تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,609 |
تعداد دریافت فایل اصل مقاله | 97,206,242 |
Facile Synthesis of Zn-TiO2 Nanostructure, Using Green Tea as an Eco-Friendly Reducing Agent for Photodegradation of Organic Pollutants in Water | ||
Pollution | ||
مقاله 12، دوره 4، شماره 4، دی 2018، صفحه 687-696 اصل مقاله (1.02 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2018.252226.392 | ||
نویسندگان | ||
F. tavakoli؛ A. Badiei* | ||
School of Chemistry, College of Science, University of Tehran, Tehran, Iran. | ||
چکیده | ||
The present study synthesizes Zn-TiO2 photocatalyst via a simple and economic green rout, in which Green Tea is applied as a green reducing agent due to the presence of polyphenols Molecules. Polyphenol molecules in green tea act as a reductant, thus changing Zn2+ to metallic Zn. The by-produced nanocmposites are characterized by using XRD, FESEM, EDS, and DRS. Zn-TiO2 photocatalyst possesses great efficient charge separation properties. In order to investigate the presence of Zn, different weight ratio of Zn to TiO2 (viz. 5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%, 30 wt%, 35 wt%, 40 wt%, 45 wt%, and 50 wt%) have been synthesized and their performance in Acid Orange 7 (AO7) photodegradation, compared with pure TiO2. According to the results, the compound with 25 wt% Zn shows 97% degradation of AO7 as a model pollutant. Also, it has been shown that after three tests with EDTA, benzoic acid, and under Ar gas, photodegradation of AO7 with Zn-TiO2 photocatalyst mainly depends on photogenerated holes. | ||
کلیدواژهها | ||
Zn-TiO2؛ Green Synthesis؛ green tea؛ Photocatalyst؛ Acid Orange 7 | ||
مراجع | ||
Ayni, S., Sabet, M. and Salavati-Niasari, M. (2016) Synthesis and Characterization of Lead Molybdate Nanostructures with High Photocatalytic Activity Via Simple Co-recipitation Method. Journal of Cluster Science., 27(1); 315-326.Eskandarloo, H., Badiei, A. and Haug, C. (2014). Enhanced photocatalytic degradation of an azo textile dye by using TiO2/NiO coupled nanoparticles: Optimization of synthesis and operational key factors. Mater. Sci. Semicond. Process., 27(1); 240-253.
Eskandarloo, H., Badiei, A., Behnajadi, M. A. and Mohammadi Ziarani, G. (2016a). Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants. Ultrason Sonochem., 28(1); 169-177.
Eskandarloo, H., Badiei, A., Behnajadi, M. A., Tavakoli, A. and Mohammadi Ziarani, G. (2016b). Ultrasonic-assisted synthesis of Ce doped cubic–hexagonal ZnTiO3 with highly efficient sonocatalytic activity. Ultrason Sonochem., 29(1); 258-269.
Fujishima, A., Zhang, X. and Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surf Sci., 63(12); 515-582.
Hashimoto, K., Irie, H. and Fujishima, A. (2005). TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn J Appl Phys., 44(12); 8269-8285.
Huang, Q., Tian, S., Zeng, D., Wang, X., Song, W., Li, Y., Xiao, W. and Xie, C. (2013). Enhanced Photocatalytic Activity of Chemically Bonded TiO2/Graphene Composites Based on the Effective Interfacial Charge Transfer through the C–Ti Bond. ACS Catal., 3(7); 1477-1485.
Lin, J. and Zhu, Y. F. (2007). Controlled Synthesis of the ZnWO4 Nanostructure and Effects on the Photocatalytic Performance. Inorg. Chem., 46(20); 8372-8378.
Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J. and Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal Today., 147(1); 1-59.
Masoumi, S., Nabiyouni, G. and Ghanbari, D. (2016). Photo-degradation of Congored, acid brown and acid violet: photo catalyst and magnetic investigation of CuFe2O4–TiO2–Ag nanocomposites. J. Mater. Sci. - Mater. Electron., 27(10); 11017-11033.
Nayak, J., Lohani, H., Bera, T.K. (2011). Observation of catalytic properties of CdS–ZnO composite nanorods synthesized by aqueous chemical growth technique. Curr. Appl. Phys., 11(1); 93-97.
Neelakandeswari, N., Sangami, G., Dharmaraj, N., Taek, N. K. and Kim, H. Y. (2011). Spectroscopic investigations on the photodegradation of toluidine blue dye using cadmium sulphide nanoparticles prepared by a novel method. Spectrochim. Acta, Part A., 78(5); 1592-1598.
Roig, B., Gonzalez, C. and Thomas, O. (2003). Monitoring of phenol photodegradation by ultraviolet spectroscopy. Spectrochim. Acta, Part A., 59(2); 303-307.
Sabet, M. and Salavati-Niasari, M. (2015). Deposition of Lead Sulfide Nanostructure Films on TiO2 Surface via Different Chemical Methods due to Improving Dye-Sensitized Solar Cells Efficiency. Electrochimica Acta., 169(1); 168-179.Sabet, M., Jahangiri, H. and Ghashghaei, E. (2017). Improving microwave absorption of the polyaniline by carbon nanotube and needle-like magnetic nanostructures. Synthetic Metals., 224(1); 18-26.Sabet, M., Salavati-Niasari, M., Ashjari, M., Ghanbari, D. and Dadkhah, M. (2012). CuIns2/Cus Nanocomposite: Synthesis via Simple Microwave Approach and Investigation Its Behavior in Solar Cell. Journal of Inorganic and Organometallic Polymers and Materials., 22(5); 1139-1145.Sabet, M., Salavati-Niasari, M., Ghanbari, D., Amiri, O., Mir, N. and Dadkhah, M. (2014). Synthesis and characterization of CuInSe2 nanocrystals via facile microwave approach and study of their behavior in solar cell. Materials Science in Semiconductor Processing., 25(1); 98-105.Sangsefidi, F. S., Sabet, and Salavati-Niasari, M. (2016) Synthesis and characterization of ceria nanostructures with different morphologies via a simple thermal decompose method with different cerium complexes and investigation the photocatalytic activity. Journal of Materials Science: Materials in Electronics., 27(8); 8793-8801.Shen, J., Hu, Y., Shi, M., Li, N., Ma, H. and Ye, M. (2010). One Step Synthesis of Graphene Oxide−Magnetic Nanoparticle Composite. J. Phys. Chem. C., 114(3); 1498-1503.
Shiravand, G., Badiei, A., Mohammadi Ziarani, G., Jafarabadi, M. and Hamzehloo, M. (2012). Photocatalytic Synthesis of Phenol by Direct Hydroxylation of Benzene by a Modified Nanoporous Silica (LUS-1) under Sunlight. Chin. J. Catal., 33(7-8); 1347-1353.
Tavakoli, F., Salavati Niasari, M. and Mohandes, F. (2013). Green synthesis of flower-like CuI microstructures composed of trigonal nanostructures using pomegranate juice. Mater. Lett., 100(1); 133-136.
Tavakoli, F., Salavati Niasari, M., Badiei, A. and Mohandes, F. (2015). Green synthesis and characterization of graphene nanosheets. Mater. Res. Bull., 63(1); 51-57.
Wang, X., Hu, P., Li, Y.F. and Yu, L. (2007). Preparation and Characterization of ZnO Hollow Spheres and ZnO−Carbon Composite Materials Using Colloidal Carbon Spheres as Templates. J. Phys. Chem. C., 111(18); 6706-6712.
Xie, W., Li, Y., Sun, W., Huang, J., Xie, H. and Zhao, X. (2010). Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. J. Photochem. Photobiol., A. Chem., 216(2-3); 149-155.
Xu, T., Zhang, L., Cheng, H. and Zhu, Y. (2011). Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catalysis B: Environ., 101(3-4); 382-387. | ||
آمار تعداد مشاهده مقاله: 757 تعداد دریافت فایل اصل مقاله: 609 |