜂𝐻௫

ଶ𝑅ଷ ቀ
డమఏ

డ௫మ
ቁ 

                  (24) 

Eq. (24) is reorganized with dimensionless nanotube length 

parameter ቀ𝑥̅ =
௫

௅
ቁ and the harmonic vibration assumption 

(𝜃(𝑥̅, 𝑡) = 𝜓(𝑥̅)𝑒௝ఠ௧), where 𝜓 is the angular deformation 
amplitude of the nanotube, j2=-1, ω is the torsional angular 
frequency and t is the time. 

డరఏ

డ௫̅ర
ቂ−

ఓ

௅మ

ఎுೣ
మோయ

ீூು
ቃ +

డమఏ

డ௫̅మ
ቂ1 −

ఓ

௅మ

ఘூುఠమ௅మ

ீூು
+

ఎுೣ
మோ೔

య

ீூು
ቃ + 𝜃 ቂ

ఘூುఠమ௅మ

ீூು
ቃ =

0                          (25) 

Eq. (24) can be written in the following dimensionless form: 
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డరఏ

డ௫̅ర
ቂ−

ఓ

௅మ
𝑀𝑇ቃ +

డమఏ

డ௫̅మ
ቂ1 −

ఓ

௅మ
𝛺ଶ + 𝑀𝑇ቃ + 𝜃[𝛺ଶ] = 0            (26) 

where MT denotes the dimensionless magnetic torque parameter 
and Ω denotes the non-dimensional frequency parameter (NDFP) 
and they are defined as: 

𝑀𝑇 =
ఎுೣ

మோయ

ீூು
   ,   𝛺ଶ =

ఘఠమ௅మ

ீ
           (27) 

Eq. (26) is a fourth order linear differential equation. It can be 
solved analytically, but root searching process may take too much 
computation time. As a time-saving approach, the Differential 
Quadrature Method (DQM) is an effective method for the solution 
of linear or nonlinear differential equations with boundary and 
initial values. DQM was proposed firstly by Bellman and Casti 
[53] and its application to solid mechanics problems may be found 
in literature [54]. Also, DQM has been used recently in vibration 
of nanotube problems by scientists [55–60]. 

Non-dimensional frequencies of the nanostructures stacks in a 
limit value at higher modes with nonlocal elasticity approach [61]. 
To determine the mode number of a nonlocal frequency, analytical 
solution results may jumped between modes in a small interval. As 
a discrete approach, DQM can give exact mode frequencies in a 
sequential order. 

According to the DQM, the nth order derivative of a single 
variable function (𝑓(𝑥)) can be defined approximately over the 
interval [0 L] at  𝑥௜ as below [54]: 

ௗ೙௙(௫)

ௗ௫೙
ቚ

௫ୀ௫೔

≅ ∑ 𝛽௜௝
(௡)

𝑓(𝑥௝)ே
௝ୀଵ           (28) 

where 𝛽௜௝
(௡) is the nth order weighting coefficient at the ith point 

calculated for the jth sampling point of the domain. In Eq. (28), N 
is the total number of sampling points of the grid distribution and 
𝑓(𝑥௝ ) is the value of the function at the jth point. The weighting 
coefficients for the first order derivative are: 

 𝛽௜௝
(ଵ)

=
௅(భ)(௫೔)

൫௫೔ି௫ೕ൯௅(భ)൫௫ೕ൯
   ,   𝑖, 𝑗 = 1,2, … , 𝑁   ,   𝑖 ≠ 𝑗         (29) 

𝛽௜௜
(ଵ)

= − ∑ 𝛽௜௝
(ଵ)ே

௝ୀଵ,௝ஷ௜   ,   𝑖, 𝑗 = 1,2, … , 𝑁   ,   𝑖 = 𝑗         (30) 

In Eq. (29), the first derivative of Lagrange interpolating 
polynomials at each point 𝑥௞ (𝑘 = 1, … … , 𝑁) is: 

𝐿(ଵ)(𝑥௞) = ∏ (𝑥௞ − 𝑥௟)
ே
௟ୀଵ,௟ஷ௞    ,   𝑘 = 1, … … , 𝑁   ,   𝑖 ≠ 𝑗         (31) 

Higher order derivatives (𝑛 = 2,3,4, … … , 𝑁 − 1) may be 
obtained iteratively: 

𝛽௜௝
(௡)

= 𝑛 ቆ𝛽௜௜
(௡ିଵ)

𝛽௜௝
(ଵ)

−
ఉ೔ೕ

(೙షభ)

൫௫೔ି௫ೕ൯
ቇ    ,   𝑖, 𝑗 = 1,2, … … , 𝑁   ,   𝑖 ≠ 𝑗

                (32) 

𝛽௜௜
(௡)

= − ∑ 𝛽௜௝
(௡)ே

௝ୀଵ,௝ஷ௜   ,   𝑖, 𝑗 = 1,2, … , 𝑁   ,   𝑖 = 𝑗        (33) 

The grid point distribution is assumed as well-known Gauss-
Chebyshev-Lobatto point distribution [62]: 

𝑥௜ =
௅

ଶ
ቀ1 − cos ቀ

௜ିଵ

ேିଵ
𝜋ቁቁ    ,   𝑖 = 1,2, … … , 𝑁          (34) 

where L is the length of the nanotube. Governing equation of 
motion for the magnetically affected nanotube according to DQM 
can be written as: 

൫∑ 𝛽௜௝
(ସ)

𝜓௝
ே
௝ୀଵ ൯ ቂ−

ఓ

௅మ
𝑀𝑇ቃ + ൫∑ 𝛽௜௝

(ଶ)
𝜓௝

ே
௝ୀଵ ൯ ቂ1 −

ఓ

௅మ
𝛺ଶ + 𝑀𝑇ቃ =

−൫𝜓௝൯[𝛺ଶ]   ,   𝑖 = 2,3, … … , (𝑁 − 2)                        (35) 

where 𝜓௝  is the angular deformation amplitude of the jth point. 

Boundary conditions are applied using DQM as considered in 
the literature [54]. The Clamped-Clamped (C-C) boundary 
conditions are: 

𝑥̅ = 0   →    
𝜓௜ = 0

൫𝜇𝜂𝐻௫
ଶ𝑅ଷ൯ ∑ 𝛽௜௝

(ଶ)
𝜓௝

ே
௝ୀଵ = 0

   ,    𝑖 = 1  

𝑥̅ = 1   →    
𝜓௜ = 0

൫𝜇𝜂𝐻௫
ଶ𝑅ଷ൯ ∑ 𝛽௜௝

(ଶ)
𝜓௝

ே
௝ୀଵ = 0

   ,    𝑖 = 𝑁           (36) 

and Clamped-Free (C-F) boundary conditions for DQM: 

𝑥̅ = 0 → ൞

𝜓௜ = 0

൫𝜇𝜂𝐻௫
ଶ𝑅ଷ൯ ෍ 𝛽௜௝

(ଶ)
𝜓௝

ே

௝ୀଵ

= 0
   ,    𝑖 = 1 

𝑥̅ = 1 →

⎩
⎨

⎧ ∑ 𝛽௜௝
(ଵ)

𝜓௝
ே
௝ୀଵ

൫𝜂𝐻௫
ଶ𝑅ଷ൯ ∑ 𝛽௜௝

(ଵ)
𝜓௝

ே
௝ୀଵ − ൫𝜇𝜂𝐻௫

ଶ𝑅ଷ൯ ∑ 𝛽௜௝
(ଷ)

𝜓௝
ே
௝ୀଵ

−(𝜇𝜌𝐼௉𝜔ଶ) ∑ 𝛽௜௝
(ଵ)

𝜓௝
ே
௝ୀଵ − (𝐺𝐼௉) ∑ 𝛽௜௝

(ଵ)
𝜓௝

ே
௝ୀଵ = 0

   ,   𝑖 = 𝑁         

                 (37) 

N quadrature analog equations are needed for solving the 
differential governing equation of motion. First two and last two 
equation can be obtained from boundary conditions in Eqs. (36)-
(37) and the remaining  (N-4) equations can be obtained from Eq. 
(35). Governing equation of motion may be defined in matrix form 
as below: 

൤
[𝑆௕௕] [𝑆௕ௗ]

[𝑆ௗ௕] [𝑆ௗௗ]
൨   ൤

{𝜓௕}

{𝜓ௗ}
൨ =  −𝛺ଶ ൤

{0}

{𝜓ௗ}
൨         (38) 

where the subscripts b and d defines the grid points used in 
quadrature analog of the boundary conditions and the governing 
differential equation. {𝜓௕} is a (4x1) column vector and contains 
the angular deformation amplitude values on boundary conditions. 
If the {𝜓௕} vector is eliminated, following characteristic eigen-
value equation will be obtained: 

[𝑆]{𝜓ௗ} + 𝛺ଶ[𝐼]{𝜓ௗ} = 0            (39) 

where [𝐼] is the identity matrix, 𝛺 is the eigen-value and {𝜓ௗ} is 
the eigen-vector which describes the mode shape of nanotube. S 
matrix is an order of (𝑁 − 4)𝑥(𝑁 − 4) and can be defined as 
below: 

[𝑆] = [𝑆ௗௗ] − [𝑆ௗ௕][𝑆௕௕]ିଵ[𝑆௕ௗ]          (40) 

3. Numerical Results and Discussion 

In this section, the nonlocal and longitudinal magnetic field 
effects on the torsional vibration of the CNT are investigated. 
Many studies can be found about physical properties of CNTs. 
Nanotube radius has an essential role on the shear modulus (G). 
Shear modulus(G) and density(ρ) of the CNT is determined from 
previous studies [63,64]. Material properties of CNT are given in 
the Table (1). 

 Validation of present model 

Validation of the present nonlocal CNT model has been carried 
out in previous study [65]. A discrete model (Lattice Dynamic) 
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results have been used in order to compare the stress gradient 
nonlocal model. The nonlocal theory results are in good agreement 
with the discrete model results. 

Accuracy of the DQM solution depends on the number of terms 
used in the analysis. In Table (2), the convergence of non-
dimensional DQM frequencies can be seen. Nonlocal and 
magnetic field effects are assumed nearly zero. Results are 
identically same for the N10.

 

 

 

Table 1. Material Properties for CNT 

CNT 
Inner Radius 

(nm) 

Density 

(kg/m3) 
Shear Modulus (TPa) [64] 

Armchair (6,6) 0.41 4962 0.40 

 
 
 
 

Table 2. Comparison of the Analytical and DQM Solution Results (MT=0.01 , µ=0.01nm2) 
C-C C-F 

Analytical 
DQM 

Analytical 
DQM 

N = 5 N = 10 N = 15 N = 5 N = 10 N = 15 

3.1511 3.1079 3.1511 3.1511 1.5778 1.5966 1.5779 1.5779 

 
 
 
 
 

 Results 

In this section, the variation of non-dimensional frequency 
parameter (NDFP) of the magnetically affected CNT with the 
nonlocal parameter (µ) and dimensionless magnetic torque (MT) 
are investigated. In figures (3) and (4), variation of NDFP with 
nonlocal parameter (µ) and dimensionless magnetic torque (MT) 
is given for Clamped-Clamped (C-C) and Clamped-Free (C-F) 
boundary conditions, respectively. It is well known that the 
nonlocal elasticity predicts softening at the nano-length scale when 
there is no magnetic field [65,66]. It is seen that the nonlocal effect 
decreases the NDFP for both boundary conditions. Magnetic field 
moment increases the NDFP contrary to the nonlocality. Nanotube 
length has direct effect on the nonlocality. In longer nanotubes, 
nonlocal effect vanishes because of the size dependency. So, only 
magnetic field effect on NDFP is seen at L=20nm case. Same 
observations can be interpreted form the figures (5) and (6). 
Magnetic torque effect increases and nonlocality decreases the 
NDFP. 

In figures (7) and (8) it was observed that, for some values of 
magnetic torque, the vibration frequency becomes zero that means 
the rod loses its stability. This may be called torsional buckling. 
NDFP is zero when MT=-1 with very low influence of nonlocality. 
It seems that torsional buckling occurs with static deformation at 
this point.  With increasing effect of nonlocality, critical buckling 
load reduces as a result of softening effect of nonlocal theory. That 
means CNT can buckle easily. 

Variation of critical buckling torque with nonlocal parameter in 
1st, 2nd and 3rd mode frequency are shown in Figs. (9) and (10). It 

is interesting to note that, nonlocal approach shows softening 
effect on CNT structure and as a result it can buckle on small 
torques. With increasing nanotube length, nonlocality lost its 
effectiveness and CNT is stiffer than before. Critical buckling 
torque increases with the loss of nonlocality. This situation is 
reverse for the classical continuum approach and only explained 
with nonlocal theories. 

4. Conclusion 

In the present study, longitudinal magnetic field effect on 
torsional vibration of CNT is investigated. Hamilton’s principle 
and Eringen’s nonlocal elasticity theory are used in order to obtain 
the governing equation of motion and boundary conditions. DQM 
is used in solution of differential governing equation. Effects of 
parameters (magnetic torque and nonlocal parameter) are depicted 
in the figures. 

Nonlocality and magnetic field have opposite effects on CNT’s 
dynamics. Magnetic field increases and nonlocal parameter 
decreases the NDFP. Nanotube length (L≥20nm) diminishes the 
nonlocality. Torsional buckling in CNT occurs under the effect of 
magnetic field. Nonlocality facilitate the buckling with softening 
effect on CNT lattice structure. Nonlocal effect decreases the 
critical buckling load. In contrary to the classical continuum 
mechanics, critical buckling load affected by nonlocality. 
Torsional buckling case can be studied in more detail in future 
studies. 

Present results may be useful in the design and analysis of 
nanomotors. 
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Figure 3. Variation of NDFP with Nonlocal Parameter (L=5nm) 

 

 

Figure 4. Variation of NDFP with Nonlocal Parameter (L=20nm) 

 

 

Figure 5. Variation of NDFP with Dimensionless Magnetic Torque (MT) (L=5nm) 

 



M. Arda and M. Aydogdu 

310 

 

 

 

Figure 6. Variation of NDFP with Dimensionless Magnetic Torque (MT) (L=20nm) 

 

 

Figure 7. Torsional Buckling Case (L=5nm) 

 

 

Figure 8. Torsional Buckling Case (MT) (L=20nm) 
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Figure 9. Variation of Critical Buckling Torque with Nonlocal Parameter (L=5nm) 

 

 

Figure 10. Variation of Critical Buckling Torque with Nonlocal Parameter (L=20nm) 
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