

One Modulo Three Geometric Mean Graphs

P. Jeyanthi^{*1}, A. Maheswari^{†2} and P.Pandiaraj^{‡3}

¹Govindammal Aditanar College for Women Tiruchendur-628 215, Tamil Nadu, India. ^{2,3}Department of Mathematics Kamaraj College of Engineering and Technology Virudhunagar-626 001, Tamil Nadu, India.

ABSTRACT

A graph G is said to be one modulo three geometric mean graph if there is an injective function ϕ from the vertex set of G to the set $\{a \mid 1 \leq a \leq 3q-2\}$ and either $a \equiv 0 \pmod{3}$ or $a \equiv 1 \pmod{3}$ where q is the number of edges of G and ϕ induces a bijection ϕ^* form the edge set of G to $\{a \mid 1 \leq a \leq 3q-2 \text{ and } a \equiv 1 \pmod{3}\}$ given by $\phi^*(uv) = \left\lceil \sqrt{\phi(u)\phi(v)} \right\rceil$ or $\left\lfloor \sqrt{\phi(u)\phi(v)} \right\rfloor$ and the function ϕ is called one modulo three geometric mean labeling of G. In this paper, we establish that some families of graphs admit one modulo three geometric mean labeling.

Keyword: mean labeling, one modulo three mean labeling, geometric mean labeling, one modulo three geometric mean labeling, one modulo three geometric mean graph

AMS subject Classification: 05C78.

1 Introduction

All graphs considered here are simple, finite, connected and undirected. The vertex set and the edge set of a graph are denoted by V(G) and E(G) respectively. We follow the basic notations and terminology of graph theory as in [2]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions and

ARTICLE INFO

Article history: Received 28, January 2018 Received in revised form 08, May 2018 Accepted 27 May 2018 Available online 01, June 2018

 $^{^{*}\}mbox{Corresponding author: P. Jeyanthi. Email: jeyajeyanthi@rediffmail.com$

[†]bala_nithin@yahoo.co.in

[‡]pandiaraj0@gmail.com

a detailed survey of graph labeling can be found in [1]. The concept of mean labeling was introduced by Somasundaram and Ponraj [4]. A graph G = (p,q) with p vertices and q edges is called a mean graph if there is an injective function f that maps V(G) to $\{0, 1, 2, 3, ..., q\}$ such that for each edge uv, is labeled with $\frac{f(u)+f(v)}{2}$ if f(u) + f(v) is even and $\frac{f(u)+f(v)+1}{2}$ if f(u) + f(v) is odd. Jeyanthi and Maheswari introduced the concept of one modulo three mean labeling in [3]. A graph G is called one modulo three mean graph if there is an injective function ϕ from the vertex set of G to the set $\{a \mid 0 \le a \le 3q-2 \text{ and}$ either $a \equiv 0(mod3)$ or $a \equiv 1(mod3)\}$ where q is the number of edges of G and ϕ induces a bijection ϕ^* from the edge set of G to $\{a \mid 1 \le a \le 3q-2 \text{ and}$ either $a \equiv 1(mod3)\}$ given by $\phi^*(uv) = \left\lceil \frac{\phi(u)+\phi(v)}{2} \right\rceil$ and the function ϕ is called one modulo three mean labeling of G. The concept of geometric mean labeling was due to Somasundram et al.[5]. A graph G = (V, E) with p vertices and q edges is said to be geometric mean graph if it is possible to label the vertices $x \in V$ with distinct labels f(x) from 1, 2, ..., q+1 in such a way that when each edge e = uv is labeled with $f(e = uv) = \left\lceil \sqrt{f(u)f(v)} \right\rceil$ or $\left\lfloor \sqrt{f(u)f(v)} \right\rfloor$, then the resulting edge labels are all distinct. In this case, the function f is called geometric mean labeling of G.

Motivated by the concepts in [3], [5] we define a new type of labeling called one modulo three geometric mean labeling as follows: A graph G is said to be one modulo three geometric mean graph if there is an injective function ϕ from the vertex set of G to the set $\{a \mid 1 \leq a \leq 3q - 2 \text{ and either } a \equiv 0 \pmod{3} \text{ or } a \equiv 1 \pmod{3}\}$ where q is the number of edges of G and ϕ induces a bijection ϕ^* from the edge set of G to $\{a \mid 1 \leq a \leq 3q - 2 \text{ and} either a \equiv 1 \pmod{3}\}$ given by $\phi^*(uv) = \left\lceil \sqrt{\phi(u)\phi(v)} \right\rceil$ or $\left\lfloor \sqrt{\phi(u)\phi(v)} \right\rfloor$ and the function ϕ is called one modulo three geometric mean labeling of G.

Remark: If G is a one modulo three geometric mean graph, then 1, 3 and 3q - 2, 3q - 3 must be appear as the vertex labels.

We begin with a brief summary of definitions which are necessary for the present study.

Definition 1.1. The corona $G_1 \odot G_2$ of the graphs G_1 and G_2 is defined as a graph obtained by taking one copy of G_1 (with p vertices) and p copies of G_2 and then joining the *i*th vertex of G_1 to every vertex of the *i*th copy of G_2 .

Definition 1.2. A Cartesian product of two graphs G_1 and G_2 is the graph $G_1 \times G_2$ such that its vertex set is a cartesian product of $V(G_1)$ and $V(G_2)$ i.e. $V(G_1 \times G_2) = V(G_1) \times V(G_2) = \{(x, y)/x \in V(G_1), y \in V(G_2)\}$ and its edge set is defined as $E(G_1 \times G_2) = \{(x_1, x_2), (y_1, y_2))/x_1 = y_1$ and $(x_2, y_2) \in E(G_2)$ or $x_2 = y_2$ and $(x_1, y_1) \in E(G_1)\}$.

Definition 1.3. The graph $P_n \times P_2$ is called a ladder graph.

Definition 1.4. The graph obtained by joining a single pendant edge to each vertex of a path is called a comb graph.

Definition 1.5. Let G be a graph. The subdivision graph S(G) is obtained from G by subdividing each edge of G with a vertex.

2 One modulo three geometric mean graphs

Theorem 2.1. The path P_n is a one modulo three geometric mean graph.

Proof. Let the vertex set $V(P_n) = \{u_1, u_2, ..., u_n\}$ and the edge set $E(P_n) = \{u_i u_{i+1} : 1 \le i \le n-1\}$. Clearly it has *n* vertices and n-1 edges. Define the vertex labeling ϕ as $\phi : V(P_n) \to \{1, 3, ..., 3n-5\}$ by $\phi(u_1) = 1$, $\phi(u_i) = 3(i-1)$ if $2 \le i \le n-1$ and $\phi(u_n) = 3n-5$. It can be verified that the induced edge labels of P_n are 1, 4, ..., 3n-5. Hence ϕ is a one modulo three geometric mean labeling of P_n . Therefore, P_n is a one modulo three geometric mean graph. \Box

Theorem 2.2. If n > 2, $K_{1,n}$ is not a one modulo three geometric mean graph.

Proof. Let n > 2. Suppose $K_{1,n}$ is a one modulo three geometric mean graph with labeling ϕ . Let (V_1, V_2) be the bipartition of $K_{1,n}$ with $V_1 = \{u\}$ and $V_2 = \{u_1, u_2, ..., u_n\}$. To get the edge label 3q - 2, we must have 3q - 2 and 3q - 3 as the vertex labels of the adjacent vertices. Therefore, either $\phi(u) = 3q - 2$ or $\phi(u) = 3q - 3$. In both cases, since q > 2, there will be no edge whose label is 1. This contradiction proves that $K_{1,n}$ is not a one modulo three geometric mean graph for n > 2.

Theorem 2.3. The comb graph is a one modulo three geometric mean graph.

Proof. Let G be a comb graph obtained from the path $u_1, u_2, ..., u_n$ by joining a vertex u_i to v_i , $1 \le i \le n$. Now G has 2n vertices and 2n - 1 edges. Define the vertex labeling ϕ as $\phi : V(G) \to \{1, 3, ..., 6n - 5\}$ by $\phi(u_1) = 3$, $\phi(v_1) = 1$ and $\phi(u_i) = 6i - 5$ if $2 \le i \le n$, $\phi(v_i) = 6(i-1)$ if $2 \le i \le n$. Then the induced edge labels of G are 1, 4, ..., 6n - 5. Hence ϕ is a one modulo three geometric mean labeling of G.

Theorem 2.4. The graph G obtained by attaching a path of length two at each vertex of the path P_n , then the graph G is a one modulo three geometric mean graph.

Proof. Let G be the graph obtained by attaching a path of length of two at each vertex of the path P_n . The vertex set $V(G) = \{u_i, v_i, w_i : 1 \le i \le n\}$ and the edge set $E(G) = \{u_i u_{i+1} : 1 \le i \le n-1\} \bigcup \{u_i v_i, v_i w_i : 1 \le i \le n\}$. Clearly it has 3n vertices and 3n - 1 edges. Define the vertex labeling $\phi : V(G) \rightarrow \{1, 3, ..., 9n - 5\}$ as follows: $\phi(u_1) = 7, \phi(w_1) = 1, \phi(w_2) = 4$,

$$\phi(u_i) = \begin{cases} 9i-5 & \text{if } i \text{ is odd, } 2 \leq i \leq n \\ 9i-6 & \text{if } i \text{ is even, } 2 \leq i \leq n, \end{cases}$$
$$\phi(v_i) = \begin{cases} 9i-6 & \text{if } i \text{ is odd, } 1 \leq i \leq n \\ 9i-5 & \text{if } i \text{ is even, } 1 \leq i \leq n, \end{cases}$$
$$\phi(w_i) = \begin{cases} 9(i-1) & \text{if } i \text{ is odd, } 3 \leq i \leq n \\ 9i-11 & \text{if } i \text{ is even, } 4 \leq i \leq n \end{cases}$$

It can be verified that the induced edge labels of G are 1, 4, ..., 9n - 5. Hence ϕ is a one modulo three geometric mean labeling of G. Thus the graph G is a one modulo three geometric mean graph.

Theorem 2.5. The graph $P_n \odot \overline{K_2}$ is a one modulo three geometric mean graph.

 $\begin{array}{l} \textit{Proof. Let } G = P_n \odot \overline{K_2}. \text{ The vertex set } V(G) = \{u_i, v_i, w_i : 1 \leq i \leq n\} \text{ and the edge set} \\ E(G) = \{u_i u_{i+1} : 1 \leq i \leq n-1\} \bigcup \{u_i v_i, u_i w_i : 1 \leq i \leq n\}. \text{ Clearly, it has } 3n \text{ vertices} \\ \text{and } 3n-1 \text{ edges. Define the vertex labeling } \phi : V(G) \to \{1, 3, ..., 9n-5\} \text{ as follows:} \\ \phi(u_1) = 3, \phi(u_2) = 13, \phi(u_i) = 9i-6 \text{ if } 3 \leq i \leq n, \phi(v_1) = 1, \phi(v_i) = 9(i-1) \text{ if } 2 \leq i \leq n, \\ \phi(w_i) = \begin{cases} 6i & \text{if } 1 \leq i \leq 2 \\ 9i-5 & \text{if } 3 \leq i \leq n, \end{cases} \end{array}$

It can be verified that the induced edge labels of G are 1, 4, ..., 9n - 5. Hence ϕ is a one modulo three geometric mean labeling of $P_n \odot \overline{K_2}$. Thus the graph $P_n \odot \overline{K_2}$ is a one modulo three geometric mean graph.

Theorem 2.6. The subdivision graph $S(P_n \odot K_1)$ is a one modulo three geometric mean graph.

Proof. Let $G = S(P_n \odot K_1)$. The vertex set $V(G) = \{v_i, u_i, u'_i; 1 \le i \le n\} \bigcup \{v'_i: 1 \le i \le n\}$

 $n-1\} \text{ and the edge set } E(G) = \{v'_i v_{i+1} : 1 \leq i \leq n-1\} \bigcup \{v_i v'_i, v_i u'_i, u'_i u_i : 1 \leq i \leq n\}.$ Clearly it has 4n-1 vertices and 4n-2 edges. Define the vertex labeling $\phi: V(G) \rightarrow \{1,3,...,12n-8\}$ as follows: $\phi(u_1) = 1$, $\phi(u_2) = 12$, $\phi(v_1) = 6$, $\phi(u_{2i+1}) = 6(4i-1)$ if $1 \leq i \leq \lfloor \frac{n-1}{2} \rfloor$, $\phi(u_{2i+2}) = 6(4i+1)$ if $1 \leq i \leq \lceil \frac{n+1}{2} \rceil - 2$, $\phi(u'_{2i-1}) = 24i-21$ if $1 \leq i \leq \lceil \frac{n}{2} \rceil$, $\phi(u'_{2i}) = 24i-8$ if $1 \leq i \leq \lfloor \frac{n}{2} \rfloor$, $\phi(v'_i) = 7$, $\phi(v_{2i+1}) = 24i+4$ if $1 \leq i \leq \lfloor \frac{n-1}{2} \rfloor$, $\phi(v_{2i}) = 24i-9$ if $1 \leq i \leq \lfloor \frac{n}{2} \rfloor$, $\phi(v'_{2i+1}) = 24i+12$ if $1 \leq i \leq \lfloor \frac{n-1}{2} \rfloor$, $\phi(v'_{2i}) = 24i$ if $1 \leq i \leq \lfloor \frac{n}{2} \rfloor$. It can be verified that the induced edge labels of G are 1, 4, ..., 12n-8. Hence ϕ is a one modulo three geometric mean labeling of G. Thus the graph $S(P_n \odot K_1)$ is a one modulo three geometric mean graph.

Theorem 2.7. The subdivision graph $S(P_n \odot \overline{K_2})$ is a one modulo three geometric mean graph.

Proof. Let $G = S(P_n \odot \overline{K_2})$. The vertex set $V(G) = \{u_i, u_{i1}, u_{i2}, u'_{i1}, u'_{i2} : 1 \le i \le n\} \bigcup \{u'_i : 1 \le i \le n-1\}$ and the edge set $E(G) = \{u_i u'_i, u_i u'_{i1}, u_i u'_{i2}, u'_{i1} u_{i1}, u'_{i2} u_{i2} : 1 \le i \le n\} \bigcup \{u'_i u_{i+1} : 1 \le i \le n-1\}$. Clearly it has 6n-1 vertices and 6n-2 edges. Define the vertex labeling $\phi : V(G) \to \{1, 3, ..., 18n-8\}$ as follows: $\phi(u_1) = 7$, $\phi(u_2) = 22$, $\phi(u_i) = 3(6i-5)$ if $3 \le i \le n$, $\phi(u'_i) = 6(3i+1)$ if $1 \le i \le n-1$, $\phi(u_{11}) = 1$, $\phi(u_{12}) = 10$, $\phi(u_{i1}) = 3(6i-7)$ if $2 \le i \le n$, $\phi(u_{i2}) = 9(2i-1)$ if $2 \le i \le n$, $\phi(u'_{12}) = 9$, $\phi(u'_{i1}) = 2(9i-10)$ if $2 \le i \le n$, $\phi(u'_{i2}) = 2(9i-4)$ if $2 \le i \le n$. It can be verified that the induced edge labels of G are 1, 4, ..., 18n-8. Hence ϕ is a one modulo three geometric mean labeling of G. Thus the graph $S(P_n \odot \overline{K_2})$ is a one modulo three geometric mean graph.

An example for one modulo three geometric labeling $S(P_5 \odot \overline{K_2})$ is given in Figure 1.

Figure 1:

Theorem 2.8. If G is a graph in which every edge lies on a triangle, then G is not a one modulo three geometric mean graph.

Proof. Let G be a graph in which every edge is an edge of a triangle. Suppose G is a one modulo three geometric mean graph. To get 3q - 2 on edge label, there must be two adjacent vertices u and v such that f(u) = 3q - 2 and f(v) = 3q - 3. Let uvwu be a triangle in which on edge uv lies. To get 3q - 5 on edge label, there must be f(w) = 3q - 6 or 3q - 8, then uw and vw get the same edge label. This is a contradiction to the fact of one modulo three geometric mean labeling. Hence G is not a one modulo three geometric mean graph.

Corollary 2.9. The complete graph K_n where $n \ge 3$, the wheel W_n , the triangular snake, double triangular snake, triangular ladder, flower graph FL_n , fan $P_n + K_1$, $n \ge 2$, double fan $P_n + K_2$, $n \ge 2$, friendship graph C_3^n , windmill K_m^n , $m \succ 3$, square graph $B_{n,n}^2$, total graph $T(P_n)$ and composition graph $P_n[P_2]$ are not one modulo three geometric mean graphs.

Theorem 2.10. The cycle C_n is not a one modulo three geometric mean graph for n = 3, 4.

Proof. When n = 3. $C_3 = K_3$. By Corollary 2.9, K_3 is not a one modulo three geometric mean graph. Therefore C_3 is not a one modulo three geometric mean graph. When n = 4, let $C_4 = u_1 u_2 u_3 u_4$. Suppose C_4 is a one modulo three geometric mean graph. By Remark 2.2, 1,3 and 9,10 there must be the vertex labels of adjacent vertices. Without loss of generality we assume that $\phi(u_1) = 1$, $\phi(u_2) = 3$ and $\phi^*(u_1 u_2) = 1$. To get 10 as edge label, we must have either $\phi(u_3) = 9$, $\phi(u_4) = 10$ or $\phi(u_3) = 10$, $\phi(u_4) = 9$. In both cases $\phi^*(u_2u_3) = 5$ or $\phi^*(u_1u_4) = 3$. This is a contradiction to the fact that the edge labels are congruent to one modulo three. Therefore C_4 is not a one modulo three geometric mean graph.

Theorem 2.11. The cycle C_n is a one modulo three geometric mean graph for $n \ge 5$.

Proof. Let C_n be the cycle $u_1u_2, ..., u_n, u_1$. Define the vertex labeling $\phi : V(C_n) \rightarrow \{1, 3, ..., 3n - 2\}$ by considering the following two cases.

Case(i). n is odd,
$$n \ge 5$$
.
 $\phi(u_1) = 1, \ \phi(u_i) = 10i - 17 \text{ if } i = 2, 3,$
 $\phi(u_4) = \begin{cases} 19 & \text{if } n = 7 \\ 15 & \text{if } n > 7 \end{cases},$

$$\phi(u_n) = 10, \ \phi(u_{n-2}) = 21,$$

$$\phi(u_{n-1}) = \begin{cases} 9 & \text{if } n = 7\\ 12 & \text{if } n > 7 \end{cases},$$

 $\phi(u_{\lceil \frac{n}{2} \rceil + 1}) = 3(n-1) \text{ and if } n \ge 9, \ \phi(u_i) = 6i - 5 \text{ if } 5 \le i \le \lceil \frac{n}{2} \rceil, \text{ if } n \ge 11, \ \phi(u_{n-i}) = 6i + 4 \text{ if } 3 \le i \le \lceil \frac{n}{2} \rceil - 3.$

Case(ii). n is even. $n \ge 8$.

$$\phi(u_1) = 1, \ \phi(u_2) = 3, \ \phi(u_i) = 2i + 7 \text{ if } i = 3,4 \text{ and } \phi(u_i) = 6i - 8 \text{ if } 5 \le i \le \frac{n+2}{2},$$

$$\phi(u_{\frac{n+4}{2}}) = 3(n-1), \ \phi(u_{n-i+1}) = \begin{cases} 2i + 8 & \text{if } i = 1,2\\ 6i + 1 & \text{if } 3 \le i \le \frac{n-4}{2} \end{cases}.$$

If n = 6, we define the labeling as $\phi(u_1) = 1$, $\phi(u_2) = 3$, $\phi(u_3) = 16$, $\phi(u_4) = 15$, $\phi(u_5) = 12$ and $\phi(u_6) = 10$. It can be verified that the induced edge labels of C_n are $1, 4, \dots 3n - 2$. Hence ϕ is a one modulo three geometric mean labeling of C_n . Thus the graph C_n is a one modulo three geometric mean graph. \Box

Theorem 2.12. The ladder graph $L_n = P_n \times P_2$ is a one modulo three geometric mean graph.

Proof. Let the vertex set $V(L_n) = \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ and the edge set $E(L_n) = \{u_i u_{i+1} : 1 \le i \le n-1\} \bigcup \{v_i v_{i+1} : 1 \le i \le n-1\} \bigcup \{u_i v_i : 1 \le i \le n\}$. Clearly L_n has

2n vertices and 3n - 2 edges. Define the vertex labeling $\phi : V(L_n) \to \{1, 3, ..., 9n - 8\}$ as follows: $\phi(u_1) = 1$, $\phi(v_1) = 3$. If n > 3, $\phi(u_i) = 9i - 6$ if $4 \le i \le n - 1$ $\phi(v_i) = 9(i - 1)$ if $4 \le i \le n$, $\phi(u_n) = 9n - 8$, $\phi(u_2) = 10$, $\phi(u_3) = 12$, $\phi(v_i) = \begin{cases} 6i + 7 & \text{if } i = 2\\ 6i + 6 & \text{if } i = 3 \end{cases}$.

If n = 3, we define the labeling as $\phi(u_2) = 13$, $\phi(u_3) = 9$, $\phi(v_2) = 18$, $\phi(v_3) = 19$. It can be verified that the induced edge labels of L_n are $1, 4, \dots, 9n - 8$. Hence ϕ is a one modulo three geometric mean labeling of L_n . Thus the graph L_n is a one modulo three geometric mean graph.

References

- Gallian J. A., A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, (2017), #DS6.
- [2] Harary F., Graph theory, Addison Wesley, Massachusetts, 1972.
- [3] Jeyanthi P., and Maheswari A., One Modulo Three Mean Labeling of Graphs, American Journal of Applied Mathematics and Statistics, 2, (5), (2014), 302-306.
- [4] Somasundaram S., and Ponraj R., Mean labelings of graphs, National Academy Science Letter, (26), (2003), 210-213.
- [5] Somasundaram S., Vidhyarani P., and Ponraj R., Geometric Mean labelings of graphs, Bulletin of Pure and Applied Sciences, (30E), (2011), 153-160.