تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,084,178 |
تعداد دریافت فایل اصل مقاله | 97,188,583 |
ارزیابی دقت خروجی مدلهای منطقهای آب و هوا در ایران | ||
پژوهش های جغرافیای طبیعی | ||
مقاله 11، دوره 50، شماره 1، فروردین 1397، صفحه 161-176 اصل مقاله (1.52 M) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2018.237966.1007088 | ||
نویسندگان | ||
اصغر کامیار1؛ حجت الله یزدان پناه2؛ سعید موحدی* 3 | ||
1دانشجوی دکتری آبوهواشناسی، دانشکدة علوم جغرافیایی و برنامه ریزی، دانشگاه اصفهان | ||
2دانشیار اقلیم شناسی، دانشکدة علوم جغرافیایی و برنامه ریزی، دانشگاه اصفهان | ||
3دانشیار اقلیم شناسی، دانشکدة علوم جغرافیایی و برنامه ریزی، دانشگاه اصفهان | ||
چکیده | ||
بررسی تغییرات منطقهای آب و هوا به منظور سازگاری و ارائة خط مشیهای تعدیلی در سطح ملی یکی از موضوعات مهم در مطالعۀ تغییر اقلیم است. هدف از این پژوهش بررسی دقت خروجی مدلهای منطقهای آب و هوا در پروژة ریزمقیاسنمایی هماهنگ منطقهای (CORDEX) در ایران است. بدین منظور، خروجیهای بارش و دمای کمینه و بیشینه برای سه RCM در دو محدودۀ CORDEX شامل شمال افریقا- خاورمیانه (MNA) با قدرت تفکیک 25 و 50 کیلومتر و جنوب آسیا (WAS) با قدرت تفکیک 50 کیلومتر از پایگاه دادة ESGF و دادههای ایستگاههای همدیدی به عنوان دادة مشاهداتی جهت ارزیابی خروجی مدلها از سازمان هواشناسی کشور طی دورۀ زمانی 1990ـ2005 دریافت شد. سپس، نزدیکترین ایستگاه به یاختة متناظرش شناسایی شد و با روشهای میانگین خطا، همبستگی پیرسن، و RMSE مقایسه شد. نتایج این پژوهش نشان داد که بهطورکلی مدلهای موجود در پروژة CORDEX برای بارش همبستگی زیادی با دادههای مشاهداتی نداشتند؛ ولی مقدار خطا و RMSE در مدل RCA4-MNA0.22 کمتر از سایر مدلها بود. همچنین، در ارتباط با دمای بیشینه و کمینه بهترتیب مدلهای HadRM3P و RegCM4.1 در محدودۀ جنوب آسیا برآورد نسبتاً درستی داشتند و در بیشتر نواحی کشور همبستگی بالا و خطایی کمتر از یک درجة سلسیوس را با دادههای مشاهداتی نشان دادند. | ||
کلیدواژهها | ||
ایران؛ ریزمقیاسنمایی؛ مدل منطقهای آب و هوا؛ CORDEX | ||
مراجع | ||
عزیزی، ق.؛ صفرراد، ط.؛ فرجی، ح. و محمدی، ح. (1395). ارزیابی و مقایسة دادههای بازکاویشدة بارش جهت استفاده در ایران، پژوهشهای جغرافیای طبیعی، 48(1): 33ـ49. Ahmed, K.F.; Wang, G.; Silander, J.; Wilson, A.M.; Allen, J.M.; Horton, R. and Anyah, R. (2013). Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. northeast, Global and Planetary Change, 100: 320-332. Almazroui, M.; Islam, M.N.; Al-Khalaf, A.K. and Saeed, F. (2016). Best convective parameterization scheme within RegCM4 to downscale CMIP5 multi-model data for the CORDEX-MENA/Arab domain, Theoretical and Applied Climatology, 124(3): 807-823. doi:10.1007/s00704-015-1463-5 Almazroui, M. (2013). Simulation of present and future climate of Saudi Arabia using a regional climate model (PRECIS), Int J. Climatol, 33: 2247-2259. doi:10.1002/joc.3721. Azizi, Gh.; Safarrad, T.; Faraji, H.A. and Mohamadi, H. (2016). Evaluate and Comparison Reanalyzed Data for Using in Iran, Journal of Physical Geography Quarterly, 48(1): 33-49. (In Persian). Casanueva, A.; Kotlarski, S.; Herrera, S.; Fernández, J.; Gutiérrez, J.M.; Boberg, F. and Vautard, R. (2016). Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations, Climate Dynamics, 47(3): 719-737. doi:10.1007/s00382-015-2865-x. Dosio, A. (2016). Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models, Journal of Geophysical Research: Atmospheres, 121(10): 5488-5511.doi:10.1002/2015JD024411. Dosio, A.; Panitz, H.-J.; Schubert-Frisius, M. and Lüthi, D. (2015). Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: evaluation over the present climate and analysis of the added value, Climate Dynamics, 44(9): 2637-2661. doi:10.1007/s00382-014-2262-x. Emmanouil, F.; Philippe, D.; Marco, B.; Jean-Christophe, C.; Guy, D.; Efrat, M.; … and Roberta, T. (2012). Assessment of gridded observations used for climate model validation in the Mediterranean region:theHyMeX and MED-CORDEX framework, Environmental Research Letters, 7(2): 024017. Giorgi, F. and Mearns, L.O. (1991). Approaches to the simulation of regional climate change: a review, Reviews of Geophysics, 29(2): 191-216, http://dx.doi.org/10.1029/ 90RG02636. Giorgi F. and Hewitson, B. (2001). Regional climate information-evaluation and projections. In: Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Xioaosu D. (eds) Climate change 2001: the scientific basis, contribution of working group I to the third assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge. Giorgi, F.; Jones, C. and Asrar, G. (2009). Addressing climate information needs at the regional level: the CORDEX framework, World Meteorol Organ (WMO) Bull, 58: 175-183. Isotta, F.A.; Frei, C.; Weilguni, V.; Per_cec Tadi,_C.M.; Lass_egues, P.; Rudolf, B.; Pavan, V.; Cacciamani, C.; Antolini, G.; Ratto, S.M.; Munari, M.; Micheletti, S.; Bonati, V.; Lussana, C.; Ronchi, C.; Panettieri, E.; Marigo, G. and Verta_cnik, G. (2013). The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data, International Journal of Climatology, DOI 10.1002/joc.3794. Islam, M.N. (2009). Rainfall and temperature scenario for Bangladesh, Open Atmos Sci J., 3: 93-103. Ji, Zhenming and Kang, Sh. (2015). Evaluation of extreme climate events using a regional climate model for China, International Journal of Climatology, 35: 888-902. Jones, R.G.; Noguer, M. and Hassell, D.C. (2004). Generating high-resolution climate change scenarios using PRECIS, Met Office Hadley Centre, Exeter, UK. Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G.; Klok, E.J.; Jones, P.D. and New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006, J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201. Kidson, J.W. and Thompson, C.S. (1998). A comparison of statistical and model-based downscaling techniques for estimating local climate variations, Journal of Climate, 11: 735-753. Murphy, J. (1999). An evaluation of statistical and dynamical techniques for downscaling local climate, Journal of Climate, 12(8): 2256-2284. Pal, J.S.; Giorgi, F.; Bi, X. and Elguindi, N. (2007). The ICTP RegCM3 and RegCNET: regional climate modeling for the developing world, Bull Am Meteorol Soc, 88(9): 1395-1409. Raju, P.V.S.; Bhatla, R.; Almazroui, M. and Assiri, M. (2015). Performance of convection schemes on the simulation of summer monsoon features over the South Asia CORDEX domain using RegCM-4.3, International Journal of Climatology, 35(15): 4695-4706. doi:10.1002/joc.4317. Shongwe, M.E.; Lennard, C.; Liebmann, B.; Kalognomou, E.-A.; Ntsangwane, L. and Pinto, I. (2015). An evaluation of CORDEX regional climate models in simulating precipitation over Southern Africa, Atmospheric Science Letters, 16(3): 199-207. doi:10.1002/asl2.538. Taylor, K.E. (2001). Summarizing multiple aspects of model performance in a single diagram, Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192. doi: 10.1029/2000JD900719 XueJie, G.; Shi, Ying; ZhangDong, F.; Giorgi, F. (2012). Climate change in China in the 21st century as simulated by a high resolution regional climate model, Chin Sci Bull, 57(10). Zhou, W.; Tang J.; Wang, X.; Wang, S.; Niu, X.; Wang, Y. (2016). Evaluation of regional climate simulations over the CORDEX-EA-II domain using the COSMO-CLM model, Asia-Pacific Journal of Atmospheric Sciences, Volume 52, Number 2, Page 107.
| ||
آمار تعداد مشاهده مقاله: 1,033 تعداد دریافت فایل اصل مقاله: 721 |