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Abstract

Wavelets and radial basis functions (RBF) have ubiquitously proved very successful
to solve different forms of partial differential equations (PDE) using shifted basis
functions, and as with the other meshless methods, they have been extensively used in
scattered data interpolation. The current paper proposes a framework that successfully
reconciles RBF and adaptive wavelet method to solve the Perona-Malik equation in
terms of locally shifted functions. We take advantage of the scaling functions that span
multiresolution subspaces to provide resilient grid comprising centers. At the next step,
the derivatives are computed and summed over these local feature collocations to
generate the solution. We discuss the stability of the solution and depict how
convergence could be granted in this context. Finally, the numerical results are provided
to illustrate the accuracy and efficiency of the proposed method.
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Introduction

Originating from neural networks and learning,
Radial Basis Functions (RBF) has penetrated a variety
of computational tasks ranging from supervised learning
(making input-output comparison) and support vector
machine classification [1,2] to the interpolation of
scattered sampled data and image restoration [3,4]. As
with other meshless methods, RBF have been frequently
used for the numerical solution of PDEs and their
extensive use in numerical analysis prompted us to
investigate the possibility of their combination with
wavelets to provide the numerical solution for ill-made
anisotropic diffusion PDEs in general and Perona-Malik
equation as a powerful method of image processing.

Perona-Malik equation is studied using different
methods, including fixed point method [5]. The
equation is important because of its applications in
image enhancement (see e.g. [6]). It is also used as a
model for image denoising [7] and shape detection
[8,9].

After giving a brief description of the formal
structures of RBF together with multiresolution wavelet
analysis (MRWA) in the first section, we will devote the
rest of the paper to elaborate on having these two
methods (despite their essential difference in locality)
funneled to reach a fulfilling approximation for the
Perona-Malik equation. It is worth mentioning that the
main idea behind our work is to exploit the wavelet
basis so as to generate the solution state and refine the
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established RBF centers whereupon the derivatives are
computed at each step. As it will be shown, the latter
(backward computation of the derivatives over the
transient centers) is somehow similar to using the power
series in solving differential equations. It should be
noted that because this strategy is rapidly growing
among the literature we avoid taking any
comprehensive approach and instead try to demonstrate
how it already has gained superiority over its
counterparts.

In recent years, few methods have been suggested to
combine RBF and wavelets in different forms.
Categorically we could divide the whole body of the
literature into two sections. Some of the suggested
methods attempt to apply the wavelet in refining-
coarsening the RBF algorithms whereas the others try to
produce new types of wavelets via employing RBF as
the basis instead of the well-known usual ones. In the
first category, most of the work are mainly concentrated
on enhancing the adaptivity of RBF centers. For
example, Vrankar et. al. [10] proposed a method to
solve time dependent moving boundary problems by the
virtue of the wavelet style refinement techniques, which
use wavelets to define a greedy RBF algorithm that
captures and tracks the changes along the contours. In
the second category, we could also point out a method
called ‘central basis function’ that was produced in [11]
presenting a model that yields conventional
multiresolution wavelet bases through shifting one side
functions including RBF. This paper too belongs to the
first category in regard to its scope, method and
materials.

Given a radially symmetric function ¢(x) =
¢(||x]|) we can define a radial basis function as
follows:

) = L e (llx — xiell),

where ||x — x||, is the Euclidean distance between
x € R and x;, € R? (called center, typically one for
each nodal point) and it implies that the value of the
function ¢ and thus the interpolant f solely depends on
the distance of the trajectory that links x to x.
Furthermore, we have a class of radially symmetric
functions among which the following forms are more
popular.

o) =1/(1 +c?r?), Reciprocal
o) =vV1+c?r? Multiquadratic
¢(r) =r*logr, Thin-plate

Here, c is a constant for shape parameter. Like any
classic interpolation method, we have a set of auxiliary
points, which are to help us find the appropriate
constants A, that yield the best approximation. In other
words, the main scope of this scheme is more of a
finding a solution for a linear n X n system of equations
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A=2zTf,

where  A;; = ¢i(x]-) , Z=[A4.....y] and f =
[fi---fy ], and 27 is the transpose of z. We choose to
work with

¢(r) =1 —7)§(32r3 +25r2 +8r + 1),

called wendland polynomial with compact support, as
our basis function. Furthermore, the number of degree
of freedom is also tantamount to the number of
constraints of the final linear system.

As it can be seen, after picking up a proper basis
function as well as setting the linear system (symmetric
or asymmetric) the rest is about finding and establishing
the centers or nodes. In traditional RBF, the centers
usually follow a steady pattern that is poorly suited to
our purpose [12]. Considering the nature of our PDE,
which is an ill-posed time dependent equation, we need
to insert a resilient grid into our computations, so that it
can continually update itself with alterations of the
equation behavior. Static centers also yield a large
number of computations and the solution is more likely
to be gained at the expense of optimality [13]. To avoid
these difficulties, we shall take an adaptive approach to
arrange the centers without working with a large set of
points. As we will show, the proposed method can
resolve this problem via distributing a set of nodes and
shifting them in order to establish the centers around the
spots with high gradients, which point out sharp edges
in our problem.

Let us briefly review the basic idea behind the
discreet wavelet theory (DWT) and multiresolution
analysis (MRA), both of which are applied to construct
our adaptive grid. MRA is an alternative interpolation-
representation approach to the Fourier transform, first
introduced during the late 80’s and early 90’s by Meyer
in [14] (see also, [15]). The pillars of the MRA can be
encapsulated in the following propositional scheme. The
idea is to expand L,(R) as the direct sum of the
‘approximation’ subspace {V;} and its orthogonal
complement ‘detail’ spaces {W;}, where for some
appropriate scaling function ¢ € L*(R), V; has an
orthonormal basis consisting of the functions

o) = 2729(2Ix— k) ,

as k runs over Z and W is the same thing with ¢
replaced by

Yi(x) = 2729(20x ~ ).

These nested subspaces are also invariant under shift
but not under translation, namely,

f@eV o fx—k ey,
Vi © f(2x) € Vjyyq.

Then L?(R) can be decomposed as a direct sum of
the subspaces W;.

fG) e
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PR =Y2,W2- QW OW,D..
and every function f(x) € L?(R) will have a unique
decomposition
f)=4g-1(x)+ go(x) + g:(x) + -+,
where g; € W;,Vj €Z . If Y is regarded as an
orthogonal wavelet, then the subspaces W; € L*(R) are
mutually  orthogonal, W; L W;,j # 1. For every
wavelet (not necessarily orthogonal) we can the
following space V; & L*(R)
Vi=.OW_.®W,..0W;_, ®DW,_,,
=Vo®W,..0 W;_, ® W;_,.
subspaces V; have the following properties:
l...€V_, VSV €,
2.clos;2(Ujez Vy) = LA(R),
3.NjezVy = {0},
4V =V, +W, jEL,
S5.f(x) eV, o f(2x) €Vjyq, jEL

The

The sequence of subspaces V; is nested. (see Fig.1)
Every f(x) € L*(R) can be approximated with any
accuracy by the image P;f of the projection on V;. If the
reference subspace V) is generated by a single scaling
function ¢ € L*(R), then all of the subspaces V; are
also generated by the same function ¢, in the same way
as the subspaces W; are generated by the wavelet .

In the multiresolution analysis at a given scale (j +
1), the subspaces V; encode the “large scale” features of
the function, whereas the subspaces W; represents the
“small scale” features (details).

Now it follows that every function f can uniquely be
represented in terms of the approximating and detailed
bases. The approximating wavelet function and its
companion detailed function can be both defined with
respect to the orthogonality and the nesting properties of
the subspaces.

b(x) = ﬁz heo(2x — ),
k

YO =VZ ) gep(2x — k),
k

W,
w,

| g
2

V2

W]

Vi

Figure 1. A sequence of multiresolution nested subspaces
together with their orthogonal complement can construct
the whole space with the finest data resolution
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for
b ) = 2 f PCOF(2x — k),

and similar formula for g,. The scaling function ¢ is
a two-scale difference function and satisfies the
properties [ ¢(x)dx = 1and

+o0
f lp(O)[2dt < o,

representing a band signal, that h;, and g, can serve
as high pass and low pass filters, respectively. These
subspaces are compactly supported and therefore data
could be transformed from one level of resolution to
another. Under the above conditions, we can now
represent any given optional function in terms of the
bases of the embedded subspaces as follows.

u(x) = u' (o) +u?(x),

where,

Ut (X)) = Tt VigkPjok T Xjzjo Dot KiacWjso
u?(x) = Zj&l 2k KikWjx N = Supjikjx < o,

in which, the refinement coefficients y;, = (u. 1) j.k)
and K = (u. wj_k) can be computed as

Vi-1k = Zlhzk—lyj.l - K1k = 21921(—1’9'.1 .

Any refinable function ¢ can uniquely be constructed
by a series of refinement coefficients, called mask.
Finally, for any smooth function u we will show that
there is a threshold C{ which puts a bound on the error
and guarantees its convergence, that is, ||lu(x) —
ul(x)|l, « €. Note that convergence is derived a
theorem that states for all f € L,(R), the projection of
fon ¢ , denoted by P;f, converges to f, i.e., ||ij -
f || — 0 in L, (R) [16]. It is also worth mentioning that
for all € L;(R) , the convergence is uniform whereas
f € L,(R), convergence is local and pointwise.

Materials and Methods

In this section, we confine our attention over a group
of non-linear anisotropic PDEs which have proven to be
very successful in image processing and are thus
extensively used in image denoising and deblurring. The
common feature of these equations is their striking
ability to keep the essential edges and take the control of
the speed and intensity of diffusion. Of these equations,
we opt for the non-linear version of Perona-Malik
equation which is regarded as one of the most cited PDE
based works of the field.

Having been adopted as an extended and specific
form of the heat-diffusion equation, Perona-Malik
equation shared the similar formalism and can be
written as follows.
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0u — V. (g(lIvu*||)vu) =0,
u(x.0) = uy(¥), 9zu=0,

where u,(¥) is the initial condition at time t=0 and
dzu = 0 is the Neuman condition. Several numerical
solutions based on different methods (such as the finite
difference or finite eclement methods) have been
suggested. Here, we will propose a different method and
compare the output of to existing results provided by
other methods.

First and foremost, it is necessary to offer a discreet
form of the equation via replacing that into the RBF
system. The aim is to specify the coefficients which are
on one hand mediated by MRA and on the other hand
vary across the grid. So, we begin with creating a grid
that contains the centers. In order to increase the
accuracy of our results, we incorporate a more recent
form of RBF called adaptive RBF in which centers are
locally evaluated in terms of the gradient of the
compartment they represent. Centers of high gradients
are assessed useful and kept and the rest will be
removed. This version of RBF has some -certain
privileges over the classic form, most importantly, a
considerable decreasing of computations that in turn
makes the algorithm faster and more optimized. To
incorporate adaptive RBF to our method, we need to
obtain an initial mesh-free solution upon a base grid
first and then distribute it over the nested spaces in order
to compute the values of the coefficients at different
levels of resolution from the coarsest level to the finest
level. In this case, we follow a recursive procedure of
refinement and begin with the corset level.

Given the nonlinear PDE as well as its boundary and
initial conditions, it is conceivable to start the
implementation of the proposed method with spatio-
temporal discretization of the solution upon the based
grid which is associated with the coarsest level of
resolution. We thus set out to employ the collocation
method to find the values of the derivatives on N nodes.
Spatial discretization is performed by dividing the entire
domain € into three parts, which are the boundary,
boundary condition and Neuman condition, successively
(see Fig. 2), namely, Q= Qy + Q; where the grid
points are given by

0,
0

0

Figure 2. Domain decomposition
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x; = ih, i=0.1....M,
t,=nk, n=0.1....N.
Applying 0-scheme will yield the following

equations that are discretized in terms of time.
uk — k-1
= V. (g (IVu*||*)vub).
where T = At. The right hand side of the above
equation can also be expanded and recapped as
V. (g(IVuk|1*)vu’)
= g(Ivu*|I?)vZuk
+ 24" (IVu*||?) D?ukvuk. vuk,
which leads to the following system

t(g(IVu®|I>)v2u®
+ 2g'(IVu*||?)D2ukvuk. vuk), inQ,
ou* 0
o
The system could now be reduced to two main sub
systems associated with the subdomains. The
approximation of the solution on subdomain (), at the
time step k after n iteration is denoted by uf"™ whose
restriction to the artificial subdomain I, is also denoted

by uk™| . Similarly, the approximation of the solution

on ().

"
W)
on (, at the time step k after » iterations and its
restriction to I} are denoted by u¥" and ué"n|F
1

respectively. As a result, our boundary value problem
will be solved through two inter-related sub problems.

T (g (”Vuf"”z) V2yukn 4
29’ (||Vu{”‘||2) D2uknyykn, Vui"") , inQ,

uk-1m

k—-1n _ kn
1 = U -

u

o = O, on an/Fl'
ukn = u’;'"‘lﬂrl, on I,
and,
2
uf~tn = ykn— ¢ (g (||Vu’2‘"|| )V2u§'" +

2 \ .
29’ (||Vu’2”‘|| )Dzu’{'"Vu’z"n.Vu’z""), in Q,,
uk—1m
on

== 0, on an/FI'

kn — ,,kn—-1
usn = ykn |1"2' on [;.

For each nodal point, the first and second partial
derivatives at each node i and point x are obtained as

W = )l ou,
i=1

w00 = ) (W

For the N +L moving least squares nodal points as
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well as the approximated values of the derivatives, we
apply collocation method for all nodal points to gain the
following equations.

=t =t — (g (o) v +

29’ (||Vu]k||2) Dzu}‘Vu}‘.VuJ’-‘) ,

where
km—2¢@m,
k — a<1>(x) uk a0 uk 4 290
D*uf = XLy (w5

P¢i(xj) | %¢i(x)

ay? oxdy U )'

aZ
V2uk =Y (¢i(x;) + ﬁ%(xj))uf;

satisfying the Neumann condition for the boundary
nodes x;, j=N+l, ..., N+L, for each subdomain, that
is,

=1 an (x])u =0.
To take the whole system forward, we run it

recursively with k=0, that is associated with our initial
condition, u]Q = uo(xj). Hence, the problem is to solve

an algebraic equation system F¢~Dy (K = fk-1)
k=1 _ k o°¢
ajl_au-f< (Ilvaf) 52 (M;@9+

220 )+ 20 (1) (51, (22t

a
ap; (x]) k % ¢; (xj) %¢; (x])
ay + dx2 + ay?

2¢i(xj) n 0%¢;
0x0y U )) 0x? Cx;
k-1

f( ) _

+

”%ﬂ)

u ,

We shall reiterate the above procedure until we nail
an advisable time step. Then the solution u(x, t) at each
point of the domain x € Q could be expressed as

uCe.t) & Xy i) u(0), x € Q.

Taking an initial solution at the coarsest level, we are
going to apply the MRA by distributing it over the
nested subspaces. The total account of the proposed

method is that both the smooth features of the picture
are attributed to the wavelet coefficients at low levels
whereas the highly-localized features are attributed to
the wavelet coefficients at higher levels.  Any
irregularity or variation between the current level and
the next coarse level can be depicted by the high values
of the wavelet coefficients. It also allows us to make a
decision over whether keeping or eliminating any
wavelet coefficient that corresponds to some certain
node of the domain. Using this adaptation scheme will
result in keeping the essential nodes which collectively
make a more optimal node distribution.

Results

To provide numerical example, we need to initialize
the parameters and opt for a suitable numerical setting
of RBF, that is, the type of radial functions we are going
to use as well as an optimal node distribution method.
To do so, we take into account a case where the system
is fed up with the following parameters. We set up
N=698 (the initial number of collocation nodes),
¢ = 0.1 (shape parameter of radial basis functions) and
& = 0.001 (the coarsest level of resolution).

Also, we will separately try both of MQRBF and
Wendland polynomial all along our computations and
the relevant comparison will be made at the final step.
In order to compare the computational, error the [, and
RMS norms must be calculated are given as below. [, is
a point wise norm taken over the domain while the Root
Mean Square (in short RMS) is mean of the squares of
the values, usually known for its

stability. We must show that the obtained solution
approximates the exact solution of the operator equation
(20). In sum, the algorithm that puts the whole system
into practice could be elaborated as follows. The
numerical results of the adaptive multiresolution
wavelet scheme are given in Tables 1 and 2.

The errors are defined by,

le = ess sup|u®®t(x;) — u®?(x;)|,

Table 1. Iterative progress of the adaptive multiresolution wavelet scheme (multiquadric function) from level 1 to 4.

N x(A) I, RMS

320 2.6831e+06 2.27E-02 4.18E-03
732 6.6004e+04 1.53E-01 2.79E-03
756 2.6018+06 3.14E-02 1.43E-03
764 7.4874+06 3.23E-03 1.62E-03

Table 2. Iterative progress of the adaptive multiresolution wavelet scheme (Wendland polynomial) from level to 4.

N x(A) I, RMS

320 7.4352¢+04 141E+01 1.52E+01
764 2.1255¢+06 7.03E-02 7.26E-03
980 6.51E+20 5.24E-01 2.79E-01
1092 1 46E+02 3.92E-02 1.25E-03
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Algorithm

Select S, T € Z

= T/ S

Put Q; = [a,b] X [(i — DTy, iT4], i =

Set the grid [a, b] X [0, T;]

Apply the adaptive MRA

for j=jyax—1:Jo (j’s are all levels of resolution)

for each center of the grid at the j level, xj; j, k € Z

Compute: the corresponding wavelet coefficient k;

At finer level j+ 1,¥j41k

Define € and apply the adaptive criteria

If kj ;. < €, then remove x;, from the grid

If kj x = €, the keep x;  in the grid

Solve the system

FO0-Dy0® = £G-D

Construct:

Lﬂ}(xi, ti) = 0,

aﬂ} (x ir ti)
a¢

Set L = [li ]-] U= [ui j] and P=permutation matrix

Solve PLUay = f

Use forward -backward substitution to find a;

Find fj in [a, b] x [(i — 1)T,iTy]

Use forward -backward substitution to find a,

End

End

12,..,s

Xi, ti € [a, b] X [0, Tl]

= O,XL', t; € [a, b] X {0}

Algorithm 1.  Algorithmic Solution of the system
FO-Dy® = £G-1_

N

RMS = |2 fuerect () — e (o),
i=1

where u%t and u%P are the exact and the

approximated solutions respectively. Of course, we can

define the infinity norm as [, = ess sup|u®t(x;) —

uP (x;)|.

More details can be found in Fig. 3 in which the error
of the area is calculated as a function of time for both of
MQRBF and CSRBF.

In addition to the error norms, the accuracy of the

MQ RBF == CSRBF

GOUE0Q 3-82E-BROE-BAGE-BHI—BAGEBOE-04
28 | 10 | 42

S 25 | 81 9 39 | 75

1.32E|6.40E|1.34E(3.71E|1.14E|4.00E
MQ RBF |3.65E|3.20E|2.15E|7.43E(1.40E|4.89E

(1}
Q
-
<
=

(@]
[%2]
X
@
T

Eror]

Number of Time steps

Figure 3. Comparison between errors of two RBFs at
different points over time.
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method can also be easily evaluated in terms of the
order of approximation [17]. Since the definable answer
u belongs to the Sobolov space, we need to use some
results in Sobolov spaces. Before alluding to those, let
us cast a quick glance at the definition of the Sobolov
space.

Definition 1. The Sobolev Space H® of order s is
defined by the set of those functions f(x) € L?(R%)
satisfying

Ifll; = f FEIP (L + x2)dx < oo
QO

The following results could be used for the error
analysis (see, [18], for proofs and more details).

Theorem 1. Suppose (V;)jcz be a multiresolution
approximation such that the associated function ¢(x)
satisfies

AC 20,|p() | < C(A+ x>,
ffooox" ¢(x)dx=0, forl<n<gqg+1,
and also,
3 20, |=EE < '@ + 12D, n<q.
Put & = ||f— PVj(f)”. Then for all (x) € L2(R) ,

if 0 < s < q we have
f(X) EH® & X7 6227 < +oo.

Consider a Banach space K and a normed linear
space G, and a sequence of operators T,: K — G, the
sequence has order of approximation £ (n), i.e., for all
fE€A IU-T)fllg < Cep(n) if and only if for the
operator norm, we have

I =THIl < C'B(),

for some C’ and each n.

Definition 2. MRA {P,} or wavelet family 1 yields
pointwise order of approximation (or convergence) s in
H" if for any f € H", the n-th order approximation B, f
satisfies

IEnfllo = 1T = P)fll = 0(27™),

as n tends to infinity. It yields the best order of
approximation s in H" if s is the largest number such
that this relation holds, for all f € H".

Now, by the above results whose constraints are met
by the functions of our problem we get,
[oe]

ueEH? & Z £%2% < +oo,
Jj=—o0
Also, for a set of refinable answers u’s, attained by
our method, the order of approximation is 0(22"). To
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elaborate more, given a smooth function u € H?
projected over the refinable spaces, i.e. u =u! + u?,
since the required conditions stated in [19] are satisfied,
the existence of a constant C, is guaranteed so that the
error estimation for approximation of u are as follows:
IEyulles < Cu2 2 lull2,

IE,ull, = 0(27%M),

where C (a shape parameter) depends on the function
u(x,t). One must keep in mind that the order of
approximation lies at the heart of a simple difference
norm that demonstrates the degree of precision, namely,

” f- PV]. (f)”, where PVj (f) is an approximation for

the function f. A classical problem in approximation
theory is to estimate the convergence rate of ¢; based on
a priori knowledge on the smoothness of f(x), or
conversely, derive the smoothness of f(x) out of the
convergence rate of &;.

It must be noted that starting from finely distributed
set of RBF centers our approach leads to the generation
of a dense mesh near the boundaries, while a relatively
coarse mesh is maintained elsewhere. A highly ill
conditioned system will be assigned to the very fine
mesh near the boundaries. Furthermore, the method
allows the resulted condition number to be lower than a
specified value that guarantees a stable solution (for an
illustration of nodal distribution in the proposed
algorithm, see Figs. 4 and 5). Finally, in comparison to
the results of similar mesh free method applied to the
same problem, it could be shown that the approximation
order of our method, that stems from the assimilation of
RBF and wavelet basis equals to O(22"), which
surpasses that of the standard RBF that is O(nlogn) as
stated in [20].

It implies that our model is more efficient that the
sheer RBF. Besides, the method is also faster than Finite
Volume Method which converges to the solution as fast
as 0(n) [21]. Also, Mei and Zhu [22], applied another
meshless method, called the Homotopy Perturbation
Method to solve the Perona-Malik equation through
eliminating the boundary effect and showed that the
order of approximation is 0(4%/), which is obviously
slower than ours as it grows polynomially, whereas our
method converges exponentially. The fast progressing
level set method has also been used to solve Perona-
Malik Equation [23] and the authors proved that the
order of approximation using this method is O(h?).
Indeed, our method with the order 0(2%") is the fastest
method among the methods introduced so far and
therefore requires the least number of operations to
reach the solution.
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Figure 4. (left) A schematic illustration of nodal
distribution produced by the wavelet adaptive
technique as well as the chosen RBF centers by the
proposed algorithm using multiquadratic function.

Figure 5. (right) A schematic illustration of nodal
distribution produced by the wavelet adaptive
technique as well as the chosen RBF centers by the
proposed algorithm wusing Wedland polynomial
function.

Discussion

We proposed an adaptive wavelet method to solve
the nonlinear Perona- Malik equation and showed that it
converges to the solution with a higher approximation
order compared to the existing methods. The whole
scheme was mainly relied on creating and pertaining the
RBF grid by the virtue of the wavelet basis. Nonetheless
it must be noted that the method must be tested for the
case when the convolution appears inside the gradient
itself by Catte-Lion equation [24]. The solution we
provided here is akin to a spectrum that contains
different layers, each representing certain degree of
resolution, and thus the solution can shift from one end
of the spectrum to the other. Furthermore, as for any
usual RBF method, no mesh has been generated and this
advantage could supposedly be applied in 3D cases as
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well as the problems that demand re-meshing of the
space all along the computations. It should be noted that
the larger the time intervals, the more instability the
system will experience, but as the comparative
computations suggest, instability would be less
pronounced if the adaptive wavelet CSRBF method is
used.

Conclusion

Finally, our method is fairly optimized and easy to
implement. Besides, the wavelet transformations can be
engaged more directly in the course of the computation
via building a sequence of bounded wavelets to
approximate the solution, albeit the ultimate shape of
the exact solution is not quite regular and therefore
easily prone to fit in.
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