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Abstract 
Wavelets and radial basis functions (RBF) have ubiquitously proved very successful 

to solve different forms of partial differential equations (PDE) using shifted basis 
functions, and as with the other meshless methods, they have been extensively used in 
scattered data interpolation. The current paper proposes a framework that successfully 
reconciles RBF and adaptive wavelet method to solve the Perona-Malik equation in 
terms of locally shifted functions. We take advantage of the scaling functions that span 
multiresolution subspaces to provide resilient grid comprising centers. At the next step, 
the derivatives are computed and summed over these local feature collocations to 
generate the solution. We discuss the stability of the solution and depict how 
convergence could be granted in this context. Finally, the numerical results are provided 
to illustrate the accuracy and efficiency of the proposed method.  
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Introduction 
Originating from neural networks and learning, 

Radial Basis Functions (RBF) has penetrated a variety 
of computational tasks ranging from supervised learning 
(making input-output comparison) and support vector 
machine classification [1,2] to the interpolation of 
scattered sampled data and image restoration [3,4].  As 
with other meshless methods, RBF have been frequently 
used for the numerical solution of PDEs and their 
extensive use in numerical analysis prompted us to 
investigate the possibility of their combination with 
wavelets to provide the numerical solution for ill-made 
anisotropic diffusion PDEs in general and Perona-Malik 
equation as a powerful method of image processing.  

Perona-Malik equation is studied using different 
methods, including fixed point method [5]. The 
equation is important because of its applications in 
image enhancement (see e.g. [6]). It is also used as a 
model for image denoising [7] and shape detection 
[8,9]. 

After giving a brief description of the formal 
structures of RBF together with multiresolution wavelet 
analysis (MRWA) in the first section, we will devote the 
rest of the paper to elaborate on having these two 
methods (despite their essential difference in locality) 
funneled to reach a fulfilling approximation for the 
Perona-Malik equation.  It is worth mentioning that the 
main idea behind our work is to exploit the wavelet 
basis so as to generate the solution state and refine the 
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established RBF centers whereupon the derivatives are 
computed at each step. As it will be shown, the latter 
(backward computation of the derivatives over the 
transient centers) is somehow similar to using the power 
series in solving differential equations. It should be 
noted that because this strategy is rapidly growing 
among the literature we avoid taking any 
comprehensive approach and instead try to demonstrate 
how it already has gained superiority over its 
counterparts.  

In recent years, few methods have been suggested to 
combine RBF and wavelets in different forms. 
Categorically we could divide the whole body of the 
literature into two sections. Some of the suggested 
methods attempt to apply the wavelet in refining-
coarsening the RBF algorithms whereas the others try to 
produce new types of wavelets via employing RBF as 
the basis instead of the well-known usual ones. In the 
first category, most of the work are mainly concentrated 
on enhancing the adaptivity of RBF centers. For 
example, Vrankar et. al. [10] proposed a method to 
solve time dependent moving boundary problems by the 
virtue of the wavelet style refinement techniques, which 
use wavelets to define a greedy RBF algorithm that 
captures and tracks the changes along the contours.  In 
the second category, we could also point out a method 
called ‘central basis function’ that was produced in [11] 
presenting a model that yields conventional 
multiresolution wavelet bases through shifting one side 
functions including RBF. This paper too belongs to the 
first category in regard to its scope, method and 
materials.  

 Given a radially symmetric function ߶(ݔ)  we can define a radial basis function as (‖ ݔ‖)߶=
follows: ݂(ݔ) = ∑ ݔ‖)߶௞ߣ − ௞‖௞ݔ ),                     

where ‖ݔ − ݔ ௞‖ଶ is the Euclidean distance betweenݔ ∈ ℝௗ and ݔ௞ ∈ ℝௗ (called center, typically one for 
each nodal point) and it implies that the value of the 
function ߶ and thus the interpolant ݂ solely depends on 
the distance of the trajectory that links ݔ to ݔ௞. 
Furthermore, we have a class of radially symmetric 
functions among which the following forms are more 
popular.  ߶(ݎ) = 1 (1 + ܿଶݎଶ)⁄ ,          Reciprocal ߶(ݎ) = √1 + ܿଶݎଶ,               Multiquadratic ߶(ݎ) = ଶݎ log  Thin-plate                  ,ݎ

Here, ܿ is a constant for shape parameter. Like any 
classic interpolation method, we have a set of auxiliary 
points, which are to help us find the appropriate 
constants ߣ௞ that yield the best approximation. In other 
words, the main scope of this scheme is more of a 
finding a solution for a linear ݊ × ݊ system of equations 

ܣ =  ,்݂ݖ
where  ܣ௜௝ = ߶௜൫ݔ௝൯ , ݖ = .ଵߣ] … . ݂ ே] andߣ =[ ଵ݂. … . ே݂ ], and ்ݖ is the transpose of z. We choose to 

work with ߶(ݎ) = (1 − ଷݎା଼(32(ݎ + ଶݎ25 + ݎ8 + 1), 
called wendland polynomial with compact support, as 

our basis function. Furthermore, the number of degree 
of freedom is also tantamount to the number of 
constraints of the final linear system.  

As it can be seen, after picking up a proper basis 
function as well as setting the linear system (symmetric 
or asymmetric) the rest is about finding and establishing 
the centers or nodes. In traditional RBF, the centers 
usually follow a steady pattern that is poorly suited to 
our purpose [12]. Considering the nature of our PDE, 
which is an ill-posed time dependent equation, we need 
to insert a resilient grid into our computations, so that it 
can continually update itself with alterations of the 
equation behavior.  Static centers also yield a large 
number of computations and the solution is more likely 
to be gained at the expense of optimality [13].  To avoid 
these difficulties, we shall take an adaptive approach to 
arrange the centers without working with a large set of 
points. As we will show, the proposed method can 
resolve this problem via distributing a set of nodes and 
shifting them in order to establish the centers around the 
spots with high gradients, which point out sharp edges 
in our problem. 

Let us briefly review the basic idea behind the 
discreet wavelet theory (DWT) and multiresolution 
analysis (MRA), both of which are applied to construct 
our adaptive grid. MRA is an alternative interpolation-
representation approach to the Fourier transform, first 
introduced during the late 80’s and early 90’s by Meyer 
in [14] (see also, [15]). The pillars of the MRA can be 
encapsulated in the following propositional scheme. The 
idea is to expand ܮଶ(ℝ) as the direct sum of the 
‘approximation’ subspace { ௝ܸ} and its orthogonal 
complement ‘detail’ spaces { ௝ܹ}, where for some 
appropriate scaling function ߮ ∈  ଶ(ℝ),  ௝ܸ has anܮ
orthonormal basis consisting of the functions ߮௝௞(ݔ) = 2௝ ଶൗ ߮(2௝ݔ − ݇) , 

as ݇ runs over ℤ  and ௝ܹ is the same thing with ߮௝௞ 
replaced by ߰௝௞(ݔ) = 2௝ ଶൗ ߰(2௝ݔ − ݇). 

These nested subspaces are also invariant under shift 
but not under translation, namely,  ݂(ݔ) ∈ ௝ܸ ↔ ݔ)݂ − ݇) ∈ ௝ܸ ,                          ݂(ݔ) ∈௝ܸ ↔ (ݔ2)݂ ∈ ௝ܸାଵ . 

Then  ܮଶ(ℝ) can be decomposed as a direct sum of 
the subspaces ௝ܹ. 
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well as the approximated values of the derivatives, we 
apply collocation method for all nodal points to gain the 
following equations.  

௝௞ିଵݑ    = ௝௞ݑ  −  ߬ ቀ݃ ቀฮ∇ݑ௝௞ฮଶቁ ∇ଶݑ௝௞ + 2݃ᇱ ቀฮ∇ݑ௝௞ฮଶቁ .௝௞ݑ∇௝௞ݑଶܦ                                   , ௝௞ቁݑ∇
where  ݑ௝௞(ݔ) = ෍ ߶௜൫ݔ௝൯ݑ௜௞௡

௜ୀଵ ௝௞ݑଶܦ , = ∑ (డథ೔൫௫ೕ൯డ௫ ௜௞ݑ + డథ೔൫௫ೕ൯డ௬ ௜௞ݑ + డమథ೔൫௫ೕ൯డ௫మ +௡௜ୀଵడమథ೔൫௫ೕ൯డ௬మ + డమథ೔൫௫ೕ൯డ௫డ௬                             ,(௜௞ݑ
       ∇ଶݑ௝௞ = ∑ (߶௜൫ݔ௝൯ + డమడ௬మ ߶௜൫ݔ௝൯)ݑ௜௞,௡௜ୀଵ                                                             
satisfying the Neumann condition for the boundary 

nodes  ݔ௝ , j=N+1, . . ., N+L, for each subdomain, that 
is,  ∑ డథడఎ ൫ݔ௝൯ݑ௜௞ = 0.௡௜ୀଵ                                                                      

To take the whole system forward, we run it 
recursively with k=0, that is associated with our initial 
condition, ݑ௝଴ =  Hence, the problem is to solve .(௝ݔ)଴ݑ
an algebraic equation system ࡲ(ି࢑૚)(࢑)࢛ = ௜௝௞ିଵܨ . (૚ି࢑)ࢌ = ௜௝ߜ −  ߬ ቆ݃ ቀฮ∇ݑ௝௞ฮଶቁ ∑ ቆడమథೕడ௫మ (௜ݔ) +௡௜ୀଵ డమథೕడ௬మ ቇ(௜ݔ) +  2݃ᇱ ቀฮ∇ݑ௝௞ฮଶቁ ൬∑ ൬డథ೔൫௫ೕ൯డ௫ ௜௞ݑ +௡௜ୀଵడథ೔൫௫ೕ൯డ௬ ௜௞ݑ + డమథ೔൫௫ೕ൯డ௫మ + డమథ೔൫௫ೕ൯డ௬మ +డమథ೔൫௫ೕ൯డ௫డ௬ ௜௞൰൰ݑ ∑ ቆడమథೕడ௫మ (௜ݔ) + డమథೕడ௬మ ቇ௡௜ୀଵ(௜ݔ) ቇ,                      
                              ௜݂(௞ିଵ) =      , ௜௞ିଵݑ

We shall reiterate the above procedure until we nail 
an advisable time step. Then the solution ݔ)ݑ,  at each (ݐ
point of the domain  ݔ ∈ Ω  could be expressed as  ݔ)ݑ. (ݐ ≈ ∑ ߶௜(ݔ)௡௜ୀଵ ,(ݐ)௜ݑ ݔ ∈ Ω.                                

Taking an initial solution at the coarsest level, we are 
going to apply the MRA by distributing it over the 
nested subspaces. The total account of the proposed 

method is that both the smooth features of the picture 
are attributed to the wavelet coefficients at low levels 
whereas the highly-localized features are attributed to 
the wavelet coefficients at higher levels.  Any 
irregularity or variation between the current level and 
the next coarse level can be depicted by the high values 
of the wavelet coefficients. It also allows us to make a 
decision over whether keeping or eliminating any 
wavelet coefficient that corresponds to some certain 
node of the domain. Using this adaptation scheme will 
result in keeping the essential nodes which collectively 
make a more optimal node distribution. 

 

Results 
To provide numerical example, we need to initialize 

the parameters and opt for a suitable numerical setting 
of RBF, that is, the type of radial functions we are going 
to use as well as an optimal node distribution method. 
To do so, we take into account a case where the system 
is fed up with the following parameters. We set up 
N=698 (the initial number of collocation nodes), ܿ = 0.1 (shape parameter of radial basis functions) and ߝ = 0.001 (the coarsest level of resolution).  

Also, we will separately try both of MQRBF and 
Wendland polynomial all along our computations and 
the relevant comparison will be made at the final step. 
In order to compare the computational, error the  ݈ஶ and ܴܵܯ norms must be calculated are given as below. ݈ஶ is 
a point wise norm taken over the domain while the Root 
Mean Square (in short RMS) is mean of the squares of 
the values, usually known for its 

stability. We must show that the obtained solution 
approximates the exact solution of the operator equation 
(20). In sum, the algorithm that puts the whole system 
into practice could be elaborated as follows. The 
numerical results of the adaptive multiresolution 
wavelet scheme are given in Tables 1 and 2.   

The errors are defined by, ݈ஶ = ess sup|ݑ௘௫௔௖௧(ݔ௜) −          ,|(௜ݔ)௔௣௣ݑ
Table 1. Iterative progress of the adaptive multiresolution wavelet scheme (multiquadric function) from level 1 to 4. 

N ࢒ (࡭)ࣄஶ ࡿࡹࡾ 
320 2.6831e+06 2.27E-02 4.18E-03 
732 6.6004e+04 1.53E-01 2.79E-03 
756 2.6018e+06 3.14E-02 1.43E-03 
764 7.4874e+06 3.23E-03 1.62E-03 

Table 2.  Iterative progress of the adaptive multiresolution wavelet scheme (Wendland polynomial) from level to 4. 
N ࢒ (࡭)ࣄஶ ࡿࡹࡾ 

320 7.4352e+04 1.41E+01 1.52E+01 
764 2.1255e+06 7.03E-02 7.26E-03 
980 6.51E+20 5.24E-01 2.79E-01 

1092 1.46E+02 3.92E-02 1.25E-03 
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well as the problems that demand re-meshing of the 
space all along the computations. It should be noted that 
the larger the time intervals, the more instability the 
system will experience, but as the comparative 
computations suggest, instability would be less 
pronounced if the adaptive wavelet CSRBF method is 
used.  

 
Conclusion 

Finally, our method is fairly optimized and easy to 
implement. Besides, the wavelet transformations can be 
engaged more directly in the course of the computation 
via building a sequence of bounded wavelets to 
approximate the solution, albeit the ultimate shape of 
the exact solution is not quite regular and therefore 
easily prone to fit in.  
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