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1. Introduction  

Thin walled metal structures, due to their high strength to 

weight ratio, have numerous applications in different engineering 

fields. For many years, metallic components have been used for 

carrying load and improving the crashworthiness of composite 

transportation structures in terms of absorbing the impact energy 

in aircrafts, ships, and road/rail vehicles. Since crashworthiness 

relates to human safety and protecting against accidents, the design 

qualifications become an important issue in design of such 

structures. As a result, before taking any steps, it is important to 

analyze the simple geometries in the shortest time possible with 

the least design costs.  

One of the main issues to be considered during crushing or 

collapse analysis of thin walled metal columns, is the evaluation 

of energy absorption capacity of the whole structure experiencing 

the impact or quasi-static load. Despite its importance, crushing 

analysis has not been sufficiently addressed for some reasons; first, 
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most structures are primarily designed to function in elastic 

loading range and beyond that, they lose their efficiency and 

secondly, the collapse phenomenon includes large deformations 

with nonlinear and uncertain complicated equations which makes 

the analysis very cumbersome and expensive. In such cases, a 

closed form solution is usually out of reach. One of the logical 

ways to handle such problems is to use the available finite element 

codes, such as LS-DYNA solver, or any other similar software.  

Owing to this fact, the axial collapse of thin-walled structures 

that has been addressed by many researchers can be generally 

categorized in different groups, based on the type of applied load 

(i.e. quasi-static and impact), or shape of the structure (i.e. single-

cell, multi-cell and foam filled). In addition, numerical, analytical, 

and/or experimental methods (or a combination of each method) 

may have been used in each study group. Some researchers have 

investigated crushing behavior of thin walled structures under 

quasi-static loading [1-15] while others, have implemented a 
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dynamic or impact load [16-27] in their analyses. Some scientists 

have explored the crashworthiness design of these structures [28-

31], while others have used new materials (composites, nano or 

FG materials) or foam filled structures to improve their design 

performance [32-34].  

Alexander [1] was one of the first ones to present a theoretical 

approach for prediction of mean crushing force in thin walled 

cylindrical metal columns, collapsing under quasi-static loads. 

Although his model was very simple but still could predict mean 

crushing force very well. Later on, Wierzbicki and Abramowicz 

[2], as well as Jones and Abramowicz [3] carried out some 

analytical studies on axial collapse of metal columns under a 

quasi-static load. They introduced a theory and named it as Super 

Folding Element (SFE) which is an approach for estimating the 

mean crushing force in thin walled members. Based on this theory, 

instead of solving the complicated governing differential 

equations for shell deformation, the absorbed energy could be 

estimated in certain areas of the shell which undergo large plastic 

deformations. Implementing this method and selecting an 

appropriate constitutive element and suggesting some collapse 

modes based on experimental observations, they derived relations 

for the absorbed energy during collapse. Their predictions were 

relatively in good agreement with experimental results. In a later 

study, Abramowicz and Wierzbicki [4], improved the predictions 

of their preceding studies by combining two different collapse 

(crushing) modes. These modes which were identified as a quasi-

inextensional collapse mode followed by an extensional mode 

took place successively during crushing process.  Other researches 

such as White et al. [5] and Najafi and Rais-Rohani [6], used this 

method to predict mean crushing force for different geometries. 

Hao et al. [7] conducted a theoretical study to predict the 

progressive buckling and energy absorption of the sinusoidal 

corrugated tubes subjected to axial crushing. Hong et. al [8] carried 

out some experiments to evaluate deformation curves and collapse 

modes of triangular steel tubes under quasi-static axial 

compression. The energy absorption capacity of axially 

compressed expanded metal tubes was investigated by Martínez at 

al. [9]. They validated their numerical results with those of 

nonlinear finite element findings and experimental results. In other 

similar studies, Wierzbicki and Abramowicz [10] investigated the 

mechanics of deep plastic collapse of thin walled structures while, 

Zhang and Huh [11], worked on crushing analysis of polygonal 

columns and angle elements. Zhang and Huh [12], analyzed crush 

resistance of square tubes with various thickness configurations, 

and Song at. al [13] seeked a relationship between progressive 

collapse and initial buckling for tubular structures under axial 

loading. Crushing behavior of multi-cell or honeycombs was also 

studied by others [14, 15].  

There are also some other studies that have investigated the 

axial collapse of columns under an impact load using finite 

element or experimental methods (or combination of both). The 

first study in this field was reported by Macaulay and Redwood 

[16] on small scale model of railway coaches under impact. 

Pugsley [17] studied crumpling of aluminum tubular structures 

under impact loads. In a separate work, Coppa [18] investigated 

the new ways to attenuate shock loads emanating from impact 

loads. Ezra and Fay [19] assessed energy absorbing devices for 

prospective use in aircrafts under impact loads, while, Reid and 

Reddy [20] studied the use of metallic tubes as impact energy 

absorbers. However the more recent investigations on this topic 

were carried out by Abramowics and Jones [21], as well as 

Abramowics [22], on dynamic progressive buckling of circular 

and square tubes. They proposed an efficient theoretical approach 

and carried out some experimental tests on square and circular 

mild steel samples under axial impact. They measured the mean 

crushing force and overall crushing distance by observing the 

collapse modes of the crushed samples. Furthermore, following 

the Wierzbicki and Abramowicz approach, they derived relations 

for dynamic mean crushing force. In spite of a relatively fair 

agreement between their experimental and analytical results which 

were based on the same model, they did not include some of the 

important factors such as mixed collapse mode or realistic elasto-

plastic model of the material, and even the effect of reducing 

impactor velocity in their analysis. Recent studies on crushing 

behavior of structures have focused on crashworthiness design 

[28-31] under the action of an impact load. These studies are 

usually cumbersome and computationally expensive and need a 

fast computer and proper finite element software to seek a solution. 

There are also some new investigations in the literature 

considering the application of new materials (or nano-materials) 

[33], foams [34, 35], composite or FGM [36], to investigate their 

buckling behavior and/or degree of the absorbed energy during this 

process.  

The main goal in present research is to obtain a meaningful 

relation between the crushing force and axial collapse variables of 

prismatic metal columns with regular sectional shapes, based on a 

model in which other essential factors neglected by other 

researches have been included in the analysis. These essential 

factors include the effect of reducing impactor velocity and inertia 

effect during collapse, a mixed collapse mode for crushing 

mechanism, and consideration of a realistic elasto-plastic model 

for material under an axial load (static and dynamic). The proposed 

approach which is based on SFE theory, is capable of predicting 

static and dynamic mean crushing forces, as well as collapse 

variables (crushing wavelength 2𝐻 and curvature radius 𝑏), by 

considering all important aspects in modeling which have been 

neglected so far. The study first determines the maximum or peak 

force using a method called direct strength method (DSM). This 

method offers an efficient approach which has already been used 

(Refs. [37, 38] ) in thin walled metal structures to obtain their load 

carrying capacity. As the second step, using SFE theory in the 

post-buckling regime, the internal energy due to axial collapse is 

calculated. This energy is obtained for each crushing wavelength 

based on the deformation or crushing mode of an angle element, 

as a constitutive element extracted from the column walls. 

Balancing the resulting internal energy with the external work, the 

mean crushing force is extracted. In the next step, using the 

optimality conditions for the crushing forces with respect to the 

collapse variables, a set of nonlinear algebraic equations are 

obtained which lack a general analytic solution. One of the 

novelties of the present work is to propose a semi-analytical 

procedure to find a general solution to these equations. This 

approach uses a discretization procedure for solving parametric 

equations to yield the explicit relations for crushing force and 

collapse variables. In the case of impact loading, the effects of 

strain rate and reduction of the impactor velocity during 

progressive collapse is considered such that instead of using just 

one crushing force during the whole collapse regime (as in 

previous studies), a progressively decaying crushing force is 

obtained for each crushing wavelength. To evaluate the results, a 

detailed step by step finite element study is performed using LS-

DYNA solver for simulating the crushing process on a variety of 

square mild steel samples. At last, the results of the proposed 

model (and approach) will be discussed and compared with those 

reported by experimental work of others, and that of finite element 

study also performed in this work.  
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2. Theoretical approach 

2.1. Buckling analysis 

Consider a typical thin-walled metal column sustaining an 

axial force 𝑷 and geometrical parameters shown in Fig. 1. Using 

direct strength method and calibration with experimental data, 

Schafer [37, 38] showed that the ultimate local buckling load for 

such column is defined as follows: 

 

 
(1) 

 

Pult = {
(1 − 0.15 (

𝑃𝑐𝑟

𝑃𝑌
)

0.4
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Figure 1. A typical thin-walled metal column with given dimensions under 

an axial load. 

 

where 𝑃𝑐𝑟  and 𝑃𝑌 are the critical and yield loads corresponding 

to the critical and yield stresses defined in Eqs. (2) and (3) [37, 38].  
(2) 

Pcr = 𝐴𝑔(
𝑘𝑐𝜋2𝐸

12(1 − 𝑣2)
(

𝑡

𝐶
)2) 

(3) 𝑃𝑦 = 𝐴𝑔𝜎𝑌 

In these equations, 𝐴𝑔 is the gross cross sectional area of the 

column and 𝑘𝑐 is the buckling coefficient for the column wall 

(plates). It is assumed that a linear load path exists until the 

collapse, while each plate experiences simply supported boundary 

conditions (𝑘𝑐 ≅ 4) [39], irrespective of the connecting angle 

between the plates. This assumption was confirmed by findings on 

linear buckling analysis performed by FEM. Therefore the 

absorbed elastic energy by the column before collapse is estimated 

as follows [39]: 
(4) 

𝐸0 =
Pult

2𝐿

2𝐸𝐴𝑔
 

Note that Eqs. (1) and (4) are reliable for quasi-static loading. 

For the impact loading, these equations are multiplied by a factor 

related to strain rate effects which will be presented later. It is 

worth to mention that in previous studies, the energy 𝐸0 has been 

excluded from the plastic energy during crushing process. The 

present work will include this term, as will be shown in the 

following section. 

2.2. Collapse analysis 

After the column has reached its ultimate load carrying 

capacity Pult, it collapses and then the energy is absorbed through 

large plastic deformation. A corner element cut out from the 

column sidewalls with geometrical parameters shown in Fig. 1, is 

used as the base element in collapse analysis. Based on the 

experimental observations reported by [2-4], there are two 

crushing mechanisms known as collapse modes which take place 

simultaneously. These two modes are named as quasi-

inextensional mode (shown in Fig. 2(a)) and extensional collapse 

mode (shown in Fig. 2(b)). In this work, it is assumed that the 

collapse is progressive and takes place in a sequential manner for 

each folding element. In other words, the collapse begins with a 

quasi-inextensional mode and then progresses to an intermediate 

configuration α̅ (also known as switching angle). The latter mode 

is followed by the extensional mode which takes over and governs 

the rest of the crushing process. 

 

      The absorbed energy during the collapse is determined using 

the so-called SFE theory. Based on this theory, the internal energy 

is absorbed in certain regions of the sidewalls which undergo large 

plastic deformations and the rest of the surface (trapezoidal areas 

in Fig. 2) moves rigidly with no deformation. The total absorbed 

energy is then the sum of energy contribution from each region 

shown in Fig. 2; that is, the energies absorbed during quasi-

inextensional mode in a toroidal surface denoted by region 1 in 

Fig. 2(a) with energy value E1, horizontal hinge lines denoted by 

region 2 with energy E2, and the inclined traveling hinge lines 

denoted by region 3 with energy E3. Also during extensional 

mode, energy is absorbed in regions denoted by 4, 5 and 6 which 

are associated with the two opening conical surfaces with energy 

E4, horizontal hinge lines with energy E5 and the inclined 

stationary hinge lines with energy E6. Expressions for all these 

energies have analytically been derived in detail in Appendix 1. 

There are two sets of variables in this study; (1) – the geometric 

parameters as the independent variables denoted by χ (including 

shell thickness t, side wall width C and corner angle 𝜓0), and (2)- 

the collapse variables as dependent variables denoted by ξ which 

include the crushing wavelength 2H, curvature radius b and 

switching angle α̅. Stated mathematically; 

 
χ = {𝑡, 𝐶, ψ0} (5) 

ξ = {H, b, α̅} (6) 

Now, for the mild steel, the material behavior in plastic region is 

assumed to obey a linear elastic power law hardening which 

mathematically states;  
(7) σ(ε) = σU(

ε

εU
)n 

Eq. (7) fully describes the true stress-strain curve for any mild 

steel alloy under uniaxial test. Plastic flow stress equivalent to 

extension (σ0
N) and bending-rolling deformations (σ0

M) are 

determined as follow [22]: 
(8) 

σ0
N =

1

ε𝑚
𝑖 ∫ σ(ε)dε =

σu

n+1

ε𝑚
𝑖

0
(

ε𝑚
𝑖

εu
)

n

              (i =1, 2, 3)  

(9) 
σ0

M =
2

(ε𝑚
𝑖 )2 ∫ σ(ε)εdε =

2σu

n+2

ε𝑚
𝑖

0
(

ε𝑚
𝑖

εu
)

n

        (i =1, 2, 3) 

In Eqs. (8) and (9), ε𝑚
𝑖  represent the maximum plastic strains 

in each region; namely, toroidal surface 1, horizontal hinges line 2 

and the inclined hinge lines 3. These strains may be expressed as 

[22];  
(10) 

ε𝑚
1 =

t

2b
 

(11) 
ε𝑚

2 =
t

2H
 

(12) 
ε𝑚

3 =
t

2b
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Substituting Eq. (10)-(12) into Eqs. (8) and (9), plastic flow 

stresses corresponding to each region are obtained. The fully 

plastic moments corresponding to each region are also obtained 

according to the following relation:

 
Figure 2. Two different collapse modes a) quasi-inextensional mode b) extensional mode. 

(13) 
M0i =

1

4
σ0

(i)
t2                     i = 1,2,3 

Following a detailed derivation of energies that is given in 

Appendix 1, to determine the static mean crushing force Pms , the 

total internal energy is set equal to the external work Wext such 

that;  
 

(14) Wext = Pmsδeff = ∑ Ei

6

i=0

(χ, ξ) 

Here, δeff is the effective crushing distance (length) which is 

smaller than the whole crushing wavelength 2H, since the shell 

thickness and radii of curvatures prevent the folds to be completely 

flattened. Different values have been obtained for δeff in different 

studies. For the purpose of brevity, instead of a full derivation, 

referring to Refs. [2-4, 21], one can conclude that for the present 

collapse mode and parameters ratios 
𝐶

𝑡
≥ 6 and  

𝐿

𝐶
≤ 8,  

δeff

2H
=

0.77. In the present study, this value is used for δeff and it turns 

out that the results are in good agreement with FE findings.  

Using extremity condition for Pms with respect to the collapse 

variables  χ, a set of equations are obtained as follows: 
(15) ∂Pms

∂χ
(χ, ξ) = 0 

Eq. (15) consists of three nonlinear parametric equations which 

should be solved to yield the collapse variables and then the mean 

crushing force in terms of the geometric parameters. Since these 

equations can not be solved analytically, a detailed procedure for 

extracting the solutions will be discussed in the following section.  

In the case of impact loading, to introduce the effect of material 

strain rate sensitivity, the empirical Cowper-Symonds uniaxial 

constitutive equation for mild steel is used as follows: 
 

(16) 
σ0d

(i)

σ0
(i)

= 1 + (
ε̇

q
)

1
p⁄              i = 1,2,3 

This equation is widely used to assess the material strain rate 

effects in many structures [21, 22]. In this equation, 𝑝 and 𝑞 are 

the two constants for which different values are reported in 

different studies. Values of 𝑝 = 6844 and 𝑞 = 3.91 which have 

been widely used by others, are selected and will be used in the 

present study. Additionally, σ0d
(i)

 is the dynamic flow stress 

associated with the 𝑖th plastic region and ε̇ is the strain rate 

determined as follows: 
(17) 

ε̇ =
tV0k

2bδeff
 

Substituting Eq. (17) into Eq. (16), the dynamic plastic flow 

stress associated with the ith region is obtained as; 

 

(18) σ0d
(i)

= σ0
(i)

[1 + (
tV0k

2bqδeff
)

1
p⁄

] 

In Eq. (18), V0k is the velocity of the impactor mass at the 

beginning of the kth crushing wavelength. This way, instead of 

using an average velocity during the whole crushing distance, as 

assumed by others, a separate velocity in each wavelength is 

calculated and used. Consequently, based on the impactor 

velocity, different dynamic mean crushing forces are calculated in 

the progressive wavelengths, values of which are determined as;  
(19) 

Pmdk = Pms[1 + (
tV0k

2bqδeff
)

1
p⁄

]      k=1,2,3,… 

In Eq. (19), Pmdk and V0k are the current dynamic mean 

crushing force and initial velocity related to the kth crushing 

wavelength. To obtain the next mean dynamic force and the initial 

velocity, it is assumed that the impactor velocity is reducing 

linearly during crushing process (the FE results confirms this 

assumption). Therefore, the acceleration can be taken to be a 

constant. On this basis, the velocity at the beginning of the next 

crushing wavelength is obtained stepwise and in an iterative 

process using the current values through the following equation:  
 

(20) V0k+1 = √V0k
2 −

2Pmdkδeff

M
 

 The process of determining values of Pmdk is repeated until 

the velocity becomes non-positive i.e. V0k+1 ≤ 0 (this means that 

the impactor has stopped). The overall dynamic mean crushing 

force, Pmd (which will be compared with the experimental values 

of other studies and FE findings of present work), can be obtained 

by averaging Pmdk values as follows: 
(21) Pmd = ∑

Pmdk

𝑁

N
k=1      k =1, 2, 3,… 

In Eq. (21), 𝑁 is the number of wavelengths (2H) and is equal 

to the number of 𝑘s until the value of 𝑉0𝑘+1 becomes negative. 

Therefore, N is always an integer and is simply used to obtain the 

average dynamic crushing force given by Eq. (21). To obtain the 

real number of folds which may not be an integer, the overall 

crushing length d must be divided by the effective crushed length 

in each wavelength. Therefore, the overall crushed length 𝑑 in the 

column, the absorbed energy 𝐸𝑘 in each crushing wavelength, and 

the real number of folds 𝑁𝑓 are obtained through the following 

relations: 
(22) 

d =

1
2

𝑚𝑉01
2

Pmd

⁄  

(23) 𝐸𝑘 = Pmdk𝛿𝑒𝑓𝑓 

(24) 𝑁𝑓 =
𝑑

𝛿𝑒𝑓𝑓
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2.4. Solution method  

     In this section, a solution procedure is proposed for solving the 

nonlinear algebraic Eq. (15). First, the values of integrals Iis in the 

energy terms 𝐸𝑖s (i =1, 2,.., 6) which have been determined in 

Appendix 1 are estimated as functions of the crushing angle  . 

For this purpose, those values of Iis which can not be determined 

analytically, are obtained numerically (point-wise) for different 

and enough values of  α̅ (0 < α̅ <
π

2
) (here twenty points), and then 

the solution points are fitted into smooth functions using the least 

square curve fitting algorithm. Among the expressions obtained 

for Iis in Appendix 1, I1 and I6 are the ones that must be evaluated 

numerically .The proper curves fitted to these two functions appear 

in Fig. 3. 

 
Figure 3. Fitted curves on data points used for numerical calculation of I1 and I6.

On substituting Iis into Eq. (15), three nonlinear parametric 

equations are obtained which are solved numerically for 20 

discretized values, for each one of the two parameters t and C. 

Now, the equations are no longer parametric and are only functions 

of the collapse variables ξ which could be easily solved 400 times 

 based on 400 different combinations of 𝑡 and C. This way, 400 

solution points, for each set of collapse variables H, α̅, and b, and 

then the static mean crushing force Pms are obtained. Figures 4(a) 

and 4(b) show the variations in crushing forces in a square tube 

based on the selected values of C and t (i.e. for each value of 𝜓0).

 
Figure 4. Static mean crushing force for square section; (a) as a function of thickness for different section widths, and (b) as a function of widths for different 

thicknesses. 

Fig.5 shows the three dimensional changes in crushing force 

as a function of geometric parameters (i.e. thickness and width), 

based on the foregoing selected points. According to Figs. 5(a) and 

5(b), the crushing force Pms and the crushing length H highly 

depend on C and t. Obviously, smaller widths C and thicker wall 

thicknesses t, will cause a sudden rise in Pms. Additionally, due to 

smooth generated surfaces, it is possible to fit the results to any 

appropriate function. In this study, polynomial functions of the 

form 𝐴𝑡𝑟𝐶𝑠 are fitted to the results using the least squares 

algorithm in Matlab with 95% upper and lower bound confidence 

for constants A, 𝑟 and 𝑠. 

Variations in C and t seem to have similar effects on the 

curvature radius (see Fig. 5(c)). According to Fig. 5(d), the effects 

of C and t on switching angle  seem to be less, compared to the 

other plots shown in this figure. However, for a wide range of 

square tube geometric parameters, the switching angle �̅� (the angle 

at which the collapse mode shifts from quasi-inextensional to 

extensional) is in the range of 84 to 90 degrees. This indicates that 

the quasi-inextensional collapse mode governs most of the 

crushing process, and hence, inherits most of the absorbed energy. 

Also, increasing 
𝐶

𝑡
 ratio, increases α̅ toward 90 (representing a 

pure quasi-inextensional collapse mode). Similar procedure can be 

performed on other crass sectional shapes by simply replacing the 

geometric parameters for the sections shown in Table 1. The 

corresponding results can be obtained based on successive runs 

either in Matlab or Maple software. Table 1 includes the fitted 

polynomial surfaces related to the mean crushing force and 

collapse variables obtained for columns with different cross 

sectional shapes. 
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As mentioned before, due to strain rate effect and reduction in 

the impactor velocity, different dynamic mean crushing forces 
Pmdk, associated with different crushing wavelengths, are 

obtained. 

 

 

Figure 5. Surfaces of a) static mean crushing force, b) crushing length, c) curvature radius, d) switching angle as a function of geometric parameters 

Table 1. Collapse variables for different thin walled columns obtained in present study. 

Triangular tube (𝜓0 =
𝜋

3
) 

 

 

Hexagonal tube (𝜓0 =
𝜋

6
) 

 

Square tube (𝜓0 =
𝜋

4
) 

 

Section 

 
 

Collapse variables 

6.80σUt1.682C0.311 27.07σUt1.673C0.274 14.25σUt1.699C0.298 Pms 

1.674t0.349C0.655 0.708t0.342C0.658 1.0921t0.342C0.658 H 

0.955t0.676C0.325 0.702t0.672C0.327 0.807t0.673C0.327 b 

1.404t−0.04C0.03 1.491t−0.006C0.007 1.51t−0.011C0.011 α̅ 

Pms[1 + (
tV0k

2bqδeff

)

1
p⁄

] Pms[1 + (
tV0k

2bqδeff

)

1
p⁄

] Pms[1 + (
tV0k

2bqδeff

)

1
p⁄

] 
 

Pmdk 

According to Ref. [2], the crushing load for a mild steel square 

tube with a rigid-perfectly plastic behavior is estimated by Eq. 

(25), while for a  model with similar material behavior and 

considering a mixed collapse mode, this equation is replaced by 

Eq. (26) [4].   

Pms = 13.05σ0t1.67C0.33 (25) 

Pms = 12.16σ0t1.63C0.37 (26) 

 Reference [22], which offers a rigid-power law hardening 

plastic model for the material but does not yet consider a mixed 

collapse mode, Calculates  Pms according to Eq. (27). 

Pms = 14.53σut1.71C0.29 (27) 

Among these three equations, the results based on Eq. (27) 

show better agreements with those of present work. This is due to 

the fact that the material in Ref. [22] is assumed to behave similar 
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to the one used in present analysis (note that Eq. (27) lacks other 

aspects introduced in this work).  

3. Analytical results and FE simulation  

    To evaluate the applicability of the proposed approach on 

estimation of the crushing force due to an impact load, properties 

of AISI1020 mild steel alloy with power law hardening (expressed 

by Eq. (7) and given in Table 2), are used in the current analysis. 

These values were also used by Abramowicz and Jones [21] for 

generation of their experimental results given in Table 3. Since the 

results in Table 3 do not show all single aspects of the crushing 

mechanism which were considered in the present work, a detailed 

FE simulation on square columns was also performed, using 

ANSYS and LS-DYNA software programs. The corresponding 

results of this part are compared with analytical results of present 

analysis and those of Ref. [21], whenever possible, for validation 

of final results found in this work.  

Table 2. Material properties of AISI1020 mild steel alloy. 

Hardening 

power n 

Strain at σU Ultimate 

strength 

Yield strength Poisson’s 

ratio 

Elastic 

modulus 

Density Property 

0.1 0.3 442MPa 345Mpa 0.29 205GPa 7870
kg

m3⁄  
Value 

 

Table 3. Test results on square tube samples reported in Ref. [21] 

 

Sample 

Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

Impactor 

Mass (Kg) 

Velocity 

(m/s) 

Kinetic 

energy 

(KJ) 

Crushing 

length (mm) 

Mean 

force 

(KN) 

B4 47.9 11.44 1.28 16.75 6.47 0.35 14.5 24.13 
B5 48.2 11.43 1.28 16.75 7.40 0.46 22.7 20.26 

B7 48.3 11.41 1.29 16.75 8.32 0.58 24.0 24.17 

 
C2 100.0 17.05 1.00 77.25 4.62 0.86 52.6 16.43 

C3 100.4 17.08 0.98 16.75 9.62 0.78 49.0 15.97 

C4 100.2 17.12 0.95 77.25 5.73 1.33 76.7 17.29 
C6 97.0 17.08 0.99 16.75 11.27 1.07 66.8 16.08 

C8 96.3 17.11 0.98 16.75 11.27 1.07 68.4 15.70 

 
D1 100.0 18.20 0.90 16.75 9.80 0.81 59.0 13.80 

D2 100.4 18.16 0.92 77.25 4.62 0.88 66.7 13.14 

D5 200.3 18.15 0.92 77.25 5.55 1.26 92.6 13.60 
D6 200.0 18.16 0.91 77.25 6.47 1.72 130.5 13.16 

D7 48.1 18.18 0.91 16.75 7.58 0.49 34.3 14.20 

D8 48.1 18.24 0.91 16.75 6.84 0.40 29.5 13.46 
 

E1 178.1 36.64 1.64 77.25 8.14 2.59 48.3 53.72 

E2 178.0 36.45 1.65 135.5 6.11 2.59 48.5 53.39 
E3 222.1 36.49 1.63 135.5 9.62 6.46 144.8 44.61 

E4 222.0 36.55 1.62 135.5 4.99 1.74 35.9 48.41 

E5 268.0 36.45 1.64 77.25 10.09 4.01 97.8 40.99 
E6 267.7 36.46 1.64 135.5 6.84 3.26 67.1 48.60 

E7 289.0 36.46 1.63 77.25 10.91 4.67 97.0 48.15 

E8 288.8 36.42 1.64 135.5 6.84 3.26 63.7 51.13 

The square tube samples were categorized in six different 

groups A, B, C, D, E and F, based on their geometric parameters 

(i.e. thickness and width of the section). Since this study is 

concerned with progressive collapse, then, only those samples 

following this behavior were selected (groups B, C, D, and E). The 

samples experiencing global buckling (groups A and F) were 

excluded in this work. It is worth mentioning that the overall mean 

dynamic crushing force in the experimental tests could be simply 

obtained by dividing the initial kinetic energy of the impactor by 

the total crushing distance.  

To perform a detailed simulation study on the mild steel square 

tubes with dimensions and properties given in Tables 2 and 3, both 

LS-DYNA and ANSYS software programs were used (ANSYS 

for buckling and LS-DYNA for crushing simulation). In the first 

stage of the analysis, to account for geometrical imperfections, a 

linear buckling analysis was carried out to yield enough buckling 

modes. Combination of the first three buckling modes were 

selected for generation of imperfections (using a small scaling 

factor in the range of 0.03% of the thickness), value of which were 

imposed on the tubes by updating their new geometry using 

geometry tools available in ANSYS Workbench. The tubes with 

the imposed geometric imperfections are shown in Fig. 6. To 

continue the analysis, the tubes were imported to LS-DYNA 

module for preprocessing operation, which included meshing and 

application of load and boundary (initial) conditions. Proper 

Material models with properties given in Table 2 and strain-rate 

hardening effect given according to Eq. (16) were selected using 

24_MAT_PIECEWISE_LINEAR_ PLASTICITY keyword. The 

tubes were meshed with proper size elements to yield accurate 

results. Zero translational boundary conditions were imposed on 

the lower end edges. AUTOMATIC_SINGLE_SURFACE contact 

type was used for the shell self-contact with friction coefficient of 

0.05. To model the impactor, as well as the inertia and velocity, 

keyword (RIGIDWALL_PLANAR_ MOVING_FORCES) was 

invoked. Fig. 7 shows the final crushed state of the tubes (groups 

B to E).   
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Figure 6. Geometric imperfections embedded through linear buckling analysis of the tubes 

 
Figure 7. Final crushed state of the square tubes simulated in LS-DYNA, (a) group B, (b) group C, (c) group D, and (d) group E. 

As is evident in Fig. 7, the collapse modes are mainly 

progressively quasi-inextensional. This is in agreement with 

experimental observations and thus the suggested collapse mode 

in the previous section is validated. The simulation results on 

crushing force versus the axial displacement curves for the tubes 

in groups B to E are shown in Fig. 8. Considering the force-

crushing curves for all the tubes, it is observed that unlike the 

quasi-static loading, the responses to impact loadings are slightly 

irregular for different wavelengths, yet still enough regular that the 

bar can be assumed to be crushed in successive similar 

wavelengths [2- 4]. Additionally, due to strain-rate effects in the 

material and gradual reduction in impactor velocity, the crushing 

force decreases during crushing progression. This means that for a 

more accurate modeling, it is necessary to consider a stepwise 

mean crushing force corresponding to each crushing wavelength, 

instead of just a mean force, as has been employed in previous 

studies [2-4, 21, 22]. Moreover, it is observed that the maximum 

crushing load occurs at the beginning of the collapse. This is very 

important in crashworthiness applications, since in vehicular 

accidents, it could be a measure of brain and spinal injuries. The 

area under these curves represent the total absorbed energy which 

is also equal to the initial kinetic energy of the impactor (since the 

simulation continues until the impactor completely comes to a halt, 

and principally all of its energy is converted into internal energy).  

Table 4, gives each sample velocity at the beginning of the kth 

wavelengths (2H), using Eq. (20). In this table, the reduction in 

mean crushing force is due to strain rate effects and reduction in 

the impactor velocity. It is worth to mention that the number of 

steps between the start and stopping periods are not necessarily the 

number of folds. The real number of wavelengths 𝑁𝑓, up to the 

point of stop could be estimated by Eq. (24). 

Also, in Table 5, Dynamic mean crushing force for different 

progressive wavelengths associated with each sample is presented.   
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Figure 8. Force vs. crushing length (distance) curves for simulated tube samples in LS-DYNA; (a) Group B, and (b) Group C, (c) Group D, and (d) Group E.  
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Table 4. Number of wavelengths (2H) and the corresponding velocity of each sample at the beginning of each 
crushing wavelength. 
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1 )(m

/s) 
B4 6.47 4 0 0 0 0 0 0 0 0 0 
B5 7.4 5.35 1.78 0 0 0 0 0 0 0 0 
B7 8.32 6.52 4.03 0 0 0 0 0 0 0 0 

 
C2 4.62 4.08 3.45 2.69 1.62 0 0 0 0 0 0 
C3 9.62 8.4 6.98 5.22 2.47 0 0 0 0 0 0 
C4 5.73 5.34 4.92 4.46 3.95 3.37 2.68 1.73 0 0 0 
C6 11.27 10.21 9.04 7.7 6.1 3.93 0 0 0 0 0 
C8 11.27 10.23 9.09 7.79 6.24 4.19 0 0 0 0 0 

 
D1 9.8 8.74 7.55 6.15 4.34 0.45 0 0 0 0 0 
D2 4.62 4.14 3.59 2.96 2.15 0.72 0 0 0 0 0 
D5 5.55 5.15 4.72 4.25 3.72 3.11 2.35 1.2 0 0 0 
D6 6.47 6.14 5.78 5.41 5.01 4.58 4.1 3.56 2.94 2.14 0.76 
D7 7.58 6.15 4.29 0 0 0 0 0 0 0 0 
D8 6.84 5.22 2.82 0 0 0 0 0 0 0 0 

 
E1 8.14 6.29 3.63 0 0 0 0 0 0 0 0 
E2 6.11 4.71 2.68 0 0 0 0 0 0 0 0 
E3 9.62 8.8 7.9 6.89 5.7 4.22 1.8 0 0 0 0 
E4 4.99 3.23 0 0 0 0 0 0 0 0 0 
E5 10.09 8.66 6.94 4.67 0 0 0 0 0 0 0 
E6 6.84 5.63 4.1 1.46 0 0 0 0 0 0 0 
E7 10.91 9.61 8.11 6.29 3.69 0 0 0 0 0 0 
E8 6.84 5.64 4.11 1.47 0 0 0 0 0 0 0 

 

Table 5. Dynamic mean crushing force for different progressive wavelengths associated with each sample. 
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B4 23.81 23.04 0 0 0 0 0 0 0 0 0 
B5 24.05 23.48 22.1 0 0 0 0 0 0 0 0 
B7 24.6 24.12 23.34 0 0 0 0 0 0 0 0 

 
C2 16.82 16.71 16.57 16.38 16.07 0 0 0 0 0 0 
C3 17.05 16.88 16.67 16.37 15.78 0 0 0 0 0 0 
C4 15.62 15.56 15.49 15.4 15.3 15.19 15.03 14.78 0 0 0 
C6 17.56 17.43 17.27 17.07 16.81 16.4 0 0 0 0 0 
C8 17.27 17.14 16.98 16.8 16.56 16.18 0 0 0 0 0 

 
D1 14.99 14.86 14.72 14.52 14.24 13.24 0 0 0 0 0 
D2 14.83 14.74 14.64 14.51 14.32 13.87 0 0 0 0 0 
D5 14.98 14.91 14.84 14.76 14.66 14.54 14.37 14.05 0 0 0 
D6 14.84 14.79 14.74 14.68 14.62 14.55 14.46 14.36 14.24 14.06 13.63 
D7 14.99 14.8 14.5 0 0 0 0 0 0 0 0 
D8 14.91 14.67 14.23 0 0 0 0 0 0 0 0 

 
E1 48.46 47.87 46.84 0 0 0 0 0 0 0 0 
E2 48.24 47.72 46.8 0 0 0 0 0 0 0 0 
E3 

48.33 48.1 47.84 47.52 47.12 46.56 45.35 0 0 0 0 
E4 46.4 45.66 0 0 0 0 0 0 0 0 0 
E5 48.95 48.55 48.03 47.22 0 0 0 0 0 0 0 
E6 48 47.58 46.99 45.58 0 0 0 0 0 0 0 
E7 48.66 48.32 47.89 47.32 46.32 0 0 0 0 0 0 
E8 47.98 47.57 46.97 45.58 0 0 0 0 0 0 0 

Plotting the dynamic mean crushing forces versus the crushing 

length (distance), showed a stepwise reduction in this force for 

progressive wavelengths (see Fig. 9). Differences in successive 

mean forces depend on the strain rate sensitivity. Although for the 

mild steel (which is the case in this study) the differences may not 

be significant in some periods, yet, they may become significant 
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for materials with higher sensitivity to strain rate.  Moreover, the 

values of dynamic mean crushing force and collapse variables 

obtained from FE analysis and analytical work of this study are 

compared with the experimental results of Ref. [21]on square 

tubes. This comparison is shown in Table 6 for all sample. 

 

 

 
Figure 9. Dynamic mean crushing forces vs. crushing (length) distance for square sections using the approach in present study 

 

 

 

According to this table, although there are a few cases in which 

the percentage differences between the results are higher than 4,  

yet, there still remain excellent agreements with experimental 

results on majority of remaining samples used in both studies. This 

Table 6. Comparison between experimental results [21], FEM and the analytical results of present study. 
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B4 24.13 14.8 23.57 2.11 5.91 20.22 23.43 14.96 0.59 2.32 2.9 
B5 20.26 20.5 22.43 2.11 5.9 20.22 23.21 19.76 3.48 9.71 11.56 
B7 24.17 24.2 23.96 2.12 5.91 20.47 24.02 24.14 0.25 0.87 0.62 

 
C2 16.43 52.9 16.25 2.04 7.06 14.97 16.51 49.94 1.6 1.1 0.49 
C3 15.97 48.2 16.18 2.01 7.02 14.47 16.55 46.83 2.29 1.31 3.63 
C4 17.29 81.6 16.3 1.97 6.95 13.74 15.3 82.89 6.13 5.73 11.51 
C6 16.08 66.1 16.18 2.03 7.04 14.73 17.09 62.24 5.62 0.62 6.28 
C8 15.7 68.9 15.53 2.01 7.03 14.48 16.82 63.24 8.31 1.08 7.13 

 
D1 13.8 61.3 13.2 1.94 7.11 12.76 14.43 55.74 9.32 4.35 4.57 
D2 13.14 61.3 14.35 1.97 7.15 13.24 14.49 56.9 0.98 9.21 10.27 
D5 13.6 91.1 13.83 1.97 7.15 13.24 14.64 81.27 5.86 1.69 7.65 
D6 13.16 127.2 13.52 1.95 7.12 13 14.45 111.89 6.88 2.74 9.8 
D7 14.2 34.2 14.32 1.96 7.13 13 14.76 32.6 3.07 0.85 3.94 
D8 13.46 28.3 14.09 1.96 7.14 13.01 14.6 26.84 3.62 4.68 8.47 

 
E1 53.72 50 51.81 3.65 13.83 43.58 47.72 53.63 7.89 3.56 11.17 
E2 53.39 50.4 51.38 3.66 13.81 43.97 47.59 53.15 7.38 3.76 10.86 
E3 44.61 138.5 46.63 3.64 13.76 43.08 47.26 132.67 1.35 4.53 5.94 
E4 48.41 36.1 48.23 3.62 13.75 42.65 46.03 36.65 4.56 0.37 4.92 
E5 40.99 84.2 47.63 3.65 13.78 43.52 48.19 81.6 1.18 16.2 12.57 
E6 48.6 70.5 46.24 3.65 13.78 43.52 47.04 67.38 1.73 4.86 3.21 
E7 48.15 99.5 46.9 3.63 13.76 43.07 47.7 96.38 1.71 2.6 0.93 
E8 51.13 64.1 50.84 3.65 13.77 43.5 47.03 67.4 7.49 0.57 8.02 
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demonstrates that the current analytical approach can predict the 

axial collapse of multi-corner thin-walled metal sections under an 

axial impact with a good accuracy. The advantages of the current 

proposed analytical approach over the experimental and FEM is 

the easiness and accuracy of the method due to its explicit closed 

form solutions for all collapse variables. Obviously, this method 

may be used for any section with any sectional parameter. 

4. Conclusion      

In this paper, progressive collapse of thin walled metal 

columns under quasi-static and impact axial load was investigated 

in detail via a novel approach to derive the explicit relations for 

dynamic and static mean crushing forces and collapse variables in 

terms of geometrical and mechanical properties. SFE theory which 

is an efficient approach was employed and developed by 

considering some important effects which have not been 

considered in previous studies since they lead to parametric 

equations without a general analytic solution. To overcome this 

barrier, a semi-analytical procedure was proposed in terms of a 

series of point-wise solutions, and fitting the proper curves through 

the resulting data. To accomplish this task, the geometric 

parameters (i.e. thickness 𝑡 and width C of each section (triangle, 

square, hexagon)) were discretized into a wide range of 
t

C
 ratios. 

To attain a solution, 400 combinations of (t, C) were selected and 

then, the set of equations were solved numerically at each point. 

The results were fitted with the simplest possible polynomial 

curves using the least square error curve fitting method. The 

generated polynomial functions, AtrCs, were used to approximate 

the results for a wide range of 𝑡 and 𝐶, with 95% confidence for 

the lower and upper bounds for the constants A, r and s. Instead of 

using one mean crushing force (for dynamic loading) through the 

whole crushing distance, a series of stepwise valued mean 

crushing forces, each corresponding to a crushing wavelength, 

were obtained and then implemented  by considering the strain rate 

effect and evaluating the velocity reduction of the impactor. The 

overall dynamic mean force and crushing distances which were 

obtained through this process were compared with FE and 

experimental work of others and showed an average error of 4.15% 

and standard deviation of 2.88. This indicates the applicability of 

the proposed approach for accurate estimation of the crushing 

force and length in single walled metal columns.    

5. Appendix. 1   

This appendix summarizes the procedure of deriving the energies 

Eis in Section 2.2 previously discussed. It should be noted the 

crushing mechanism is one DOF because it is uniquely designated 

by the time-like parameter α. According to Fig.A1: 
(A1) 

tan γ =
tanψ0

sinα
 

(A2) 
tan β =

tanα

sinψ0
 

(A3) Δ = 2H(1 − cos(α)) 
(A4) S = Hsin(α)) 

 

In which Δ is the crushed length between points K and N. 

 

 

 

 

 

 

 

 

 

 
Figure A1. Collapse geometry of the crushing element 

The crushing velocity and horizontal velocity of point A are as 

follows: 
(A5) Δ̇ = 2Hα̇sinα 
(A6) V = Ṡ = Hα̇cosα 

The total rate of absorbing internal energy is governed by the 

following equation: 
 

(A7) Ėin = ∬(Mαβκ̇αβ + Nαβε̇αβ)dS + ∑ M0iθ̇idli

m

i

 

In Which 𝑆 is the shell surface under continuous plastic 

deformation field such as the toroidal surface (point B) or the 

extensional conical surfaces in extensional collapse mode 

(Fig.4b). Mαβ and Nαβ are general in-plane moment and forces, 

κ̇αβ and ε̇αβ are corresponding curvature and extensional rate 

respectively, M0i is plastic moment in discontinuous deformation 

fields such as horizontal and inclined hinge lines, dli is the line 

element length, θ̇i is the angular velocity in hinge lines and m is 

the number of hinge lines. To determine the energy absorbed in 

the toroidal surface, a local coordinate system is supposed at point 

B as shown in Fig.A2 with in-plane components {θ،φ}. 

Neglecting the shear components, the extension and curvature rate 

tensors are [2-4]: 
(A8) 

λ̇ = [
λ̇ϕϕ 0

0  λ̇θθ

] = [−
θ̇b sin θ

r
0

0 0

]    

(A9) 

κ̇ = [
κ̇ϕϕ 0

0   κ̇θθ
] = [

θ̇a sin θ

r2 0

0  
Vt

b

]  

In which r is the toroidal radius defined as r = a + b sin θ 

which 𝑎 and 𝑏 are minor and major radii of the toroid surface. 

 
Figure A2. Radial flow of shell over toroidal surface 

The tangential velocity of sheet metal flow passing over the 

toroidal surface is as follows: 
(A10) 

Vt = θ̇b =
V

tanψ0
=

Hα̇cosα

tanψ0
 

The differential element of the area is: 
(A11) dS = bdθrdϕ 

Upper and lower bounds of the toroidal surface angles during 

collapse: 
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(A12) {

π

2
− ψ < θ <

π

2
+ ψ

−β < ϕ < β
 

In which ψ is assumed to linearly varying from ψ0 to 
π

2
 as 

follows: 
(A13) 

ψ = ψ0 +
π − 2ψ0

π
ϕ 

Therefore the energy dissipated in the toroidal surface by 

considering the integral bounds and substituting into Eq. A (7) is 

as follows: 
 

 

(A14) 

 

E1 = ∫ {∫ b {∫ [M01

θ̇a sin θ

r2
+ N01

θ̇b sin θ

r
] rdθ

π
2+ψ

π
2−ψ

}}dϕdα
β

−β

α̅

0

 

= ∫ {∫ {2θ̇b2N01sinψ + θ̇bM01

1

η
Ln(

1 + ηsinψ

1 − ηsinψ
)} dϕ

β

−β

}
α̅

0

dα 

 
In Eq. (A14), subindex 1 indicates toroidal surface and M01 

and N01 are corresponding moment and force defined by Eq. (13) 

and η =
b

a
 which is relatively small assuming thickness constant as 

in the case of our study i.e. η ≪ 1 and using Tailor Series 

expansion [2]: 
(A15) 

E1(χ, ξ) = ∫ ∫ {2θ̇bsinψ[N01b + M01]}dϕdα
β

−β

α̅

0

=
4M01H

t
(4b + t)I1 

(A16) 
I1 =

π

π − 2ψ0
cosψ0 ∫ cosα sin (

π − 2ψ0

π
β)

α̅

0

dα 

The contribution of horizontal hinge lines in dissipating energy 

considering four hinge lines per element: 
(A17) 

E2(χ, ξ) = ∫ {4 ∫ M02dl}dα

C
2

−
C
2

α̅

0

= 4M02Cα̅ 

The energy dissipation rate in the two inclined hinge lines 

which are travelling during collapse so consist of a bending and 

unbending is as follows: 
(A18) 

Ė3 = 2M0Lθ̇ = 4M03

H2

b

1

tanψ0

cosα

sinγ
 

In which L is the length of two inclined hinge lines equal to: 
(A19) L =

2H

sinγ
   

And the energy dissipated in inclined hinge lines in quasi-

inextensional collapse mode: 
(A20) 

E3(χ, ξ) = ∫ Ė3dα =
α̅

0

4M03

H2

b
I3 

(A21) 
I3 =

1

tanψ0
∫

cosα

sinγ
dα

α̅

0

 

For determining energy dissipation in extensional collapse 

mode (Fig.4b), one can refer to reference [4]. This mode begins 

with forming two extending conical surfaces, so the extension 

energy rate is as follows: 
(A22) 

Ė4 = ∬ N01λ̇θθdS = 4M01Vt

H

b
 

Vt is the velocity tangent to conical surface is stated as follows: 
(A23) 

Vt =
H

sin2γ
γ̇ 

Substituting Eq. (A23) into (A22) and doubling the result for 

there are two such conical surfaces: 
(A24) 

E4(χ, ξ) = 8M01

H2

t
I4 

 

(A25) I4 = ∫
dγ

sin2γ

αf

α̅

= ∫
d(tan−1(

tanψ0

sinα
))

sin2(tan−1(
tanψ0

sinα
))

αf

α̅

 

The energy dissipation due to horizontal hinge lines in 

extensional collapse mode: 
(A26) E5(χ, ξ) = 4M02C(αf − α̅) 

And finally energy dissipation due to the inclined hinge lines in 

extensional collapse mode by determining θ̇ [4]: 
(A27) 

Ė6 = M03L2θ̇ = 2M03H
sinα(sin2α + tan2ψ0)

tanψ0(sin2α + tanψ0sin2α)
 

(A28) E6(χ, ξ) = 2M03HI6(ψ0, α̅, αf) 

(A29) 
I6 =

2

tanψ0
∫

sinα̅(sin2α̅ + tan2ψ0)

sin2α̅ + tanψ0sin2α
dα

αf

α̅
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Nomenclature  
A Constant of curve-fitting   Nf Number of wavelengths (folds) 

Ag Gross cross section of the column χ(t, C, ψ0) Geometric parameters 

b Radius of curvature  ξ(H, b, α̅) Collapse variables 

α, β, γ Angles of crushing mechanism in Fig. A1 Pcr Critical buckling load 

c Width of the section Pult Ultimate buckling load 

d Overall crushing length PY Yield load 

δeff Effective crushing length of each fold Pms Static mean crushing force  

Δ Axial crushing length Pmdk Dynamic mean crushing force associated with kth 

crushing wavelength  

E Modulus of elasticity Pmd Overall dynamic mean crushing force 

E0 Elastic absorbed energy p, q Constants in Cowper-Symond model 

Ei Plastic absorbed energy of the ith region (i=1,..,6) ϕ, ψ, θ Angles used in crushing analysis in Fig. A1 

ϵU Ultimate strain ψ0 Corner angle 

ε̇ Strain rate σU Ultimate strength 

H Half crushing wavelength σY Yield strength 

Ii Integrals values associated with ith region 

(i=1,..,6) 
σ0

N Extensional flow stress 

kc Buckling coefficient σ0
M Bending-rolling flow stress 

κ, κ̇ Curvature and curvature rate σ0
i  Flow stress of the ith region (i=1,..,6) 

L Length of the column r, s Constants of curve-fitting   

M Mass of the impactor t Thickness of column plates 

M0i Plastic moment associated with ith region 

(i=1,..,6) 
v Poisson's ratio 

n Power law hardening coefficient   

 

 


