- Aebi, H. (1984). [13] Catalase in vitro. Methods in Enzymology, 105, 121-126.
- Ashraf, M. (2004). Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants, 199(5), 361-376.
- Ayaz, F. A., Kadioglu, A. & Turgut, R. (2000). Water stress effects on the contentof low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rosc.) Eichler. Canadian Journal of Plant Science, 80, 373-378.
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
- Cavalcanti, F. R., Lima, J. P. M. S., Ferreira-Silva, S. L., Viégas, R. A. & Silveira, J. A. G. (2007). Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. Journal of Plant Physiology, 164(5), 591-600.
- Chance, B. & Maehly, A. C. (1955). [136] Assay of catalases and peroxidases. Methods in Enzymology, 2, 764-775.
- Chen, S. F., Yuelin, Z., Youliang, L. & Shijun, L. (2005). Effects of NaCl stress on activities of protective enzymes, contents of osmotic adjustment substances and photosynthetic characteristics in grafted tomato seedlings. Acta Horticulturae Sinica, 32(4), 609-613.
- Colla, G., Rouphael, Y., Rea, E. & Cardarelli, M. (2012). Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Scientia Horticulturae, 135, 177-185.
- Davis, A. R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J. V., Lee, S. G. & Cohen, R. (2008). Cucurbit grafting. Critical Reviews in Plant Sciences, 27(1), 50-74.
- Demiral, T. & Türkan, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257.
- Dixit, V., Pandey, V. & Shyam, R. (2001). Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). Journal of Experimental Botany, 52(358), 1101-1109.
- El-Mashad, A. A. A. & Mohamed, H. I. (2012). Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma, 249(3), 625-635.
- Fan, M., Bie, Z., Krumbein, A. & Schwarz, D. (2011). Salinity stress in tomatoes can be alleviated by grafting and potassium depending on the rootstock and K-concentration employed. Scientia Horticulturae, 130(3), 615-623.
- Han, H. S. & Lee, K. D. (2005). Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Research Journal of Agriculture and Biological Sciences, 1(3), 210-215.
- Harinasut, P., Poonsopa, D., Roengmongkol, K. & Charoensataporn, R. (2003). Salinity effects on antioxidant enzymes in mulberry cultivar. Science Asia, 29(10), 109-113.
- He, Y., Zhu, Z., Yang, J., Ni, X. & Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66(2), 270-278.
- Huang, Y., Bie, Z., Liu, P., Niu, M., Zhen, A., Liu, Z. & Wang, B. (2013). Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Scientia Horticulturae, 149, 47-54.
- Jiang, Q., Roche, D., Monaco, T. A. & Hole, D. (2006). Stomatal conductance is a key parameter to assess limitations to photosynthesis and growth potential in barley genotypes. Plant Biology, 8(04), 515-521.
- Khayyat, M., Tehranifar, A., Davarynejad, G. H. & Sayyari-Zahan, M. H. (2014). Vegetative growth, compatible solute accumulation, ion partitioning and chlorophyll fluorescence of ‘Malas-e-Saveh’and ‘Shishe-Kab’pomegranates in response to salinity stress. Photosynthetica, 52(2), 301-312.
- KholdBrin, B. & eslamZadh, I. (2001). Mineral Nutrition of plants. (2nd ed.). Publication of Shiraz University. 432p. (in Farsi)
- Lee, S. H. & Blair, I. A. (2000). Characterization of 4-oxo-2-nonenal as a novel product of lipid peroxidation. Chemical Research in Toxicology, 13(8), 698-702.
- Lee, J. M. & Oda, M. (2010). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, Volume 28, 61-124.
- Lin, J. Y. & Tang, C. Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chemistry, 101(1), 140-147.
- Liu, Z. X., Bie, Z. L., Huang, Y., Zhen, A., Lei, B. & Zhang, H. Y. (2012). Grafting onto Cucurbita moschata rootstock alleviates salt stress in cucumber plants by delaying photoinhibition. Photosynthetica, 50(1), 152-160.
- Mayer, A. M. & Harel, E. (1979). Polyphenol oxidases in plants. Phytochemistry, 18(2), 193-215.
- Miller, G. A. D., Suzuki, N., Ciftci‐yilmaz, A. N. & Mittler, R. O. N. (2010). Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell & Environment, 33(4), 453-467.
- Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), 867-880.
- Orcutt, D. M. (2000). The physiology of plants under stress: soil and biotic factors. (pp.177-235.) John Wiley & Sons.
- Parida, A. K. & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349.
- Romero, L., Belakbir, A., Ragala, L. & Ruiz, M. (1997). Response of plant yield and leaf pigments to saline conditions: Effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Science and Plant Nutrition, 43(4), 855-862.
- Rouphael, Y., Cardarelli, M., Rea, E. & Colla, G. (2008). Grafting of cucumber as a means to minimize copper toxicity. Environmental and Experimental Botany, 63(1), 49-58.
- Roosta, H. R. & Karimi, H. R. (2012). Effects of alkali-stress on ungrafted and grafted cucumber plants: using two types of local squash as rootstock. Journal of Plant Nutrition, 35(12), 1843-1852
- Sairam, R. K., Rao, K. V. & Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163(5), 1037-1046.
- Shalata, A., Mittova, V., Volokita, M., Guy, M. & Tal, M. (2001). Response of the cultivated tomato and its wild salt‐tolerant relative Lycopersiconpennellii to salt‐dependent oxidative stress: The root antioxidative system. Physiologia Plantarum, 112(4), 487-494.
- Wei, G. P., Yang, L. F., Zhu, Y. L. & Chen, G. (2009). Changes in oxidative damage, antioxidant enzyme activities and polyamine contents in leaves of grafted and non-grafted eggplant seedlings under stress by excess of calcium nitrate. Scientia Horticulturae, 120(4), 443-451.
- Xu, P. L., Guo, Y. K., Bai, J. G., Shang, L. & Wang, X. J. (2008). Effects of long‐term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiologia Plantarum, 132(4), 467-478.
- Yetisir, H., Sari, N. &Yücel, S. (2003). Rootstock resistance to fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica, 31(2), 163-169.
- Zhen, A., Bie, Z., Huang, Y., Liu, Z. & Li, Q. (2010). Effects of scion and rootstock genotypes on the anti-oxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Science & Plant Nutrition, 56(2), 263-271.
- Zhu, S. N., Guo, S. R., Zhang, G. H. & Li, J. (2008). Activities of antioxidant enzymes and photosynthetic characteristics in grafted watermelon seedlings under NaCl stress. Acta Botanica Boreali-Occidentalia Sinica, 28, 2285-2291.
|