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and more varied networks would be tested.  
Halabiyan (2011) forecasted rainfall in 
Isfahan using artificial neural networks. Their 
results showed that because of the decrease 
in data swing range, it would be better to use 
logarithmic functions for normalization, and 
the most appropriate kind of artificial neural 
network to forecast the rainfall for the next 
month was a network with a hidden layer. 
Khalili et al. (2016) used artificial neural 
networks to forecast rainfall accurately. 
Shafei et al., Aksory and Dashmeh (2009) 
forecasted one-month rainfall in three 
stations (A, B, C) with different regional 
conditions, and compared the results with 
MLR regression. They concluded that for 
stations with humid and arid conditions, 
FFBP and MLR were more appropriate 
models respectively. In another study, 
Bustami et al. (2007) forecasted rainfall and 
water level using artificial neural network 
technique in Boudap, Malaysia. Their results 
showed that artificial neural networks could 
forecast rainfall over a lake with 96.4% 
accuracy. Using neural networks, Fallah 
Ghalhery et al. (2010) forecasted spring 
rainfall in Khorasan Razavi, Iran, in a 37-
year period (1970-2007). The results showed 
that neural networks could forecast rainfall 
accurately through all the period. Nastos et 
al. (2011) estimated the rainfall intensity in 
terms of (mm / day) in Athens, Greece. Chen 
et al. (2010) used SVM to scale daily 
precipitation and compared them with 
multivariate analysis. He indicated that the 
SVM results were more accurate than SVM 
forecasts. In order to forecast seasonal 
precipitation, Fallahi Ghaloery (2011), 
determined the meteorological signals 
affecting the precipitation of Khorasan 
province by Pearson correlation method. 
ANN has been used as an alternative tool to 
traditional deterministic rainfall-runoff 
modeling (Sirhan and Koch, 2013) and in 
forecasting groundwater levels fluctuation. 
Using the M5 tree model, Sattari and Nashin 
(2013) estimated the daily reference 
evapotranspiration in Bonab region and 
compared the results with the artificial neural 
network. Tryland et al. (2014) investigated 
the impact of rainfall on the hygienic quality 
of blue mussels and water in urban areas in 
the Inner Oslofjord, Norway. Sharma et al. 
(2014) examined the function of neural 

network models, fuzzy networks and fuzzy 
logic (ANFIS) simulation of rainfall-runoff 
processes in the Kohlar watershed of India. 
The results showed that the neo-fuzzy 
method was significantly better than the other 
two models in simulating the runoff rainfall 
process. It also functioned better than other 
models in forecasting minimum and 
maximum values. The traditional methods 
that are based on linear relationships are not 
good enough for solving these types of 
problems (Alizadeh and Kavianpour, 2015). 
The purpose of this paper is to investigate the 
performance of mixture of neural network 
(mixture of experts) in a linear combination 
neural networks (LCANN) and nonlinear 
combination neural networks model (Gating 
network) for monthly rainfall forecasting to 
compare their performances with that of 
ANN Neural Networks models. The 
presented study is the first application for 
forecasting precipitation using ANN, and 
combination of them. The paper is organized 
as it follows: The second section analyses the 
data characteristics. The third section 
introduces methodologies, including artificial 
neural network, designing the neural 
networks as an expert. Combination of neural 
network in linear and nonlinear is discussed 
in the fourth section. The fifth section gets 
through with applications discussion of 
results. Conclusions are presented in the last 
section of the paper. 
 
2.Materials and Methods 
2-1. Geographical location of Torbat-e 
Heydariyeh 
The city is located within 13.59-degree 
longitude and 16.35-degree latitude, Torbat-e 
Heydariyeh is 1333 meters above sea level. It 
is located in north-east of Iran. The city 
reaches from east to Taybad and Torbat-e 
Jam, from west to Kashmar, from north to 
Mashhad, Neyshabour and Fariman and from 
south to Mahvelat. Its area is 9945 Km2. 
Shah Jahan and Jam mountains from north, 
and Kouh Sorkh and Kouh Mish mountains 
from south are surrounding it. In north and 
northwestern, it has a mountainous climate 
with a cold winter and a mild summer while 
in south it has a semi-desert climate with a 
hot and dry summer. Its average annual 
rainfall is 200 mm mostly in winter and 
spring and maximum and minimum 
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4-2. Designing and training multiple 
neural networks as expert 
If the number of neural networks increases, 
we can combine them with higher precision. 
Each of these neural networks is referred to 
as a basic expert. This variation causes some 
kind of variance in system performance;  
thus, if there are different experts and  
their results are used, the probability of  
error distribution is concentrated around  
the target and better results will be acquired. 
In order to get proper results from  
the combination of experts, each of the  
neural networks must have the following 
conditions: 
Each expert should solely be at an acceptable 
level (not complete). 
Each expert should complement the other; 
they should not be the same and produce the 
same result. 
Considering the above conditions, several 
neural networks were designed. To achieve 
this goal based on the statistical analysis in 
Table 1, conducted with the SPSS software, 
the importance of features was investigated 
in the monthly precipitation forecasting. 
Then, five neural networks were designed 
and implemented. The data from this Table 
show that the "humidity" and "temperature" 
characteristics have the most effect on 
evaluating the precipitation. Therefore, these 
characteristics were used as the most 
important input parameters of the neural 
network in designing various experts. After 
designing five neural networks (N1, N2, N3, 
N4, N5) as the experts, the best neural 
network architecture must be investigated for 
each of them. The number of neural network 
layers and the number of neurons in the 
hidden layers are the parameters that regulate 
the neural network which can be effective in 
improving the accuracy of the neural 
network. Thus, for each of these neural 
networks, approximately 50 architectures 
were evaluated. Five neural networks which 
have been designed as experts, are shown in 
Figures (6-a) to (6-e). The sixth neural 
network in Figure (6-f) is in fact the gating 
neural network which considered the output 

of each of the experts as the input with the 
structure of the best architecture referred to 
in the first sections of this article. 
 
4-3. Combining neural networks (mixture 
of experts) 
There are several methods to combine the 
experts, but in general, we can divide them 
into two linear and nonlinear categories. The 
most commonly used linear method is 
Majority Voting in which we summarize the 
views of each of the experts. One of the most 
well-known non-linear methods is Gating 
Network, in which the output of each expert 
is connected to the final network input. In 
this research, both linear and nonlinear 
methods of expert are used to forecast 
precipitation. 
 
4-3-1. Linear mixture of experts in 
forecasting precipitation 
One of the most common methods of  
linear combination methods is collecting 
expert opinions. The main motive for this is 
that in designing an expert system there are 
many choices, such as the display method, 
expert parameters, educational data, etc., and 
the results of several classifiers are as 
follows: 

),,,( 54321 fffffvotefcom 
                   (3) 

The f1 to f5 are the five designed experts. In 
order to get a good result of the combination 
of experts, each one should solely be accurate 
enough; however, there is no need for high 
accuracy. Table 3 indicates that experts 1 and 
2 have the best architecture because they 
have the lowest average error. The first one is 
related to the time, once five input 
parameters i.e., day, month, average 
temperature, average humidity and sun hour 
were involved in the network decision-
making. The second network included input 
parameters of day, month, minimum 
temperature, minimum humidity and sun 
hour. Figure 7 illustrates the designed 
network error for each of the architectures 
listed in Table 3. 
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Table 4. Average of 10- fold modeling on five neural network to forecast –precipitation. 
 

Data assessment 
based on RMSE 

Best network 
architecture 

Entrance parameters 
Model 

Number 

0.0063 5-10-80-1 
Average temperature - Average humidity - Wind 

speed - Wind direction - Sun clock 
1 

0.0067 5-10-50-1 
Day - month - minimum temperature - minimum 

humidity - sun clock 
2 

0.0072 5-10-90-1 
Day - month - maximum temperature - maximum 

humidity - maximum temperature - sun clock 
3 

0.0077 5-10-70-1 
Day - month - wind speed - Wind direction - 

average humidity 
4 

0.0064 5- 10-50-1 
Day - month - wind speed - average temperature - 

average humidity 
5 

0.0051 11- 10-40-1 All 11 recorded parameters 6 
 
In the second section of the study, one of the 
most common methods of linear 
combination, i.e. the averaging method was 
used. In the third section, a nonlinear method 
called the gating neural network was used. 
The main motive for this was that in 
designing an expert system there are many 
choices, such as the display method, expert 
parameters, educational data, etc. This 
variation causes some kind of variance in the 
performance of the system. Consequently, if 
there are different systems and their results 
are used, it is possible that the distribution of 
the error is centered near the goal and the 
better results is achieved by increasing the 
sampling of this distribution. Table 5 
indicates the results of precipitation in 
Torbat-e Heydarieh using only one neural 
network with all 11 input factors and when 
the combination of neural networks was used 

with linear Majority Voting and nonlinear 
gating network. 
Table 6 also indicates an example of the 
results obtained by the models presented in 
this study. 
Since forecasting precipitation is a rather 
important issue, especially in a dry country 
like Iran, there are a large number of 
researches on precipitation forecast. In many 
articles, monthly data are used as input one, 
based on which precipitation is forecasted. In 
some cases, the forecast is based on an 
annual basis. However, in most cases, a 
common method is used to forecast 
precipitation. In this research, three different 
methods were used and their results are 
represented in Table 6, indicating that the 
method of combining the experts has been 
more accurate in forecasting monthly 
precipitation compared to nonlinear method. 

 
Table 5. Precipitation estimation error of Torbat-e Heydarieh using the combination of neural networks in different 

methods. 
 

no combination 
combination 

averaging method 
Combination with the gating 

neural network method 

0.051 0.0071 0.0015 

 
Table 6. Examples of forecasts by the presented models. 

April 2015 November 2009 March2006 

Actual precipitation (Cm) 0.76 0.55 1.94 

Using an expert 0.82 1.07 0.44 

The combination of experts with the linear method 1.41 1.64 0.29 

The combination of experts with the nonlinear method 0.85 0.36 1.89 
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